// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) // Copyright(c) 2015-17 Intel Corporation. #include #include #include #include #include #include #include #include "bus.h" #include "sysfs_local.h" static DEFINE_IDA(sdw_bus_ida); static DEFINE_IDA(sdw_peripheral_ida); static int sdw_get_id(struct sdw_bus *bus) { int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL); if (rc < 0) return rc; bus->id = rc; return 0; } /** * sdw_bus_master_add() - add a bus Master instance * @bus: bus instance * @parent: parent device * @fwnode: firmware node handle * * Initializes the bus instance, read properties and create child * devices. */ int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent, struct fwnode_handle *fwnode) { struct sdw_master_prop *prop = NULL; int ret; if (!parent) { pr_err("SoundWire parent device is not set\n"); return -ENODEV; } ret = sdw_get_id(bus); if (ret < 0) { dev_err(parent, "Failed to get bus id\n"); return ret; } ret = sdw_master_device_add(bus, parent, fwnode); if (ret < 0) { dev_err(parent, "Failed to add master device at link %d\n", bus->link_id); return ret; } if (!bus->ops) { dev_err(bus->dev, "SoundWire Bus ops are not set\n"); return -EINVAL; } if (!bus->compute_params) { dev_err(bus->dev, "Bandwidth allocation not configured, compute_params no set\n"); return -EINVAL; } mutex_init(&bus->msg_lock); mutex_init(&bus->bus_lock); INIT_LIST_HEAD(&bus->slaves); INIT_LIST_HEAD(&bus->m_rt_list); /* * Initialize multi_link flag */ bus->multi_link = false; if (bus->ops->read_prop) { ret = bus->ops->read_prop(bus); if (ret < 0) { dev_err(bus->dev, "Bus read properties failed:%d\n", ret); return ret; } } sdw_bus_debugfs_init(bus); /* * Device numbers in SoundWire are 0 through 15. Enumeration device * number (0), Broadcast device number (15), Group numbers (12 and * 13) and Master device number (14) are not used for assignment so * mask these and other higher bits. */ /* Set higher order bits */ *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM); /* Set enumuration device number and broadcast device number */ set_bit(SDW_ENUM_DEV_NUM, bus->assigned); set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned); /* Set group device numbers and master device number */ set_bit(SDW_GROUP12_DEV_NUM, bus->assigned); set_bit(SDW_GROUP13_DEV_NUM, bus->assigned); set_bit(SDW_MASTER_DEV_NUM, bus->assigned); /* * SDW is an enumerable bus, but devices can be powered off. So, * they won't be able to report as present. * * Create Slave devices based on Slaves described in * the respective firmware (ACPI/DT) */ if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev)) ret = sdw_acpi_find_slaves(bus); else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node) ret = sdw_of_find_slaves(bus); else ret = -ENOTSUPP; /* No ACPI/DT so error out */ if (ret < 0) { dev_err(bus->dev, "Finding slaves failed:%d\n", ret); return ret; } /* * Initialize clock values based on Master properties. The max * frequency is read from max_clk_freq property. Current assumption * is that the bus will start at highest clock frequency when * powered on. * * Default active bank will be 0 as out of reset the Slaves have * to start with bank 0 (Table 40 of Spec) */ prop = &bus->prop; bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR; bus->params.curr_dr_freq = bus->params.max_dr_freq; bus->params.curr_bank = SDW_BANK0; bus->params.next_bank = SDW_BANK1; return 0; } EXPORT_SYMBOL(sdw_bus_master_add); static int sdw_delete_slave(struct device *dev, void *data) { struct sdw_slave *slave = dev_to_sdw_dev(dev); struct sdw_bus *bus = slave->bus; pm_runtime_disable(dev); sdw_slave_debugfs_exit(slave); mutex_lock(&bus->bus_lock); if (slave->dev_num) { /* clear dev_num if assigned */ clear_bit(slave->dev_num, bus->assigned); if (bus->dev_num_ida_min) ida_free(&sdw_peripheral_ida, slave->dev_num); } list_del_init(&slave->node); mutex_unlock(&bus->bus_lock); device_unregister(dev); return 0; } /** * sdw_bus_master_delete() - delete the bus master instance * @bus: bus to be deleted * * Remove the instance, delete the child devices. */ void sdw_bus_master_delete(struct sdw_bus *bus) { device_for_each_child(bus->dev, NULL, sdw_delete_slave); sdw_master_device_del(bus); sdw_bus_debugfs_exit(bus); ida_free(&sdw_bus_ida, bus->id); } EXPORT_SYMBOL(sdw_bus_master_delete); /* * SDW IO Calls */ static inline int find_response_code(enum sdw_command_response resp) { switch (resp) { case SDW_CMD_OK: return 0; case SDW_CMD_IGNORED: return -ENODATA; case SDW_CMD_TIMEOUT: return -ETIMEDOUT; default: return -EIO; } } static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg) { int retry = bus->prop.err_threshold; enum sdw_command_response resp; int ret = 0, i; for (i = 0; i <= retry; i++) { resp = bus->ops->xfer_msg(bus, msg); ret = find_response_code(resp); /* if cmd is ok or ignored return */ if (ret == 0 || ret == -ENODATA) return ret; } return ret; } static inline int do_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg, struct sdw_defer *defer) { int retry = bus->prop.err_threshold; enum sdw_command_response resp; int ret = 0, i; defer->msg = msg; defer->length = msg->len; init_completion(&defer->complete); for (i = 0; i <= retry; i++) { resp = bus->ops->xfer_msg_defer(bus, msg, defer); ret = find_response_code(resp); /* if cmd is ok or ignored return */ if (ret == 0 || ret == -ENODATA) return ret; } return ret; } static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num) { int retry = bus->prop.err_threshold; enum sdw_command_response resp; int ret = 0, i; for (i = 0; i <= retry; i++) { resp = bus->ops->reset_page_addr(bus, dev_num); ret = find_response_code(resp); /* if cmd is ok or ignored return */ if (ret == 0 || ret == -ENODATA) return ret; } return ret; } static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg) { int ret; ret = do_transfer(bus, msg); if (ret != 0 && ret != -ENODATA) dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n", msg->dev_num, ret, (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read", msg->addr, msg->len); if (msg->page) sdw_reset_page(bus, msg->dev_num); return ret; } /** * sdw_transfer() - Synchronous transfer message to a SDW Slave device * @bus: SDW bus * @msg: SDW message to be xfered */ int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg) { int ret; mutex_lock(&bus->msg_lock); ret = sdw_transfer_unlocked(bus, msg); mutex_unlock(&bus->msg_lock); return ret; } /** * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers * @bus: SDW bus * @sync_delay: Delay before reading status */ void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay) { u32 status; if (!bus->ops->read_ping_status) return; /* * wait for peripheral to sync if desired. 10-15ms should be more than * enough in most cases. */ if (sync_delay) usleep_range(10000, 15000); mutex_lock(&bus->msg_lock); status = bus->ops->read_ping_status(bus); mutex_unlock(&bus->msg_lock); if (!status) dev_warn(bus->dev, "%s: no peripherals attached\n", __func__); else dev_dbg(bus->dev, "PING status: %#x\n", status); } EXPORT_SYMBOL(sdw_show_ping_status); /** * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device * @bus: SDW bus * @msg: SDW message to be xfered * @defer: Defer block for signal completion * * Caller needs to hold the msg_lock lock while calling this */ int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg, struct sdw_defer *defer) { int ret; if (!bus->ops->xfer_msg_defer) return -ENOTSUPP; ret = do_transfer_defer(bus, msg, defer); if (ret != 0 && ret != -ENODATA) dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n", msg->dev_num, ret); if (msg->page) sdw_reset_page(bus, msg->dev_num); return ret; } int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave, u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf) { memset(msg, 0, sizeof(*msg)); msg->addr = addr; /* addr is 16 bit and truncated here */ msg->len = count; msg->dev_num = dev_num; msg->flags = flags; msg->buf = buf; if (addr < SDW_REG_NO_PAGE) /* no paging area */ return 0; if (addr >= SDW_REG_MAX) { /* illegal addr */ pr_err("SDW: Invalid address %x passed\n", addr); return -EINVAL; } if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */ if (slave && !slave->prop.paging_support) return 0; /* no need for else as that will fall-through to paging */ } /* paging mandatory */ if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) { pr_err("SDW: Invalid device for paging :%d\n", dev_num); return -EINVAL; } if (!slave) { pr_err("SDW: No slave for paging addr\n"); return -EINVAL; } if (!slave->prop.paging_support) { dev_err(&slave->dev, "address %x needs paging but no support\n", addr); return -EINVAL; } msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr); msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr); msg->addr |= BIT(15); msg->page = true; return 0; } /* * Read/Write IO functions. * no_pm versions can only be called by the bus, e.g. while enumerating or * handling suspend-resume sequences. * all clients need to use the pm versions */ static int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) { struct sdw_msg msg; int ret; ret = sdw_fill_msg(&msg, slave, addr, count, slave->dev_num, SDW_MSG_FLAG_READ, val); if (ret < 0) return ret; ret = sdw_transfer(slave->bus, &msg); if (slave->is_mockup_device) ret = 0; return ret; } static int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) { struct sdw_msg msg; int ret; ret = sdw_fill_msg(&msg, slave, addr, count, slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val); if (ret < 0) return ret; ret = sdw_transfer(slave->bus, &msg); if (slave->is_mockup_device) ret = 0; return ret; } int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value) { return sdw_nwrite_no_pm(slave, addr, 1, &value); } EXPORT_SYMBOL(sdw_write_no_pm); static int sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr) { struct sdw_msg msg; u8 buf; int ret; ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, SDW_MSG_FLAG_READ, &buf); if (ret < 0) return ret; ret = sdw_transfer(bus, &msg); if (ret < 0) return ret; return buf; } static int sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) { struct sdw_msg msg; int ret; ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, SDW_MSG_FLAG_WRITE, &value); if (ret < 0) return ret; return sdw_transfer(bus, &msg); } int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr) { struct sdw_msg msg; u8 buf; int ret; ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, SDW_MSG_FLAG_READ, &buf); if (ret < 0) return ret; ret = sdw_transfer_unlocked(bus, &msg); if (ret < 0) return ret; return buf; } EXPORT_SYMBOL(sdw_bread_no_pm_unlocked); int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) { struct sdw_msg msg; int ret; ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, SDW_MSG_FLAG_WRITE, &value); if (ret < 0) return ret; return sdw_transfer_unlocked(bus, &msg); } EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked); int sdw_read_no_pm(struct sdw_slave *slave, u32 addr) { u8 buf; int ret; ret = sdw_nread_no_pm(slave, addr, 1, &buf); if (ret < 0) return ret; else return buf; } EXPORT_SYMBOL(sdw_read_no_pm); int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) { int tmp; tmp = sdw_read_no_pm(slave, addr); if (tmp < 0) return tmp; tmp = (tmp & ~mask) | val; return sdw_write_no_pm(slave, addr, tmp); } EXPORT_SYMBOL(sdw_update_no_pm); /* Read-Modify-Write Slave register */ int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) { int tmp; tmp = sdw_read(slave, addr); if (tmp < 0) return tmp; tmp = (tmp & ~mask) | val; return sdw_write(slave, addr, tmp); } EXPORT_SYMBOL(sdw_update); /** * sdw_nread() - Read "n" contiguous SDW Slave registers * @slave: SDW Slave * @addr: Register address * @count: length * @val: Buffer for values to be read */ int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) { int ret; ret = pm_runtime_resume_and_get(&slave->dev); if (ret < 0 && ret != -EACCES) return ret; ret = sdw_nread_no_pm(slave, addr, count, val); pm_runtime_mark_last_busy(&slave->dev); pm_runtime_put(&slave->dev); return ret; } EXPORT_SYMBOL(sdw_nread); /** * sdw_nwrite() - Write "n" contiguous SDW Slave registers * @slave: SDW Slave * @addr: Register address * @count: length * @val: Buffer for values to be written */ int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) { int ret; ret = pm_runtime_resume_and_get(&slave->dev); if (ret < 0 && ret != -EACCES) return ret; ret = sdw_nwrite_no_pm(slave, addr, count, val); pm_runtime_mark_last_busy(&slave->dev); pm_runtime_put(&slave->dev); return ret; } EXPORT_SYMBOL(sdw_nwrite); /** * sdw_read() - Read a SDW Slave register * @slave: SDW Slave * @addr: Register address */ int sdw_read(struct sdw_slave *slave, u32 addr) { u8 buf; int ret; ret = sdw_nread(slave, addr, 1, &buf); if (ret < 0) return ret; return buf; } EXPORT_SYMBOL(sdw_read); /** * sdw_write() - Write a SDW Slave register * @slave: SDW Slave * @addr: Register address * @value: Register value */ int sdw_write(struct sdw_slave *slave, u32 addr, u8 value) { return sdw_nwrite(slave, addr, 1, &value); } EXPORT_SYMBOL(sdw_write); /* * SDW alert handling */ /* called with bus_lock held */ static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i) { struct sdw_slave *slave; list_for_each_entry(slave, &bus->slaves, node) { if (slave->dev_num == i) return slave; } return NULL; } int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id) { if (slave->id.mfg_id != id.mfg_id || slave->id.part_id != id.part_id || slave->id.class_id != id.class_id || (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID && slave->id.unique_id != id.unique_id)) return -ENODEV; return 0; } EXPORT_SYMBOL(sdw_compare_devid); /* called with bus_lock held */ static int sdw_get_device_num(struct sdw_slave *slave) { int bit; if (slave->bus->dev_num_ida_min) { bit = ida_alloc_range(&sdw_peripheral_ida, slave->bus->dev_num_ida_min, SDW_MAX_DEVICES, GFP_KERNEL); if (bit < 0) goto err; } else { bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES); if (bit == SDW_MAX_DEVICES) { bit = -ENODEV; goto err; } } /* * Do not update dev_num in Slave data structure here, * Update once program dev_num is successful */ set_bit(bit, slave->bus->assigned); err: return bit; } static int sdw_assign_device_num(struct sdw_slave *slave) { struct sdw_bus *bus = slave->bus; int ret, dev_num; bool new_device = false; /* check first if device number is assigned, if so reuse that */ if (!slave->dev_num) { if (!slave->dev_num_sticky) { mutex_lock(&slave->bus->bus_lock); dev_num = sdw_get_device_num(slave); mutex_unlock(&slave->bus->bus_lock); if (dev_num < 0) { dev_err(bus->dev, "Get dev_num failed: %d\n", dev_num); return dev_num; } slave->dev_num = dev_num; slave->dev_num_sticky = dev_num; new_device = true; } else { slave->dev_num = slave->dev_num_sticky; } } if (!new_device) dev_dbg(bus->dev, "Slave already registered, reusing dev_num:%d\n", slave->dev_num); /* Clear the slave->dev_num to transfer message on device 0 */ dev_num = slave->dev_num; slave->dev_num = 0; ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num); if (ret < 0) { dev_err(bus->dev, "Program device_num %d failed: %d\n", dev_num, ret); return ret; } /* After xfer of msg, restore dev_num */ slave->dev_num = slave->dev_num_sticky; return 0; } void sdw_extract_slave_id(struct sdw_bus *bus, u64 addr, struct sdw_slave_id *id) { dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr); id->sdw_version = SDW_VERSION(addr); id->unique_id = SDW_UNIQUE_ID(addr); id->mfg_id = SDW_MFG_ID(addr); id->part_id = SDW_PART_ID(addr); id->class_id = SDW_CLASS_ID(addr); dev_dbg(bus->dev, "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n", id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version); } EXPORT_SYMBOL(sdw_extract_slave_id); static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed) { u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0}; struct sdw_slave *slave, *_s; struct sdw_slave_id id; struct sdw_msg msg; bool found; int count = 0, ret; u64 addr; *programmed = false; /* No Slave, so use raw xfer api */ ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0, SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf); if (ret < 0) return ret; do { ret = sdw_transfer(bus, &msg); if (ret == -ENODATA) { /* end of device id reads */ dev_dbg(bus->dev, "No more devices to enumerate\n"); ret = 0; break; } if (ret < 0) { dev_err(bus->dev, "DEVID read fail:%d\n", ret); break; } /* * Construct the addr and extract. Cast the higher shift * bits to avoid truncation due to size limit. */ addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) | ((u64)buf[2] << 24) | ((u64)buf[1] << 32) | ((u64)buf[0] << 40); sdw_extract_slave_id(bus, addr, &id); found = false; /* Now compare with entries */ list_for_each_entry_safe(slave, _s, &bus->slaves, node) { if (sdw_compare_devid(slave, id) == 0) { found = true; /* * To prevent skipping state-machine stages don't * program a device until we've seen it UNATTACH. * Must return here because no other device on #0 * can be detected until this one has been * assigned a device ID. */ if (slave->status != SDW_SLAVE_UNATTACHED) return 0; /* * Assign a new dev_num to this Slave and * not mark it present. It will be marked * present after it reports ATTACHED on new * dev_num */ ret = sdw_assign_device_num(slave); if (ret < 0) { dev_err(bus->dev, "Assign dev_num failed:%d\n", ret); return ret; } *programmed = true; break; } } if (!found) { /* TODO: Park this device in Group 13 */ /* * add Slave device even if there is no platform * firmware description. There will be no driver probe * but the user/integration will be able to see the * device, enumeration status and device number in sysfs */ sdw_slave_add(bus, &id, NULL); dev_err(bus->dev, "Slave Entry not found\n"); } count++; /* * Check till error out or retry (count) exhausts. * Device can drop off and rejoin during enumeration * so count till twice the bound. */ } while (ret == 0 && count < (SDW_MAX_DEVICES * 2)); return ret; } static void sdw_modify_slave_status(struct sdw_slave *slave, enum sdw_slave_status status) { struct sdw_bus *bus = slave->bus; mutex_lock(&bus->bus_lock); dev_vdbg(bus->dev, "changing status slave %d status %d new status %d\n", slave->dev_num, slave->status, status); if (status == SDW_SLAVE_UNATTACHED) { dev_dbg(&slave->dev, "initializing enumeration and init completion for Slave %d\n", slave->dev_num); init_completion(&slave->enumeration_complete); init_completion(&slave->initialization_complete); } else if ((status == SDW_SLAVE_ATTACHED) && (slave->status == SDW_SLAVE_UNATTACHED)) { dev_dbg(&slave->dev, "signaling enumeration completion for Slave %d\n", slave->dev_num); complete(&slave->enumeration_complete); } slave->status = status; mutex_unlock(&bus->bus_lock); } static int sdw_slave_clk_stop_callback(struct sdw_slave *slave, enum sdw_clk_stop_mode mode, enum sdw_clk_stop_type type) { int ret = 0; mutex_lock(&slave->sdw_dev_lock); if (slave->probed) { struct device *dev = &slave->dev; struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); if (drv->ops && drv->ops->clk_stop) ret = drv->ops->clk_stop(slave, mode, type); } mutex_unlock(&slave->sdw_dev_lock); return ret; } static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave, enum sdw_clk_stop_mode mode, bool prepare) { bool wake_en; u32 val = 0; int ret; wake_en = slave->prop.wake_capable; if (prepare) { val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP; if (mode == SDW_CLK_STOP_MODE1) val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1; if (wake_en) val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN; } else { ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL); if (ret < 0) { if (ret != -ENODATA) dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret); return ret; } val = ret; val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP); } ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val); if (ret < 0 && ret != -ENODATA) dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret); return ret; } static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num) { int retry = bus->clk_stop_timeout; int val; do { val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT); if (val < 0) { if (val != -ENODATA) dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val); return val; } val &= SDW_SCP_STAT_CLK_STP_NF; if (!val) { dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n", dev_num); return 0; } usleep_range(1000, 1500); retry--; } while (retry); dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n", dev_num); return -ETIMEDOUT; } /** * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop * * @bus: SDW bus instance * * Query Slave for clock stop mode and prepare for that mode. */ int sdw_bus_prep_clk_stop(struct sdw_bus *bus) { bool simple_clk_stop = true; struct sdw_slave *slave; bool is_slave = false; int ret = 0; /* * In order to save on transition time, prepare * each Slave and then wait for all Slave(s) to be * prepared for clock stop. * If one of the Slave devices has lost sync and * replies with Command Ignored/-ENODATA, we continue * the loop */ list_for_each_entry(slave, &bus->slaves, node) { if (!slave->dev_num) continue; if (slave->status != SDW_SLAVE_ATTACHED && slave->status != SDW_SLAVE_ALERT) continue; /* Identify if Slave(s) are available on Bus */ is_slave = true; ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, SDW_CLK_PRE_PREPARE); if (ret < 0 && ret != -ENODATA) { dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret); return ret; } /* Only prepare a Slave device if needed */ if (!slave->prop.simple_clk_stop_capable) { simple_clk_stop = false; ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0, true); if (ret < 0 && ret != -ENODATA) { dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret); return ret; } } } /* Skip remaining clock stop preparation if no Slave is attached */ if (!is_slave) return 0; /* * Don't wait for all Slaves to be ready if they follow the simple * state machine */ if (!simple_clk_stop) { ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM); /* * if there are no Slave devices present and the reply is * Command_Ignored/-ENODATA, we don't need to continue with the * flow and can just return here. The error code is not modified * and its handling left as an exercise for the caller. */ if (ret < 0) return ret; } /* Inform slaves that prep is done */ list_for_each_entry(slave, &bus->slaves, node) { if (!slave->dev_num) continue; if (slave->status != SDW_SLAVE_ATTACHED && slave->status != SDW_SLAVE_ALERT) continue; ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, SDW_CLK_POST_PREPARE); if (ret < 0 && ret != -ENODATA) { dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret); return ret; } } return 0; } EXPORT_SYMBOL(sdw_bus_prep_clk_stop); /** * sdw_bus_clk_stop: stop bus clock * * @bus: SDW bus instance * * After preparing the Slaves for clock stop, stop the clock by broadcasting * write to SCP_CTRL register. */ int sdw_bus_clk_stop(struct sdw_bus *bus) { int ret; /* * broadcast clock stop now, attached Slaves will ACK this, * unattached will ignore */ ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM, SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW); if (ret < 0) { if (ret != -ENODATA) dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret); return ret; } return 0; } EXPORT_SYMBOL(sdw_bus_clk_stop); /** * sdw_bus_exit_clk_stop: Exit clock stop mode * * @bus: SDW bus instance * * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate * back. */ int sdw_bus_exit_clk_stop(struct sdw_bus *bus) { bool simple_clk_stop = true; struct sdw_slave *slave; bool is_slave = false; int ret; /* * In order to save on transition time, de-prepare * each Slave and then wait for all Slave(s) to be * de-prepared after clock resume. */ list_for_each_entry(slave, &bus->slaves, node) { if (!slave->dev_num) continue; if (slave->status != SDW_SLAVE_ATTACHED && slave->status != SDW_SLAVE_ALERT) continue; /* Identify if Slave(s) are available on Bus */ is_slave = true; ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, SDW_CLK_PRE_DEPREPARE); if (ret < 0) dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret); /* Only de-prepare a Slave device if needed */ if (!slave->prop.simple_clk_stop_capable) { simple_clk_stop = false; ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0, false); if (ret < 0) dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret); } } /* Skip remaining clock stop de-preparation if no Slave is attached */ if (!is_slave) return 0; /* * Don't wait for all Slaves to be ready if they follow the simple * state machine */ if (!simple_clk_stop) { ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM); if (ret < 0) dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret); } list_for_each_entry(slave, &bus->slaves, node) { if (!slave->dev_num) continue; if (slave->status != SDW_SLAVE_ATTACHED && slave->status != SDW_SLAVE_ALERT) continue; ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, SDW_CLK_POST_DEPREPARE); if (ret < 0) dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret); } return 0; } EXPORT_SYMBOL(sdw_bus_exit_clk_stop); int sdw_configure_dpn_intr(struct sdw_slave *slave, int port, bool enable, int mask) { u32 addr; int ret; u8 val = 0; if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) { dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n", enable ? "on" : "off"); mask |= SDW_DPN_INT_TEST_FAIL; } addr = SDW_DPN_INTMASK(port); /* Set/Clear port ready interrupt mask */ if (enable) { val |= mask; val |= SDW_DPN_INT_PORT_READY; } else { val &= ~(mask); val &= ~SDW_DPN_INT_PORT_READY; } ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val); if (ret < 0) dev_err(&slave->dev, "SDW_DPN_INTMASK write failed:%d\n", val); return ret; } static int sdw_slave_set_frequency(struct sdw_slave *slave) { u32 mclk_freq = slave->bus->prop.mclk_freq; u32 curr_freq = slave->bus->params.curr_dr_freq >> 1; unsigned int scale; u8 scale_index; u8 base; int ret; /* * frequency base and scale registers are required for SDCA * devices. They may also be used for 1.2+/non-SDCA devices, * but we will need a DisCo property to cover this case */ if (!slave->id.class_id) return 0; if (!mclk_freq) { dev_err(&slave->dev, "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n"); return -EINVAL; } /* * map base frequency using Table 89 of SoundWire 1.2 spec. * The order of the tests just follows the specification, this * is not a selection between possible values or a search for * the best value but just a mapping. Only one case per platform * is relevant. * Some BIOS have inconsistent values for mclk_freq but a * correct root so we force the mclk_freq to avoid variations. */ if (!(19200000 % mclk_freq)) { mclk_freq = 19200000; base = SDW_SCP_BASE_CLOCK_19200000_HZ; } else if (!(24000000 % mclk_freq)) { mclk_freq = 24000000; base = SDW_SCP_BASE_CLOCK_24000000_HZ; } else if (!(24576000 % mclk_freq)) { mclk_freq = 24576000; base = SDW_SCP_BASE_CLOCK_24576000_HZ; } else if (!(22579200 % mclk_freq)) { mclk_freq = 22579200; base = SDW_SCP_BASE_CLOCK_22579200_HZ; } else if (!(32000000 % mclk_freq)) { mclk_freq = 32000000; base = SDW_SCP_BASE_CLOCK_32000000_HZ; } else { dev_err(&slave->dev, "Unsupported clock base, mclk %d\n", mclk_freq); return -EINVAL; } if (mclk_freq % curr_freq) { dev_err(&slave->dev, "mclk %d is not multiple of bus curr_freq %d\n", mclk_freq, curr_freq); return -EINVAL; } scale = mclk_freq / curr_freq; /* * map scale to Table 90 of SoundWire 1.2 spec - and check * that the scale is a power of two and maximum 64 */ scale_index = ilog2(scale); if (BIT(scale_index) != scale || scale_index > 6) { dev_err(&slave->dev, "No match found for scale %d, bus mclk %d curr_freq %d\n", scale, mclk_freq, curr_freq); return -EINVAL; } scale_index++; ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret); return ret; } /* initialize scale for both banks */ ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret); return ret; } ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index); if (ret < 0) dev_err(&slave->dev, "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret); dev_dbg(&slave->dev, "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n", base, scale_index, mclk_freq, curr_freq); return ret; } static int sdw_initialize_slave(struct sdw_slave *slave) { struct sdw_slave_prop *prop = &slave->prop; int status; int ret; u8 val; ret = sdw_slave_set_frequency(slave); if (ret < 0) return ret; if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) { /* Clear bus clash interrupt before enabling interrupt mask */ status = sdw_read_no_pm(slave, SDW_SCP_INT1); if (status < 0) { dev_err(&slave->dev, "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status); return status; } if (status & SDW_SCP_INT1_BUS_CLASH) { dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n"); ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret); return ret; } } } if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) && !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) { /* Clear parity interrupt before enabling interrupt mask */ status = sdw_read_no_pm(slave, SDW_SCP_INT1); if (status < 0) { dev_err(&slave->dev, "SDW_SCP_INT1 (PARITY) read failed:%d\n", status); return status; } if (status & SDW_SCP_INT1_PARITY) { dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n"); ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret); return ret; } } } /* * Set SCP_INT1_MASK register, typically bus clash and * implementation-defined interrupt mask. The Parity detection * may not always be correct on startup so its use is * device-dependent, it might e.g. only be enabled in * steady-state after a couple of frames. */ val = slave->prop.scp_int1_mask; /* Enable SCP interrupts */ ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_INTMASK1 write failed:%d\n", ret); return ret; } /* No need to continue if DP0 is not present */ if (!slave->prop.dp0_prop) return 0; /* Enable DP0 interrupts */ val = prop->dp0_prop->imp_def_interrupts; val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE; ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val); if (ret < 0) dev_err(&slave->dev, "SDW_DP0_INTMASK read failed:%d\n", ret); return ret; } static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status) { u8 clear, impl_int_mask; int status, status2, ret, count = 0; status = sdw_read_no_pm(slave, SDW_DP0_INT); if (status < 0) { dev_err(&slave->dev, "SDW_DP0_INT read failed:%d\n", status); return status; } do { clear = status & ~SDW_DP0_INTERRUPTS; if (status & SDW_DP0_INT_TEST_FAIL) { dev_err(&slave->dev, "Test fail for port 0\n"); clear |= SDW_DP0_INT_TEST_FAIL; } /* * Assumption: PORT_READY interrupt will be received only for * ports implementing Channel Prepare state machine (CP_SM) */ if (status & SDW_DP0_INT_PORT_READY) { complete(&slave->port_ready[0]); clear |= SDW_DP0_INT_PORT_READY; } if (status & SDW_DP0_INT_BRA_FAILURE) { dev_err(&slave->dev, "BRA failed\n"); clear |= SDW_DP0_INT_BRA_FAILURE; } impl_int_mask = SDW_DP0_INT_IMPDEF1 | SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3; if (status & impl_int_mask) { clear |= impl_int_mask; *slave_status = clear; } /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */ ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear); if (ret < 0) { dev_err(&slave->dev, "SDW_DP0_INT write failed:%d\n", ret); return ret; } /* Read DP0 interrupt again */ status2 = sdw_read_no_pm(slave, SDW_DP0_INT); if (status2 < 0) { dev_err(&slave->dev, "SDW_DP0_INT read failed:%d\n", status2); return status2; } /* filter to limit loop to interrupts identified in the first status read */ status &= status2; count++; /* we can get alerts while processing so keep retrying */ } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); if (count == SDW_READ_INTR_CLEAR_RETRY) dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n"); return ret; } static int sdw_handle_port_interrupt(struct sdw_slave *slave, int port, u8 *slave_status) { u8 clear, impl_int_mask; int status, status2, ret, count = 0; u32 addr; if (port == 0) return sdw_handle_dp0_interrupt(slave, slave_status); addr = SDW_DPN_INT(port); status = sdw_read_no_pm(slave, addr); if (status < 0) { dev_err(&slave->dev, "SDW_DPN_INT read failed:%d\n", status); return status; } do { clear = status & ~SDW_DPN_INTERRUPTS; if (status & SDW_DPN_INT_TEST_FAIL) { dev_err(&slave->dev, "Test fail for port:%d\n", port); clear |= SDW_DPN_INT_TEST_FAIL; } /* * Assumption: PORT_READY interrupt will be received only * for ports implementing CP_SM. */ if (status & SDW_DPN_INT_PORT_READY) { complete(&slave->port_ready[port]); clear |= SDW_DPN_INT_PORT_READY; } impl_int_mask = SDW_DPN_INT_IMPDEF1 | SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3; if (status & impl_int_mask) { clear |= impl_int_mask; *slave_status = clear; } /* clear the interrupt but don't touch reserved fields */ ret = sdw_write_no_pm(slave, addr, clear); if (ret < 0) { dev_err(&slave->dev, "SDW_DPN_INT write failed:%d\n", ret); return ret; } /* Read DPN interrupt again */ status2 = sdw_read_no_pm(slave, addr); if (status2 < 0) { dev_err(&slave->dev, "SDW_DPN_INT read failed:%d\n", status2); return status2; } /* filter to limit loop to interrupts identified in the first status read */ status &= status2; count++; /* we can get alerts while processing so keep retrying */ } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); if (count == SDW_READ_INTR_CLEAR_RETRY) dev_warn(&slave->dev, "Reached MAX_RETRY on port read"); return ret; } static int sdw_handle_slave_alerts(struct sdw_slave *slave) { struct sdw_slave_intr_status slave_intr; u8 clear = 0, bit, port_status[15] = {0}; int port_num, stat, ret, count = 0; unsigned long port; bool slave_notify; u8 sdca_cascade = 0; u8 buf, buf2[2], _buf, _buf2[2]; bool parity_check; bool parity_quirk; sdw_modify_slave_status(slave, SDW_SLAVE_ALERT); ret = pm_runtime_resume_and_get(&slave->dev); if (ret < 0 && ret != -EACCES) { dev_err(&slave->dev, "Failed to resume device: %d\n", ret); return ret; } /* Read Intstat 1, Intstat 2 and Intstat 3 registers */ ret = sdw_read_no_pm(slave, SDW_SCP_INT1); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_INT1 read failed:%d\n", ret); goto io_err; } buf = ret; ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_INT2/3 read failed:%d\n", ret); goto io_err; } if (slave->prop.is_sdca) { ret = sdw_read_no_pm(slave, SDW_DP0_INT); if (ret < 0) { dev_err(&slave->dev, "SDW_DP0_INT read failed:%d\n", ret); goto io_err; } sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; } do { slave_notify = false; /* * Check parity, bus clash and Slave (impl defined) * interrupt */ if (buf & SDW_SCP_INT1_PARITY) { parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY; parity_quirk = !slave->first_interrupt_done && (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY); if (parity_check && !parity_quirk) dev_err(&slave->dev, "Parity error detected\n"); clear |= SDW_SCP_INT1_PARITY; } if (buf & SDW_SCP_INT1_BUS_CLASH) { if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH) dev_err(&slave->dev, "Bus clash detected\n"); clear |= SDW_SCP_INT1_BUS_CLASH; } /* * When bus clash or parity errors are detected, such errors * are unlikely to be recoverable errors. * TODO: In such scenario, reset bus. Make this configurable * via sysfs property with bus reset being the default. */ if (buf & SDW_SCP_INT1_IMPL_DEF) { if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) { dev_dbg(&slave->dev, "Slave impl defined interrupt\n"); slave_notify = true; } clear |= SDW_SCP_INT1_IMPL_DEF; } /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */ if (sdca_cascade) slave_notify = true; /* Check port 0 - 3 interrupts */ port = buf & SDW_SCP_INT1_PORT0_3; /* To get port number corresponding to bits, shift it */ port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port); for_each_set_bit(bit, &port, 8) { sdw_handle_port_interrupt(slave, bit, &port_status[bit]); } /* Check if cascade 2 interrupt is present */ if (buf & SDW_SCP_INT1_SCP2_CASCADE) { port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10; for_each_set_bit(bit, &port, 8) { /* scp2 ports start from 4 */ port_num = bit + 4; sdw_handle_port_interrupt(slave, port_num, &port_status[port_num]); } } /* now check last cascade */ if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) { port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14; for_each_set_bit(bit, &port, 8) { /* scp3 ports start from 11 */ port_num = bit + 11; sdw_handle_port_interrupt(slave, port_num, &port_status[port_num]); } } /* Update the Slave driver */ if (slave_notify) { mutex_lock(&slave->sdw_dev_lock); if (slave->probed) { struct device *dev = &slave->dev; struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); if (drv->ops && drv->ops->interrupt_callback) { slave_intr.sdca_cascade = sdca_cascade; slave_intr.control_port = clear; memcpy(slave_intr.port, &port_status, sizeof(slave_intr.port)); drv->ops->interrupt_callback(slave, &slave_intr); } } mutex_unlock(&slave->sdw_dev_lock); } /* Ack interrupt */ ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_INT1 write failed:%d\n", ret); goto io_err; } /* at this point all initial interrupt sources were handled */ slave->first_interrupt_done = true; /* * Read status again to ensure no new interrupts arrived * while servicing interrupts. */ ret = sdw_read_no_pm(slave, SDW_SCP_INT1); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_INT1 recheck read failed:%d\n", ret); goto io_err; } _buf = ret; ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2); if (ret < 0) { dev_err(&slave->dev, "SDW_SCP_INT2/3 recheck read failed:%d\n", ret); goto io_err; } if (slave->prop.is_sdca) { ret = sdw_read_no_pm(slave, SDW_DP0_INT); if (ret < 0) { dev_err(&slave->dev, "SDW_DP0_INT recheck read failed:%d\n", ret); goto io_err; } sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; } /* * Make sure no interrupts are pending, but filter to limit loop * to interrupts identified in the first status read */ buf &= _buf; buf2[0] &= _buf2[0]; buf2[1] &= _buf2[1]; stat = buf || buf2[0] || buf2[1] || sdca_cascade; /* * Exit loop if Slave is continuously in ALERT state even * after servicing the interrupt multiple times. */ count++; /* we can get alerts while processing so keep retrying */ } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY); if (count == SDW_READ_INTR_CLEAR_RETRY) dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n"); io_err: pm_runtime_mark_last_busy(&slave->dev); pm_runtime_put_autosuspend(&slave->dev); return ret; } static int sdw_update_slave_status(struct sdw_slave *slave, enum sdw_slave_status status) { int ret = 0; mutex_lock(&slave->sdw_dev_lock); if (slave->probed) { struct device *dev = &slave->dev; struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); if (drv->ops && drv->ops->update_status) ret = drv->ops->update_status(slave, status); } mutex_unlock(&slave->sdw_dev_lock); return ret; } /** * sdw_handle_slave_status() - Handle Slave status * @bus: SDW bus instance * @status: Status for all Slave(s) */ int sdw_handle_slave_status(struct sdw_bus *bus, enum sdw_slave_status status[]) { enum sdw_slave_status prev_status; struct sdw_slave *slave; bool attached_initializing, id_programmed; int i, ret = 0; /* first check if any Slaves fell off the bus */ for (i = 1; i <= SDW_MAX_DEVICES; i++) { mutex_lock(&bus->bus_lock); if (test_bit(i, bus->assigned) == false) { mutex_unlock(&bus->bus_lock); continue; } mutex_unlock(&bus->bus_lock); slave = sdw_get_slave(bus, i); if (!slave) continue; if (status[i] == SDW_SLAVE_UNATTACHED && slave->status != SDW_SLAVE_UNATTACHED) { dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n", i, slave->status); sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); /* Ensure driver knows that peripheral unattached */ ret = sdw_update_slave_status(slave, status[i]); if (ret < 0) dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret); } } if (status[0] == SDW_SLAVE_ATTACHED) { dev_dbg(bus->dev, "Slave attached, programming device number\n"); /* * Programming a device number will have side effects, * so we deal with other devices at a later time. * This relies on those devices reporting ATTACHED, which will * trigger another call to this function. This will only * happen if at least one device ID was programmed. * Error returns from sdw_program_device_num() are currently * ignored because there's no useful recovery that can be done. * Returning the error here could result in the current status * of other devices not being handled, because if no device IDs * were programmed there's nothing to guarantee a status change * to trigger another call to this function. */ sdw_program_device_num(bus, &id_programmed); if (id_programmed) return 0; } /* Continue to check other slave statuses */ for (i = 1; i <= SDW_MAX_DEVICES; i++) { mutex_lock(&bus->bus_lock); if (test_bit(i, bus->assigned) == false) { mutex_unlock(&bus->bus_lock); continue; } mutex_unlock(&bus->bus_lock); slave = sdw_get_slave(bus, i); if (!slave) continue; attached_initializing = false; switch (status[i]) { case SDW_SLAVE_UNATTACHED: if (slave->status == SDW_SLAVE_UNATTACHED) break; dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n", i, slave->status); sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); break; case SDW_SLAVE_ALERT: ret = sdw_handle_slave_alerts(slave); if (ret < 0) dev_err(&slave->dev, "Slave %d alert handling failed: %d\n", i, ret); break; case SDW_SLAVE_ATTACHED: if (slave->status == SDW_SLAVE_ATTACHED) break; prev_status = slave->status; sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED); if (prev_status == SDW_SLAVE_ALERT) break; attached_initializing = true; ret = sdw_initialize_slave(slave); if (ret < 0) dev_err(&slave->dev, "Slave %d initialization failed: %d\n", i, ret); break; default: dev_err(&slave->dev, "Invalid slave %d status:%d\n", i, status[i]); break; } ret = sdw_update_slave_status(slave, status[i]); if (ret < 0) dev_err(&slave->dev, "Update Slave status failed:%d\n", ret); if (attached_initializing) { dev_dbg(&slave->dev, "signaling initialization completion for Slave %d\n", slave->dev_num); complete(&slave->initialization_complete); /* * If the manager became pm_runtime active, the peripherals will be * restarted and attach, but their pm_runtime status may remain * suspended. If the 'update_slave_status' callback initiates * any sort of deferred processing, this processing would not be * cancelled on pm_runtime suspend. * To avoid such zombie states, we queue a request to resume. * This would be a no-op in case the peripheral was being resumed * by e.g. the ALSA/ASoC framework. */ pm_request_resume(&slave->dev); } } return ret; } EXPORT_SYMBOL(sdw_handle_slave_status); void sdw_clear_slave_status(struct sdw_bus *bus, u32 request) { struct sdw_slave *slave; int i; /* Check all non-zero devices */ for (i = 1; i <= SDW_MAX_DEVICES; i++) { mutex_lock(&bus->bus_lock); if (test_bit(i, bus->assigned) == false) { mutex_unlock(&bus->bus_lock); continue; } mutex_unlock(&bus->bus_lock); slave = sdw_get_slave(bus, i); if (!slave) continue; if (slave->status != SDW_SLAVE_UNATTACHED) { sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); slave->first_interrupt_done = false; sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED); } /* keep track of request, used in pm_runtime resume */ slave->unattach_request = request; } } EXPORT_SYMBOL(sdw_clear_slave_status);