// SPDX-License-Identifier: GPL-2.0+ // // Copyright 2013 Freescale Semiconductor, Inc. // // Freescale DSPI driver // This file contains a driver for the Freescale DSPI #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "fsl-dspi" #ifdef CONFIG_M5441x #define DSPI_FIFO_SIZE 16 #else #define DSPI_FIFO_SIZE 4 #endif #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024) #define SPI_MCR 0x00 #define SPI_MCR_MASTER BIT(31) #define SPI_MCR_PCSIS (0x3F << 16) #define SPI_MCR_CLR_TXF BIT(11) #define SPI_MCR_CLR_RXF BIT(10) #define SPI_MCR_XSPI BIT(3) #define SPI_TCR 0x08 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16) #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4)) #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27)) #define SPI_CTAR_CPOL BIT(26) #define SPI_CTAR_CPHA BIT(25) #define SPI_CTAR_LSBFE BIT(24) #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22)) #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20)) #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18)) #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16)) #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12)) #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8)) #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4)) #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0)) #define SPI_CTAR_SCALE_BITS 0xf #define SPI_CTAR0_SLAVE 0x0c #define SPI_SR 0x2c #define SPI_SR_TCFQF BIT(31) #define SPI_SR_EOQF BIT(28) #define SPI_SR_TFUF BIT(27) #define SPI_SR_TFFF BIT(25) #define SPI_SR_CMDTCF BIT(23) #define SPI_SR_SPEF BIT(21) #define SPI_SR_RFOF BIT(19) #define SPI_SR_TFIWF BIT(18) #define SPI_SR_RFDF BIT(17) #define SPI_SR_CMDFFF BIT(16) #define SPI_SR_CLEAR (SPI_SR_TCFQF | SPI_SR_EOQF | \ SPI_SR_TFUF | SPI_SR_TFFF | \ SPI_SR_CMDTCF | SPI_SR_SPEF | \ SPI_SR_RFOF | SPI_SR_TFIWF | \ SPI_SR_RFDF | SPI_SR_CMDFFF) #define SPI_RSER_TFFFE BIT(25) #define SPI_RSER_TFFFD BIT(24) #define SPI_RSER_RFDFE BIT(17) #define SPI_RSER_RFDFD BIT(16) #define SPI_RSER 0x30 #define SPI_RSER_TCFQE BIT(31) #define SPI_RSER_EOQFE BIT(28) #define SPI_PUSHR 0x34 #define SPI_PUSHR_CMD_CONT BIT(15) #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12))) #define SPI_PUSHR_CMD_EOQ BIT(11) #define SPI_PUSHR_CMD_CTCNT BIT(10) #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0)) #define SPI_PUSHR_SLAVE 0x34 #define SPI_POPR 0x38 #define SPI_TXFR0 0x3c #define SPI_TXFR1 0x40 #define SPI_TXFR2 0x44 #define SPI_TXFR3 0x48 #define SPI_RXFR0 0x7c #define SPI_RXFR1 0x80 #define SPI_RXFR2 0x84 #define SPI_RXFR3 0x88 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4)) #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16) #define SPI_CTARE_DTCP(x) ((x) & 0x7ff) #define SPI_SREX 0x13c #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1) #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4) /* Register offsets for regmap_pushr */ #define PUSHR_CMD 0x0 #define PUSHR_TX 0x2 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000) struct chip_data { u32 ctar_val; u16 void_write_data; }; enum dspi_trans_mode { DSPI_EOQ_MODE = 0, DSPI_TCFQ_MODE, DSPI_DMA_MODE, }; struct fsl_dspi_devtype_data { enum dspi_trans_mode trans_mode; u8 max_clock_factor; bool ptp_sts_supported; bool xspi_mode; }; static const struct fsl_dspi_devtype_data vf610_data = { .trans_mode = DSPI_DMA_MODE, .max_clock_factor = 2, }; static const struct fsl_dspi_devtype_data ls1021a_v1_data = { .trans_mode = DSPI_TCFQ_MODE, .max_clock_factor = 8, .ptp_sts_supported = true, .xspi_mode = true, }; static const struct fsl_dspi_devtype_data ls2085a_data = { .trans_mode = DSPI_TCFQ_MODE, .max_clock_factor = 8, .ptp_sts_supported = true, }; static const struct fsl_dspi_devtype_data coldfire_data = { .trans_mode = DSPI_EOQ_MODE, .max_clock_factor = 8, }; struct fsl_dspi_dma { /* Length of transfer in words of DSPI_FIFO_SIZE */ u32 curr_xfer_len; u32 *tx_dma_buf; struct dma_chan *chan_tx; dma_addr_t tx_dma_phys; struct completion cmd_tx_complete; struct dma_async_tx_descriptor *tx_desc; u32 *rx_dma_buf; struct dma_chan *chan_rx; dma_addr_t rx_dma_phys; struct completion cmd_rx_complete; struct dma_async_tx_descriptor *rx_desc; }; struct fsl_dspi { struct spi_controller *ctlr; struct platform_device *pdev; struct regmap *regmap; struct regmap *regmap_pushr; int irq; struct clk *clk; struct spi_transfer *cur_transfer; struct spi_message *cur_msg; struct chip_data *cur_chip; size_t len; const void *tx; void *rx; void *rx_end; u16 void_write_data; u16 tx_cmd; u8 bits_per_word; u8 bytes_per_word; const struct fsl_dspi_devtype_data *devtype_data; wait_queue_head_t waitq; u32 waitflags; struct fsl_dspi_dma *dma; }; static u32 dspi_pop_tx(struct fsl_dspi *dspi) { u32 txdata = 0; if (dspi->tx) { if (dspi->bytes_per_word == 1) txdata = *(u8 *)dspi->tx; else if (dspi->bytes_per_word == 2) txdata = *(u16 *)dspi->tx; else /* dspi->bytes_per_word == 4 */ txdata = *(u32 *)dspi->tx; dspi->tx += dspi->bytes_per_word; } dspi->len -= dspi->bytes_per_word; return txdata; } static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi) { u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi); if (spi_controller_is_slave(dspi->ctlr)) return data; if (dspi->len > 0) cmd |= SPI_PUSHR_CMD_CONT; return cmd << 16 | data; } static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata) { if (!dspi->rx) return; /* Mask off undefined bits */ rxdata &= (1 << dspi->bits_per_word) - 1; if (dspi->bytes_per_word == 1) *(u8 *)dspi->rx = rxdata; else if (dspi->bytes_per_word == 2) *(u16 *)dspi->rx = rxdata; else /* dspi->bytes_per_word == 4 */ *(u32 *)dspi->rx = rxdata; dspi->rx += dspi->bytes_per_word; } static void dspi_tx_dma_callback(void *arg) { struct fsl_dspi *dspi = arg; struct fsl_dspi_dma *dma = dspi->dma; complete(&dma->cmd_tx_complete); } static void dspi_rx_dma_callback(void *arg) { struct fsl_dspi *dspi = arg; struct fsl_dspi_dma *dma = dspi->dma; int i; if (dspi->rx) { for (i = 0; i < dma->curr_xfer_len; i++) dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]); } complete(&dma->cmd_rx_complete); } static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi) { struct device *dev = &dspi->pdev->dev; struct fsl_dspi_dma *dma = dspi->dma; int time_left; int i; for (i = 0; i < dma->curr_xfer_len; i++) dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi); dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx, dma->tx_dma_phys, dma->curr_xfer_len * DMA_SLAVE_BUSWIDTH_4_BYTES, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!dma->tx_desc) { dev_err(dev, "Not able to get desc for DMA xfer\n"); return -EIO; } dma->tx_desc->callback = dspi_tx_dma_callback; dma->tx_desc->callback_param = dspi; if (dma_submit_error(dmaengine_submit(dma->tx_desc))) { dev_err(dev, "DMA submit failed\n"); return -EINVAL; } dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx, dma->rx_dma_phys, dma->curr_xfer_len * DMA_SLAVE_BUSWIDTH_4_BYTES, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!dma->rx_desc) { dev_err(dev, "Not able to get desc for DMA xfer\n"); return -EIO; } dma->rx_desc->callback = dspi_rx_dma_callback; dma->rx_desc->callback_param = dspi; if (dma_submit_error(dmaengine_submit(dma->rx_desc))) { dev_err(dev, "DMA submit failed\n"); return -EINVAL; } reinit_completion(&dspi->dma->cmd_rx_complete); reinit_completion(&dspi->dma->cmd_tx_complete); dma_async_issue_pending(dma->chan_rx); dma_async_issue_pending(dma->chan_tx); if (spi_controller_is_slave(dspi->ctlr)) { wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete); return 0; } time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete, DMA_COMPLETION_TIMEOUT); if (time_left == 0) { dev_err(dev, "DMA tx timeout\n"); dmaengine_terminate_all(dma->chan_tx); dmaengine_terminate_all(dma->chan_rx); return -ETIMEDOUT; } time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete, DMA_COMPLETION_TIMEOUT); if (time_left == 0) { dev_err(dev, "DMA rx timeout\n"); dmaengine_terminate_all(dma->chan_tx); dmaengine_terminate_all(dma->chan_rx); return -ETIMEDOUT; } return 0; } static int dspi_dma_xfer(struct fsl_dspi *dspi) { struct spi_message *message = dspi->cur_msg; struct device *dev = &dspi->pdev->dev; struct fsl_dspi_dma *dma = dspi->dma; int curr_remaining_bytes; int bytes_per_buffer; int ret = 0; curr_remaining_bytes = dspi->len; bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE; while (curr_remaining_bytes) { /* Check if current transfer fits the DMA buffer */ dma->curr_xfer_len = curr_remaining_bytes / dspi->bytes_per_word; if (dma->curr_xfer_len > bytes_per_buffer) dma->curr_xfer_len = bytes_per_buffer; ret = dspi_next_xfer_dma_submit(dspi); if (ret) { dev_err(dev, "DMA transfer failed\n"); goto exit; } else { const int len = dma->curr_xfer_len * dspi->bytes_per_word; curr_remaining_bytes -= len; message->actual_length += len; if (curr_remaining_bytes < 0) curr_remaining_bytes = 0; } } exit: return ret; } static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr) { struct device *dev = &dspi->pdev->dev; struct dma_slave_config cfg; struct fsl_dspi_dma *dma; int ret; dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL); if (!dma) return -ENOMEM; dma->chan_rx = dma_request_slave_channel(dev, "rx"); if (!dma->chan_rx) { dev_err(dev, "rx dma channel not available\n"); ret = -ENODEV; return ret; } dma->chan_tx = dma_request_slave_channel(dev, "tx"); if (!dma->chan_tx) { dev_err(dev, "tx dma channel not available\n"); ret = -ENODEV; goto err_tx_channel; } dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE, &dma->tx_dma_phys, GFP_KERNEL); if (!dma->tx_dma_buf) { ret = -ENOMEM; goto err_tx_dma_buf; } dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE, &dma->rx_dma_phys, GFP_KERNEL); if (!dma->rx_dma_buf) { ret = -ENOMEM; goto err_rx_dma_buf; } cfg.src_addr = phy_addr + SPI_POPR; cfg.dst_addr = phy_addr + SPI_PUSHR; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.src_maxburst = 1; cfg.dst_maxburst = 1; cfg.direction = DMA_DEV_TO_MEM; ret = dmaengine_slave_config(dma->chan_rx, &cfg); if (ret) { dev_err(dev, "can't configure rx dma channel\n"); ret = -EINVAL; goto err_slave_config; } cfg.direction = DMA_MEM_TO_DEV; ret = dmaengine_slave_config(dma->chan_tx, &cfg); if (ret) { dev_err(dev, "can't configure tx dma channel\n"); ret = -EINVAL; goto err_slave_config; } dspi->dma = dma; init_completion(&dma->cmd_tx_complete); init_completion(&dma->cmd_rx_complete); return 0; err_slave_config: dma_free_coherent(dev, DSPI_DMA_BUFSIZE, dma->rx_dma_buf, dma->rx_dma_phys); err_rx_dma_buf: dma_free_coherent(dev, DSPI_DMA_BUFSIZE, dma->tx_dma_buf, dma->tx_dma_phys); err_tx_dma_buf: dma_release_channel(dma->chan_tx); err_tx_channel: dma_release_channel(dma->chan_rx); devm_kfree(dev, dma); dspi->dma = NULL; return ret; } static void dspi_release_dma(struct fsl_dspi *dspi) { struct fsl_dspi_dma *dma = dspi->dma; struct device *dev = &dspi->pdev->dev; if (!dma) return; if (dma->chan_tx) { dma_unmap_single(dev, dma->tx_dma_phys, DSPI_DMA_BUFSIZE, DMA_TO_DEVICE); dma_release_channel(dma->chan_tx); } if (dma->chan_rx) { dma_unmap_single(dev, dma->rx_dma_phys, DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE); dma_release_channel(dma->chan_rx); } } static void hz_to_spi_baud(char *pbr, char *br, int speed_hz, unsigned long clkrate) { /* Valid baud rate pre-scaler values */ int pbr_tbl[4] = {2, 3, 5, 7}; int brs[16] = { 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 }; int scale_needed, scale, minscale = INT_MAX; int i, j; scale_needed = clkrate / speed_hz; if (clkrate % speed_hz) scale_needed++; for (i = 0; i < ARRAY_SIZE(brs); i++) for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) { scale = brs[i] * pbr_tbl[j]; if (scale >= scale_needed) { if (scale < minscale) { minscale = scale; *br = i; *pbr = j; } break; } } if (minscale == INT_MAX) { pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n", speed_hz, clkrate); *pbr = ARRAY_SIZE(pbr_tbl) - 1; *br = ARRAY_SIZE(brs) - 1; } } static void ns_delay_scale(char *psc, char *sc, int delay_ns, unsigned long clkrate) { int scale_needed, scale, minscale = INT_MAX; int pscale_tbl[4] = {1, 3, 5, 7}; u32 remainder; int i, j; scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC, &remainder); if (remainder) scale_needed++; for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++) for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) { scale = pscale_tbl[i] * (2 << j); if (scale >= scale_needed) { if (scale < minscale) { minscale = scale; *psc = i; *sc = j; } break; } } if (minscale == INT_MAX) { pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value", delay_ns, clkrate); *psc = ARRAY_SIZE(pscale_tbl) - 1; *sc = SPI_CTAR_SCALE_BITS; } } static void fifo_write(struct fsl_dspi *dspi) { regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi)); } static void cmd_fifo_write(struct fsl_dspi *dspi) { u16 cmd = dspi->tx_cmd; if (dspi->len > 0) cmd |= SPI_PUSHR_CMD_CONT; regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd); } static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata) { regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata); } static void dspi_tcfq_write(struct fsl_dspi *dspi) { /* Clear transfer count */ dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT; if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) { /* Write two TX FIFO entries first, and then the corresponding * CMD FIFO entry. */ u32 data = dspi_pop_tx(dspi); if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE) { /* LSB */ tx_fifo_write(dspi, data & 0xFFFF); tx_fifo_write(dspi, data >> 16); } else { /* MSB */ tx_fifo_write(dspi, data >> 16); tx_fifo_write(dspi, data & 0xFFFF); } cmd_fifo_write(dspi); } else { /* Write one entry to both TX FIFO and CMD FIFO * simultaneously. */ fifo_write(dspi); } } static u32 fifo_read(struct fsl_dspi *dspi) { u32 rxdata = 0; regmap_read(dspi->regmap, SPI_POPR, &rxdata); return rxdata; } static void dspi_tcfq_read(struct fsl_dspi *dspi) { dspi_push_rx(dspi, fifo_read(dspi)); } static void dspi_eoq_write(struct fsl_dspi *dspi) { int fifo_size = DSPI_FIFO_SIZE; u16 xfer_cmd = dspi->tx_cmd; /* Fill TX FIFO with as many transfers as possible */ while (dspi->len && fifo_size--) { dspi->tx_cmd = xfer_cmd; /* Request EOQF for last transfer in FIFO */ if (dspi->len == dspi->bytes_per_word || fifo_size == 0) dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ; /* Clear transfer count for first transfer in FIFO */ if (fifo_size == (DSPI_FIFO_SIZE - 1)) dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT; /* Write combined TX FIFO and CMD FIFO entry */ fifo_write(dspi); } } static void dspi_eoq_read(struct fsl_dspi *dspi) { int fifo_size = DSPI_FIFO_SIZE; /* Read one FIFO entry and push to rx buffer */ while ((dspi->rx < dspi->rx_end) && fifo_size--) dspi_push_rx(dspi, fifo_read(dspi)); } static int dspi_rxtx(struct fsl_dspi *dspi) { struct spi_message *msg = dspi->cur_msg; enum dspi_trans_mode trans_mode; u16 spi_tcnt; u32 spi_tcr; spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer, dspi->tx - dspi->bytes_per_word, !dspi->irq); /* Get transfer counter (in number of SPI transfers). It was * reset to 0 when transfer(s) were started. */ regmap_read(dspi->regmap, SPI_TCR, &spi_tcr); spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr); /* Update total number of bytes that were transferred */ msg->actual_length += spi_tcnt * dspi->bytes_per_word; trans_mode = dspi->devtype_data->trans_mode; if (trans_mode == DSPI_EOQ_MODE) dspi_eoq_read(dspi); else if (trans_mode == DSPI_TCFQ_MODE) dspi_tcfq_read(dspi); if (!dspi->len) /* Success! */ return 0; spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer, dspi->tx, !dspi->irq); if (trans_mode == DSPI_EOQ_MODE) dspi_eoq_write(dspi); else if (trans_mode == DSPI_TCFQ_MODE) dspi_tcfq_write(dspi); return -EINPROGRESS; } static int dspi_poll(struct fsl_dspi *dspi) { int tries = 1000; u32 spi_sr; do { regmap_read(dspi->regmap, SPI_SR, &spi_sr); regmap_write(dspi->regmap, SPI_SR, spi_sr); if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) break; } while (--tries); if (!tries) return -ETIMEDOUT; return dspi_rxtx(dspi); } static irqreturn_t dspi_interrupt(int irq, void *dev_id) { struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id; u32 spi_sr; regmap_read(dspi->regmap, SPI_SR, &spi_sr); regmap_write(dspi->regmap, SPI_SR, spi_sr); if (!(spi_sr & SPI_SR_EOQF)) return IRQ_NONE; if (dspi_rxtx(dspi) == 0) { dspi->waitflags = 1; wake_up_interruptible(&dspi->waitq); } return IRQ_HANDLED; } static int dspi_transfer_one_message(struct spi_controller *ctlr, struct spi_message *message) { struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); struct spi_device *spi = message->spi; enum dspi_trans_mode trans_mode; struct spi_transfer *transfer; int status = 0; message->actual_length = 0; list_for_each_entry(transfer, &message->transfers, transfer_list) { dspi->cur_transfer = transfer; dspi->cur_msg = message; dspi->cur_chip = spi_get_ctldata(spi); /* Prepare command word for CMD FIFO */ dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) | SPI_PUSHR_CMD_PCS(spi->chip_select); if (list_is_last(&dspi->cur_transfer->transfer_list, &dspi->cur_msg->transfers)) { /* Leave PCS activated after last transfer when * cs_change is set. */ if (transfer->cs_change) dspi->tx_cmd |= SPI_PUSHR_CMD_CONT; } else { /* Keep PCS active between transfers in same message * when cs_change is not set, and de-activate PCS * between transfers in the same message when * cs_change is set. */ if (!transfer->cs_change) dspi->tx_cmd |= SPI_PUSHR_CMD_CONT; } dspi->void_write_data = dspi->cur_chip->void_write_data; dspi->tx = transfer->tx_buf; dspi->rx = transfer->rx_buf; dspi->rx_end = dspi->rx + transfer->len; dspi->len = transfer->len; /* Validated transfer specific frame size (defaults applied) */ dspi->bits_per_word = transfer->bits_per_word; if (transfer->bits_per_word <= 8) dspi->bytes_per_word = 1; else if (transfer->bits_per_word <= 16) dspi->bytes_per_word = 2; else dspi->bytes_per_word = 4; regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); regmap_write(dspi->regmap, SPI_CTAR(0), dspi->cur_chip->ctar_val | SPI_FRAME_BITS(transfer->bits_per_word)); if (dspi->devtype_data->xspi_mode) regmap_write(dspi->regmap, SPI_CTARE(0), SPI_FRAME_EBITS(transfer->bits_per_word) | SPI_CTARE_DTCP(1)); spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer, dspi->tx, !dspi->irq); trans_mode = dspi->devtype_data->trans_mode; switch (trans_mode) { case DSPI_EOQ_MODE: regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE); dspi_eoq_write(dspi); break; case DSPI_TCFQ_MODE: regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE); dspi_tcfq_write(dspi); break; case DSPI_DMA_MODE: regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TFFFE | SPI_RSER_TFFFD | SPI_RSER_RFDFE | SPI_RSER_RFDFD); status = dspi_dma_xfer(dspi); break; default: dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n", trans_mode); status = -EINVAL; goto out; } if (!dspi->irq) { do { status = dspi_poll(dspi); } while (status == -EINPROGRESS); } else if (trans_mode != DSPI_DMA_MODE) { status = wait_event_interruptible(dspi->waitq, dspi->waitflags); dspi->waitflags = 0; } if (status) dev_err(&dspi->pdev->dev, "Waiting for transfer to complete failed!\n"); spi_transfer_delay_exec(transfer); } out: message->status = status; spi_finalize_current_message(ctlr); return status; } static int dspi_setup(struct spi_device *spi) { struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller); unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0; u32 cs_sck_delay = 0, sck_cs_delay = 0; struct fsl_dspi_platform_data *pdata; unsigned char pasc = 0, asc = 0; struct chip_data *chip; unsigned long clkrate; /* Only alloc on first setup */ chip = spi_get_ctldata(spi); if (chip == NULL) { chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); if (!chip) return -ENOMEM; } pdata = dev_get_platdata(&dspi->pdev->dev); if (!pdata) { of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay", &cs_sck_delay); of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay", &sck_cs_delay); } else { cs_sck_delay = pdata->cs_sck_delay; sck_cs_delay = pdata->sck_cs_delay; } chip->void_write_data = 0; clkrate = clk_get_rate(dspi->clk); hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate); /* Set PCS to SCK delay scale values */ ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate); /* Set After SCK delay scale values */ ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate); chip->ctar_val = 0; if (spi->mode & SPI_CPOL) chip->ctar_val |= SPI_CTAR_CPOL; if (spi->mode & SPI_CPHA) chip->ctar_val |= SPI_CTAR_CPHA; if (!spi_controller_is_slave(dspi->ctlr)) { chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) | SPI_CTAR_CSSCK(cssck) | SPI_CTAR_PASC(pasc) | SPI_CTAR_ASC(asc) | SPI_CTAR_PBR(pbr) | SPI_CTAR_BR(br); if (spi->mode & SPI_LSB_FIRST) chip->ctar_val |= SPI_CTAR_LSBFE; } spi_set_ctldata(spi, chip); return 0; } static void dspi_cleanup(struct spi_device *spi) { struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi); dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n", spi->controller->bus_num, spi->chip_select); kfree(chip); } static const struct of_device_id fsl_dspi_dt_ids[] = { { .compatible = "fsl,vf610-dspi", .data = &vf610_data, }, { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, }, { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids); #ifdef CONFIG_PM_SLEEP static int dspi_suspend(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); spi_controller_suspend(ctlr); clk_disable_unprepare(dspi->clk); pinctrl_pm_select_sleep_state(dev); return 0; } static int dspi_resume(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); int ret; pinctrl_pm_select_default_state(dev); ret = clk_prepare_enable(dspi->clk); if (ret) return ret; spi_controller_resume(ctlr); return 0; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume); static const struct regmap_range dspi_volatile_ranges[] = { regmap_reg_range(SPI_MCR, SPI_TCR), regmap_reg_range(SPI_SR, SPI_SR), regmap_reg_range(SPI_PUSHR, SPI_RXFR3), }; static const struct regmap_access_table dspi_volatile_table = { .yes_ranges = dspi_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges), }; static const struct regmap_config dspi_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0x88, .volatile_table = &dspi_volatile_table, }; static const struct regmap_range dspi_xspi_volatile_ranges[] = { regmap_reg_range(SPI_MCR, SPI_TCR), regmap_reg_range(SPI_SR, SPI_SR), regmap_reg_range(SPI_PUSHR, SPI_RXFR3), regmap_reg_range(SPI_SREX, SPI_SREX), }; static const struct regmap_access_table dspi_xspi_volatile_table = { .yes_ranges = dspi_xspi_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges), }; static const struct regmap_config dspi_xspi_regmap_config[] = { { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0x13c, .volatile_table = &dspi_xspi_volatile_table, }, { .name = "pushr", .reg_bits = 16, .val_bits = 16, .reg_stride = 2, .max_register = 0x2, }, }; static void dspi_init(struct fsl_dspi *dspi) { unsigned int mcr = SPI_MCR_PCSIS; if (dspi->devtype_data->xspi_mode) mcr |= SPI_MCR_XSPI; if (!spi_controller_is_slave(dspi->ctlr)) mcr |= SPI_MCR_MASTER; regmap_write(dspi->regmap, SPI_MCR, mcr); regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR); if (dspi->devtype_data->xspi_mode) regmap_write(dspi->regmap, SPI_CTARE(0), SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1)); } static int dspi_slave_abort(struct spi_master *master) { struct fsl_dspi *dspi = spi_master_get_devdata(master); /* * Terminate all pending DMA transactions for the SPI working * in SLAVE mode. */ dmaengine_terminate_sync(dspi->dma->chan_rx); dmaengine_terminate_sync(dspi->dma->chan_tx); /* Clear the internal DSPI RX and TX FIFO buffers */ regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); return 0; } static int dspi_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; const struct regmap_config *regmap_config; struct fsl_dspi_platform_data *pdata; struct spi_controller *ctlr; int ret, cs_num, bus_num; struct fsl_dspi *dspi; struct resource *res; void __iomem *base; ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi)); if (!ctlr) return -ENOMEM; dspi = spi_controller_get_devdata(ctlr); dspi->pdev = pdev; dspi->ctlr = ctlr; ctlr->setup = dspi_setup; ctlr->transfer_one_message = dspi_transfer_one_message; ctlr->dev.of_node = pdev->dev.of_node; ctlr->cleanup = dspi_cleanup; ctlr->slave_abort = dspi_slave_abort; ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; pdata = dev_get_platdata(&pdev->dev); if (pdata) { ctlr->num_chipselect = pdata->cs_num; ctlr->bus_num = pdata->bus_num; dspi->devtype_data = &coldfire_data; } else { ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num); if (ret < 0) { dev_err(&pdev->dev, "can't get spi-num-chipselects\n"); goto out_ctlr_put; } ctlr->num_chipselect = cs_num; ret = of_property_read_u32(np, "bus-num", &bus_num); if (ret < 0) { dev_err(&pdev->dev, "can't get bus-num\n"); goto out_ctlr_put; } ctlr->bus_num = bus_num; if (of_property_read_bool(np, "spi-slave")) ctlr->slave = true; dspi->devtype_data = of_device_get_match_data(&pdev->dev); if (!dspi->devtype_data) { dev_err(&pdev->dev, "can't get devtype_data\n"); ret = -EFAULT; goto out_ctlr_put; } } if (dspi->devtype_data->xspi_mode) ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); else ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) { ret = PTR_ERR(base); goto out_ctlr_put; } if (dspi->devtype_data->xspi_mode) regmap_config = &dspi_xspi_regmap_config[0]; else regmap_config = &dspi_regmap_config; dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config); if (IS_ERR(dspi->regmap)) { dev_err(&pdev->dev, "failed to init regmap: %ld\n", PTR_ERR(dspi->regmap)); ret = PTR_ERR(dspi->regmap); goto out_ctlr_put; } if (dspi->devtype_data->xspi_mode) { dspi->regmap_pushr = devm_regmap_init_mmio( &pdev->dev, base + SPI_PUSHR, &dspi_xspi_regmap_config[1]); if (IS_ERR(dspi->regmap_pushr)) { dev_err(&pdev->dev, "failed to init pushr regmap: %ld\n", PTR_ERR(dspi->regmap_pushr)); ret = PTR_ERR(dspi->regmap_pushr); goto out_ctlr_put; } } dspi->clk = devm_clk_get(&pdev->dev, "dspi"); if (IS_ERR(dspi->clk)) { ret = PTR_ERR(dspi->clk); dev_err(&pdev->dev, "unable to get clock\n"); goto out_ctlr_put; } ret = clk_prepare_enable(dspi->clk); if (ret) goto out_ctlr_put; dspi_init(dspi); if (dspi->devtype_data->trans_mode == DSPI_TCFQ_MODE) goto poll_mode; dspi->irq = platform_get_irq(pdev, 0); if (dspi->irq <= 0) { dev_info(&pdev->dev, "can't get platform irq, using poll mode\n"); dspi->irq = 0; goto poll_mode; } ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, IRQF_SHARED, pdev->name, dspi); if (ret < 0) { dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n"); goto out_clk_put; } init_waitqueue_head(&dspi->waitq); poll_mode: if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { ret = dspi_request_dma(dspi, res->start); if (ret < 0) { dev_err(&pdev->dev, "can't get dma channels\n"); goto out_clk_put; } } ctlr->max_speed_hz = clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor; ctlr->ptp_sts_supported = dspi->devtype_data->ptp_sts_supported; platform_set_drvdata(pdev, ctlr); ret = spi_register_controller(ctlr); if (ret != 0) { dev_err(&pdev->dev, "Problem registering DSPI ctlr\n"); goto out_clk_put; } return ret; out_clk_put: clk_disable_unprepare(dspi->clk); out_ctlr_put: spi_controller_put(ctlr); return ret; } static int dspi_remove(struct platform_device *pdev) { struct spi_controller *ctlr = platform_get_drvdata(pdev); struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); /* Disconnect from the SPI framework */ dspi_release_dma(dspi); clk_disable_unprepare(dspi->clk); spi_unregister_controller(dspi->ctlr); return 0; } static struct platform_driver fsl_dspi_driver = { .driver.name = DRIVER_NAME, .driver.of_match_table = fsl_dspi_dt_ids, .driver.owner = THIS_MODULE, .driver.pm = &dspi_pm, .probe = dspi_probe, .remove = dspi_remove, }; module_platform_driver(fsl_dspi_driver); MODULE_DESCRIPTION("Freescale DSPI Controller Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME);