// SPDX-License-Identifier: GPL-2.0 // // Copyright (C) 2018 Macronix International Co., Ltd. // // Authors: // Mason Yang // zhengxunli // Boris Brezillon // #include #include #include #include #include #include #include #include #define HC_CFG 0x0 #define HC_CFG_IF_CFG(x) ((x) << 27) #define HC_CFG_DUAL_SLAVE BIT(31) #define HC_CFG_INDIVIDUAL BIT(30) #define HC_CFG_NIO(x) (((x) / 4) << 27) #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2))) #define HC_CFG_TYPE_SPI_NOR 0 #define HC_CFG_TYPE_SPI_NAND 1 #define HC_CFG_TYPE_SPI_RAM 2 #define HC_CFG_TYPE_RAW_NAND 3 #define HC_CFG_SLV_ACT(x) ((x) << 21) #define HC_CFG_CLK_PH_EN BIT(20) #define HC_CFG_CLK_POL_INV BIT(19) #define HC_CFG_BIG_ENDIAN BIT(18) #define HC_CFG_DATA_PASS BIT(17) #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16) #define HC_CFG_MAN_START_EN BIT(3) #define HC_CFG_MAN_START BIT(2) #define HC_CFG_MAN_CS_EN BIT(1) #define HC_CFG_MAN_CS_ASSERT BIT(0) #define INT_STS 0x4 #define INT_STS_EN 0x8 #define INT_SIG_EN 0xc #define INT_STS_ALL GENMASK(31, 0) #define INT_RDY_PIN BIT(26) #define INT_RDY_SR BIT(25) #define INT_LNR_SUSP BIT(24) #define INT_ECC_ERR BIT(17) #define INT_CRC_ERR BIT(16) #define INT_LWR_DIS BIT(12) #define INT_LRD_DIS BIT(11) #define INT_SDMA_INT BIT(10) #define INT_DMA_FINISH BIT(9) #define INT_RX_NOT_FULL BIT(3) #define INT_RX_NOT_EMPTY BIT(2) #define INT_TX_NOT_FULL BIT(1) #define INT_TX_EMPTY BIT(0) #define HC_EN 0x10 #define HC_EN_BIT BIT(0) #define TXD(x) (0x14 + ((x) * 4)) #define RXD 0x24 #define SS_CTRL(s) (0x30 + ((s) * 4)) #define LRD_CFG 0x44 #define LWR_CFG 0x80 #define RWW_CFG 0x70 #define OP_READ BIT(23) #define OP_DUMMY_CYC(x) ((x) << 17) #define OP_ADDR_BYTES(x) ((x) << 14) #define OP_CMD_BYTES(x) (((x) - 1) << 13) #define OP_OCTA_CRC_EN BIT(12) #define OP_DQS_EN BIT(11) #define OP_ENHC_EN BIT(10) #define OP_PREAMBLE_EN BIT(9) #define OP_DATA_DDR BIT(8) #define OP_DATA_BUSW(x) ((x) << 6) #define OP_ADDR_DDR BIT(5) #define OP_ADDR_BUSW(x) ((x) << 3) #define OP_CMD_DDR BIT(2) #define OP_CMD_BUSW(x) (x) #define OP_BUSW_1 0 #define OP_BUSW_2 1 #define OP_BUSW_4 2 #define OP_BUSW_8 3 #define OCTA_CRC 0x38 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16)) #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16))) #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16)) #define ONFI_DIN_CNT(s) (0x3c + (s)) #define LRD_CTRL 0x48 #define RWW_CTRL 0x74 #define LWR_CTRL 0x84 #define LMODE_EN BIT(31) #define LMODE_SLV_ACT(x) ((x) << 21) #define LMODE_CMD1(x) ((x) << 8) #define LMODE_CMD0(x) (x) #define LRD_ADDR 0x4c #define LWR_ADDR 0x88 #define LRD_RANGE 0x50 #define LWR_RANGE 0x8c #define AXI_SLV_ADDR 0x54 #define DMAC_RD_CFG 0x58 #define DMAC_WR_CFG 0x94 #define DMAC_CFG_PERIPH_EN BIT(31) #define DMAC_CFG_ALLFLUSH_EN BIT(30) #define DMAC_CFG_LASTFLUSH_EN BIT(29) #define DMAC_CFG_QE(x) (((x) + 1) << 16) #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12) #define DMAC_CFG_BURST_SZ(x) ((x) << 8) #define DMAC_CFG_DIR_READ BIT(1) #define DMAC_CFG_START BIT(0) #define DMAC_RD_CNT 0x5c #define DMAC_WR_CNT 0x98 #define SDMA_ADDR 0x60 #define DMAM_CFG 0x64 #define DMAM_CFG_START BIT(31) #define DMAM_CFG_CONT BIT(30) #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2) #define DMAM_CFG_DIR_READ BIT(1) #define DMAM_CFG_EN BIT(0) #define DMAM_CNT 0x68 #define LNR_TIMER_TH 0x6c #define RDM_CFG0 0x78 #define RDM_CFG0_POLY(x) (x) #define RDM_CFG1 0x7c #define RDM_CFG1_RDM_EN BIT(31) #define RDM_CFG1_SEED(x) (x) #define LWR_SUSP_CTRL 0x90 #define LWR_SUSP_CTRL_EN BIT(31) #define DMAS_CTRL 0x9c #define DMAS_CTRL_EN BIT(31) #define DMAS_CTRL_DIR_READ BIT(30) #define DATA_STROB 0xa0 #define DATA_STROB_EDO_EN BIT(2) #define DATA_STROB_INV_POL BIT(1) #define DATA_STROB_DELAY_2CYC BIT(0) #define IDLY_CODE(x) (0xa4 + ((x) * 4)) #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8)) #define GPIO 0xc4 #define GPIO_PT(x) BIT(3 + ((x) * 16)) #define GPIO_RESET(x) BIT(2 + ((x) * 16)) #define GPIO_HOLDB(x) BIT(1 + ((x) * 16)) #define GPIO_WPB(x) BIT((x) * 16) #define HC_VER 0xd0 #define HW_TEST(x) (0xe0 + ((x) * 4)) struct mxic_spi { struct clk *ps_clk; struct clk *send_clk; struct clk *send_dly_clk; void __iomem *regs; u32 cur_speed_hz; }; static int mxic_spi_clk_enable(struct mxic_spi *mxic) { int ret; ret = clk_prepare_enable(mxic->send_clk); if (ret) return ret; ret = clk_prepare_enable(mxic->send_dly_clk); if (ret) goto err_send_dly_clk; return ret; err_send_dly_clk: clk_disable_unprepare(mxic->send_clk); return ret; } static void mxic_spi_clk_disable(struct mxic_spi *mxic) { clk_disable_unprepare(mxic->send_clk); clk_disable_unprepare(mxic->send_dly_clk); } static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code) { writel(IDLY_CODE_VAL(0, idly_code) | IDLY_CODE_VAL(1, idly_code) | IDLY_CODE_VAL(2, idly_code) | IDLY_CODE_VAL(3, idly_code), mxic->regs + IDLY_CODE(0)); writel(IDLY_CODE_VAL(4, idly_code) | IDLY_CODE_VAL(5, idly_code) | IDLY_CODE_VAL(6, idly_code) | IDLY_CODE_VAL(7, idly_code), mxic->regs + IDLY_CODE(1)); } static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq) { int ret; ret = clk_set_rate(mxic->send_clk, freq); if (ret) return ret; ret = clk_set_rate(mxic->send_dly_clk, freq); if (ret) return ret; /* * A constant delay range from 0x0 ~ 0x1F for input delay, * the unit is 78 ps, the max input delay is 2.418 ns. */ mxic_spi_set_input_delay_dqs(mxic, 0xf); /* * Phase degree = 360 * freq * output-delay * where output-delay is a constant value 1 ns in FPGA. * * Get Phase degree = 360 * freq * 1 ns * = 360 * freq * 1 sec / 1000000000 * = 9 * freq / 25000000 */ ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000); if (ret) return ret; return 0; } static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq) { int ret; if (mxic->cur_speed_hz == freq) return 0; mxic_spi_clk_disable(mxic); ret = mxic_spi_clk_setup(mxic, freq); if (ret) return ret; ret = mxic_spi_clk_enable(mxic); if (ret) return ret; mxic->cur_speed_hz = freq; return 0; } static void mxic_spi_hw_init(struct mxic_spi *mxic) { writel(0, mxic->regs + DATA_STROB); writel(INT_STS_ALL, mxic->regs + INT_STS_EN); writel(0, mxic->regs + HC_EN); writel(0, mxic->regs + LRD_CFG); writel(0, mxic->regs + LRD_CTRL); writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) | HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1), mxic->regs + HC_CFG); } static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf, void *rxbuf, unsigned int len) { unsigned int pos = 0; while (pos < len) { unsigned int nbytes = len - pos; u32 data = 0xffffffff; u32 sts; int ret; if (nbytes > 4) nbytes = 4; if (txbuf) memcpy(&data, txbuf + pos, nbytes); ret = readl_poll_timeout(mxic->regs + INT_STS, sts, sts & INT_TX_EMPTY, 0, USEC_PER_SEC); if (ret) return ret; writel(data, mxic->regs + TXD(nbytes % 4)); if (rxbuf) { ret = readl_poll_timeout(mxic->regs + INT_STS, sts, sts & INT_TX_EMPTY, 0, USEC_PER_SEC); if (ret) return ret; ret = readl_poll_timeout(mxic->regs + INT_STS, sts, sts & INT_RX_NOT_EMPTY, 0, USEC_PER_SEC); if (ret) return ret; data = readl(mxic->regs + RXD); data >>= (8 * (4 - nbytes)); memcpy(rxbuf + pos, &data, nbytes); WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); } else { readl(mxic->regs + RXD); } WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); pos += nbytes; } return 0; } static bool mxic_spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (op->data.buswidth > 4 || op->addr.buswidth > 4 || op->dummy.buswidth > 4 || op->cmd.buswidth > 4) return false; if (op->data.nbytes && op->dummy.nbytes && op->data.buswidth != op->dummy.buswidth) return false; if (op->addr.nbytes > 7) return false; return spi_mem_default_supports_op(mem, op); } static int mxic_spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master); int nio = 1, i, ret; u32 ss_ctrl; u8 addr[8]; ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz); if (ret) return ret; if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD)) nio = 4; else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL)) nio = 2; writel(HC_CFG_NIO(nio) | HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) | HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) | HC_CFG_MAN_CS_EN, mxic->regs + HC_CFG); writel(HC_EN_BIT, mxic->regs + HC_EN); ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1); if (op->addr.nbytes) ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) | OP_ADDR_BUSW(fls(op->addr.buswidth) - 1); if (op->dummy.nbytes) ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes); if (op->data.nbytes) { ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1); if (op->data.dir == SPI_MEM_DATA_IN) ss_ctrl |= OP_READ; } writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select)); writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, mxic->regs + HC_CFG); ret = mxic_spi_data_xfer(mxic, &op->cmd.opcode, NULL, 1); if (ret) goto out; for (i = 0; i < op->addr.nbytes; i++) addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes); if (ret) goto out; ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes); if (ret) goto out; ret = mxic_spi_data_xfer(mxic, op->data.dir == SPI_MEM_DATA_OUT ? op->data.buf.out : NULL, op->data.dir == SPI_MEM_DATA_IN ? op->data.buf.in : NULL, op->data.nbytes); out: writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, mxic->regs + HC_CFG); writel(0, mxic->regs + HC_EN); return ret; } static const struct spi_controller_mem_ops mxic_spi_mem_ops = { .supports_op = mxic_spi_mem_supports_op, .exec_op = mxic_spi_mem_exec_op, }; static void mxic_spi_set_cs(struct spi_device *spi, bool lvl) { struct mxic_spi *mxic = spi_master_get_devdata(spi->master); if (!lvl) { writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN, mxic->regs + HC_CFG); writel(HC_EN_BIT, mxic->regs + HC_EN); writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, mxic->regs + HC_CFG); } else { writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, mxic->regs + HC_CFG); writel(0, mxic->regs + HC_EN); } } static int mxic_spi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *t) { struct mxic_spi *mxic = spi_master_get_devdata(master); unsigned int busw = OP_BUSW_1; int ret; if (t->rx_buf && t->tx_buf) { if (((spi->mode & SPI_TX_QUAD) && !(spi->mode & SPI_RX_QUAD)) || ((spi->mode & SPI_TX_DUAL) && !(spi->mode & SPI_RX_DUAL))) return -ENOTSUPP; } ret = mxic_spi_set_freq(mxic, t->speed_hz); if (ret) return ret; if (t->tx_buf) { if (spi->mode & SPI_TX_QUAD) busw = OP_BUSW_4; else if (spi->mode & SPI_TX_DUAL) busw = OP_BUSW_2; } else if (t->rx_buf) { if (spi->mode & SPI_RX_QUAD) busw = OP_BUSW_4; else if (spi->mode & SPI_RX_DUAL) busw = OP_BUSW_2; } writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) | OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0), mxic->regs + SS_CTRL(0)); ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len); if (ret) return ret; spi_finalize_current_transfer(master); return 0; } static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mxic_spi *mxic = spi_master_get_devdata(master); mxic_spi_clk_disable(mxic); clk_disable_unprepare(mxic->ps_clk); return 0; } static int __maybe_unused mxic_spi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mxic_spi *mxic = spi_master_get_devdata(master); int ret; ret = clk_prepare_enable(mxic->ps_clk); if (ret) { dev_err(dev, "Cannot enable ps_clock.\n"); return ret; } return mxic_spi_clk_enable(mxic); } static const struct dev_pm_ops mxic_spi_dev_pm_ops = { SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend, mxic_spi_runtime_resume, NULL) }; static int mxic_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct resource *res; struct mxic_spi *mxic; int ret; master = spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi)); if (!master) return -ENOMEM; platform_set_drvdata(pdev, master); mxic = spi_master_get_devdata(master); master->dev.of_node = pdev->dev.of_node; mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk"); if (IS_ERR(mxic->ps_clk)) return PTR_ERR(mxic->ps_clk); mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk"); if (IS_ERR(mxic->send_clk)) return PTR_ERR(mxic->send_clk); mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk"); if (IS_ERR(mxic->send_dly_clk)) return PTR_ERR(mxic->send_dly_clk); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs"); mxic->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mxic->regs)) return PTR_ERR(mxic->regs); pm_runtime_enable(&pdev->dev); master->auto_runtime_pm = true; master->num_chipselect = 1; master->mem_ops = &mxic_spi_mem_ops; master->set_cs = mxic_spi_set_cs; master->transfer_one = mxic_spi_transfer_one; master->bits_per_word_mask = SPI_BPW_MASK(8); master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD; mxic_spi_hw_init(mxic); ret = spi_register_master(master); if (ret) { dev_err(&pdev->dev, "spi_register_master failed\n"); goto err_put_master; } return 0; err_put_master: spi_master_put(master); pm_runtime_disable(&pdev->dev); return ret; } static int mxic_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); pm_runtime_disable(&pdev->dev); spi_unregister_master(master); return 0; } static const struct of_device_id mxic_spi_of_ids[] = { { .compatible = "mxicy,mx25f0a-spi", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxic_spi_of_ids); static struct platform_driver mxic_spi_driver = { .probe = mxic_spi_probe, .remove = mxic_spi_remove, .driver = { .name = "mxic-spi", .of_match_table = mxic_spi_of_ids, .pm = &mxic_spi_dev_pm_ops, }, }; module_platform_driver(mxic_spi_driver); MODULE_AUTHOR("Mason Yang "); MODULE_DESCRIPTION("MX25F0A SPI controller driver"); MODULE_LICENSE("GPL v2");