// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2018 Spreadtrum Communications Inc. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SPRD_SPI_TXD 0x0 #define SPRD_SPI_CLKD 0x4 #define SPRD_SPI_CTL0 0x8 #define SPRD_SPI_CTL1 0xc #define SPRD_SPI_CTL2 0x10 #define SPRD_SPI_CTL3 0x14 #define SPRD_SPI_CTL4 0x18 #define SPRD_SPI_CTL5 0x1c #define SPRD_SPI_INT_EN 0x20 #define SPRD_SPI_INT_CLR 0x24 #define SPRD_SPI_INT_RAW_STS 0x28 #define SPRD_SPI_INT_MASK_STS 0x2c #define SPRD_SPI_STS1 0x30 #define SPRD_SPI_STS2 0x34 #define SPRD_SPI_DSP_WAIT 0x38 #define SPRD_SPI_STS3 0x3c #define SPRD_SPI_CTL6 0x40 #define SPRD_SPI_STS4 0x44 #define SPRD_SPI_FIFO_RST 0x48 #define SPRD_SPI_CTL7 0x4c #define SPRD_SPI_STS5 0x50 #define SPRD_SPI_CTL8 0x54 #define SPRD_SPI_CTL9 0x58 #define SPRD_SPI_CTL10 0x5c #define SPRD_SPI_CTL11 0x60 #define SPRD_SPI_CTL12 0x64 #define SPRD_SPI_STS6 0x68 #define SPRD_SPI_STS7 0x6c #define SPRD_SPI_STS8 0x70 #define SPRD_SPI_STS9 0x74 /* Bits & mask definition for register CTL0 */ #define SPRD_SPI_SCK_REV BIT(13) #define SPRD_SPI_NG_TX BIT(1) #define SPRD_SPI_NG_RX BIT(0) #define SPRD_SPI_CHNL_LEN_MASK GENMASK(4, 0) #define SPRD_SPI_CSN_MASK GENMASK(11, 8) #define SPRD_SPI_CS0_VALID BIT(8) /* Bits & mask definition for register SPI_INT_EN */ #define SPRD_SPI_TX_END_INT_EN BIT(8) #define SPRD_SPI_RX_END_INT_EN BIT(9) /* Bits & mask definition for register SPI_INT_RAW_STS */ #define SPRD_SPI_TX_END_RAW BIT(8) #define SPRD_SPI_RX_END_RAW BIT(9) /* Bits & mask definition for register SPI_INT_CLR */ #define SPRD_SPI_TX_END_CLR BIT(8) #define SPRD_SPI_RX_END_CLR BIT(9) /* Bits & mask definition for register INT_MASK_STS */ #define SPRD_SPI_MASK_RX_END BIT(9) #define SPRD_SPI_MASK_TX_END BIT(8) /* Bits & mask definition for register STS2 */ #define SPRD_SPI_TX_BUSY BIT(8) /* Bits & mask definition for register CTL1 */ #define SPRD_SPI_RX_MODE BIT(12) #define SPRD_SPI_TX_MODE BIT(13) #define SPRD_SPI_RTX_MD_MASK GENMASK(13, 12) /* Bits & mask definition for register CTL2 */ #define SPRD_SPI_DMA_EN BIT(6) /* Bits & mask definition for register CTL4 */ #define SPRD_SPI_START_RX BIT(9) #define SPRD_SPI_ONLY_RECV_MASK GENMASK(8, 0) /* Bits & mask definition for register SPI_INT_CLR */ #define SPRD_SPI_RX_END_INT_CLR BIT(9) #define SPRD_SPI_TX_END_INT_CLR BIT(8) /* Bits & mask definition for register SPI_INT_RAW */ #define SPRD_SPI_RX_END_IRQ BIT(9) #define SPRD_SPI_TX_END_IRQ BIT(8) /* Bits & mask definition for register CTL12 */ #define SPRD_SPI_SW_RX_REQ BIT(0) #define SPRD_SPI_SW_TX_REQ BIT(1) /* Bits & mask definition for register CTL7 */ #define SPRD_SPI_DATA_LINE2_EN BIT(15) #define SPRD_SPI_MODE_MASK GENMASK(5, 3) #define SPRD_SPI_MODE_OFFSET 3 #define SPRD_SPI_3WIRE_MODE 4 #define SPRD_SPI_4WIRE_MODE 0 /* Bits & mask definition for register CTL8 */ #define SPRD_SPI_TX_MAX_LEN_MASK GENMASK(19, 0) #define SPRD_SPI_TX_LEN_H_MASK GENMASK(3, 0) #define SPRD_SPI_TX_LEN_H_OFFSET 16 /* Bits & mask definition for register CTL9 */ #define SPRD_SPI_TX_LEN_L_MASK GENMASK(15, 0) /* Bits & mask definition for register CTL10 */ #define SPRD_SPI_RX_MAX_LEN_MASK GENMASK(19, 0) #define SPRD_SPI_RX_LEN_H_MASK GENMASK(3, 0) #define SPRD_SPI_RX_LEN_H_OFFSET 16 /* Bits & mask definition for register CTL11 */ #define SPRD_SPI_RX_LEN_L_MASK GENMASK(15, 0) /* Default & maximum word delay cycles */ #define SPRD_SPI_MIN_DELAY_CYCLE 14 #define SPRD_SPI_MAX_DELAY_CYCLE 130 #define SPRD_SPI_FIFO_SIZE 32 #define SPRD_SPI_CHIP_CS_NUM 0x4 #define SPRD_SPI_CHNL_LEN 2 #define SPRD_SPI_DEFAULT_SOURCE 26000000 #define SPRD_SPI_MAX_SPEED_HZ 48000000 #define SPRD_SPI_AUTOSUSPEND_DELAY 100 #define SPRD_SPI_DMA_STEP 8 enum sprd_spi_dma_channel { SPRD_SPI_RX, SPRD_SPI_TX, SPRD_SPI_MAX, }; struct sprd_spi_dma { bool enable; struct dma_chan *dma_chan[SPRD_SPI_MAX]; enum dma_slave_buswidth width; u32 fragmens_len; u32 rx_len; }; struct sprd_spi { void __iomem *base; phys_addr_t phy_base; struct device *dev; struct clk *clk; int irq; u32 src_clk; u32 hw_mode; u32 trans_len; u32 trans_mode; u32 word_delay; u32 hw_speed_hz; u32 len; int status; struct sprd_spi_dma dma; struct completion xfer_completion; const void *tx_buf; void *rx_buf; int (*read_bufs)(struct sprd_spi *ss, u32 len); int (*write_bufs)(struct sprd_spi *ss, u32 len); }; static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss, struct spi_transfer *t) { /* * The time spent on transmission of the full FIFO data is the maximum * SPI transmission time. */ u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE; u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz); u32 total_time_us = size * bit_time_us; /* * There is an interval between data and the data in our SPI hardware, * so the total transmission time need add the interval time. */ u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay; u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC, ss->src_clk); return total_time_us + interval_time_us; } static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t) { u32 val, us; int ret; us = sprd_spi_transfer_max_timeout(ss, t); ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val, val & SPRD_SPI_TX_END_IRQ, 0, us); if (ret) { dev_err(ss->dev, "SPI error, spi send timeout!\n"); return ret; } ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val, !(val & SPRD_SPI_TX_BUSY), 0, us); if (ret) { dev_err(ss->dev, "SPI error, spi busy timeout!\n"); return ret; } writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR); return 0; } static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t) { u32 val, us; int ret; us = sprd_spi_transfer_max_timeout(ss, t); ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val, val & SPRD_SPI_RX_END_IRQ, 0, us); if (ret) { dev_err(ss->dev, "SPI error, spi rx timeout!\n"); return ret; } writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR); return 0; } static void sprd_spi_tx_req(struct sprd_spi *ss) { writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12); } static void sprd_spi_rx_req(struct sprd_spi *ss) { writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12); } static void sprd_spi_enter_idle(struct sprd_spi *ss) { u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1); val &= ~SPRD_SPI_RTX_MD_MASK; writel_relaxed(val, ss->base + SPRD_SPI_CTL1); } static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits) { u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0); /* Set the valid bits for every transaction */ val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN); val |= bits << SPRD_SPI_CHNL_LEN; writel_relaxed(val, ss->base + SPRD_SPI_CTL0); } static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length) { u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8); length &= SPRD_SPI_TX_MAX_LEN_MASK; val &= ~SPRD_SPI_TX_LEN_H_MASK; val |= length >> SPRD_SPI_TX_LEN_H_OFFSET; writel_relaxed(val, ss->base + SPRD_SPI_CTL8); val = length & SPRD_SPI_TX_LEN_L_MASK; writel_relaxed(val, ss->base + SPRD_SPI_CTL9); } static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length) { u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10); length &= SPRD_SPI_RX_MAX_LEN_MASK; val &= ~SPRD_SPI_RX_LEN_H_MASK; val |= length >> SPRD_SPI_RX_LEN_H_OFFSET; writel_relaxed(val, ss->base + SPRD_SPI_CTL10); val = length & SPRD_SPI_RX_LEN_L_MASK; writel_relaxed(val, ss->base + SPRD_SPI_CTL11); } static void sprd_spi_chipselect(struct spi_device *sdev, bool cs) { struct spi_controller *sctlr = sdev->controller; struct sprd_spi *ss = spi_controller_get_devdata(sctlr); u32 val; val = readl_relaxed(ss->base + SPRD_SPI_CTL0); /* The SPI controller will pull down CS pin if cs is 0 */ if (!cs) { val &= ~SPRD_SPI_CS0_VALID; writel_relaxed(val, ss->base + SPRD_SPI_CTL0); } else { val |= SPRD_SPI_CSN_MASK; writel_relaxed(val, ss->base + SPRD_SPI_CTL0); } } static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len) { u32 val; /* Clear the start receive bit and reset receive data number */ val = readl_relaxed(ss->base + SPRD_SPI_CTL4); val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK); writel_relaxed(val, ss->base + SPRD_SPI_CTL4); /* Set the receive data length */ val = readl_relaxed(ss->base + SPRD_SPI_CTL4); val |= len & SPRD_SPI_ONLY_RECV_MASK; writel_relaxed(val, ss->base + SPRD_SPI_CTL4); /* Trigger to receive data */ val = readl_relaxed(ss->base + SPRD_SPI_CTL4); val |= SPRD_SPI_START_RX; writel_relaxed(val, ss->base + SPRD_SPI_CTL4); return len; } static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len) { u8 *tx_p = (u8 *)ss->tx_buf; int i; for (i = 0; i < len; i++) writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD); ss->tx_buf += i; return i; } static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len) { u16 *tx_p = (u16 *)ss->tx_buf; int i; for (i = 0; i < len; i++) writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD); ss->tx_buf += i << 1; return i << 1; } static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len) { u32 *tx_p = (u32 *)ss->tx_buf; int i; for (i = 0; i < len; i++) writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD); ss->tx_buf += i << 2; return i << 2; } static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len) { u8 *rx_p = (u8 *)ss->rx_buf; int i; for (i = 0; i < len; i++) rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD); ss->rx_buf += i; return i; } static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len) { u16 *rx_p = (u16 *)ss->rx_buf; int i; for (i = 0; i < len; i++) rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD); ss->rx_buf += i << 1; return i << 1; } static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len) { u32 *rx_p = (u32 *)ss->rx_buf; int i; for (i = 0; i < len; i++) rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD); ss->rx_buf += i << 2; return i << 2; } static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t) { struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller); u32 trans_len = ss->trans_len, len; int ret, write_size = 0, read_size = 0; while (trans_len) { len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE : trans_len; if (ss->trans_mode & SPRD_SPI_TX_MODE) { sprd_spi_set_tx_length(ss, len); write_size += ss->write_bufs(ss, len); /* * For our 3 wires mode or dual TX line mode, we need * to request the controller to transfer. */ if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) sprd_spi_tx_req(ss); ret = sprd_spi_wait_for_tx_end(ss, t); } else { sprd_spi_set_rx_length(ss, len); /* * For our 3 wires mode or dual TX line mode, we need * to request the controller to read. */ if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) sprd_spi_rx_req(ss); else write_size += ss->write_bufs(ss, len); ret = sprd_spi_wait_for_rx_end(ss, t); } if (ret) goto complete; if (ss->trans_mode & SPRD_SPI_RX_MODE) read_size += ss->read_bufs(ss, len); trans_len -= len; } if (ss->trans_mode & SPRD_SPI_TX_MODE) ret = write_size; else ret = read_size; complete: sprd_spi_enter_idle(ss); return ret; } static void sprd_spi_irq_enable(struct sprd_spi *ss) { u32 val; /* Clear interrupt status before enabling interrupt. */ writel_relaxed(SPRD_SPI_TX_END_CLR | SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR); /* Enable SPI interrupt only in DMA mode. */ val = readl_relaxed(ss->base + SPRD_SPI_INT_EN); writel_relaxed(val | SPRD_SPI_TX_END_INT_EN | SPRD_SPI_RX_END_INT_EN, ss->base + SPRD_SPI_INT_EN); } static void sprd_spi_irq_disable(struct sprd_spi *ss) { writel_relaxed(0, ss->base + SPRD_SPI_INT_EN); } static void sprd_spi_dma_enable(struct sprd_spi *ss, bool enable) { u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL2); if (enable) val |= SPRD_SPI_DMA_EN; else val &= ~SPRD_SPI_DMA_EN; writel_relaxed(val, ss->base + SPRD_SPI_CTL2); } static int sprd_spi_dma_submit(struct dma_chan *dma_chan, struct dma_slave_config *c, struct sg_table *sg, enum dma_transfer_direction dir) { struct dma_async_tx_descriptor *desc; dma_cookie_t cookie; unsigned long flags; int ret; ret = dmaengine_slave_config(dma_chan, c); if (ret < 0) return ret; flags = SPRD_DMA_FLAGS(SPRD_DMA_CHN_MODE_NONE, SPRD_DMA_NO_TRG, SPRD_DMA_FRAG_REQ, SPRD_DMA_TRANS_INT); desc = dmaengine_prep_slave_sg(dma_chan, sg->sgl, sg->nents, dir, flags); if (!desc) return -ENODEV; cookie = dmaengine_submit(desc); if (dma_submit_error(cookie)) return dma_submit_error(cookie); dma_async_issue_pending(dma_chan); return 0; } static int sprd_spi_dma_rx_config(struct sprd_spi *ss, struct spi_transfer *t) { struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_RX]; struct dma_slave_config config = { .src_addr = ss->phy_base, .src_addr_width = ss->dma.width, .dst_addr_width = ss->dma.width, .dst_maxburst = ss->dma.fragmens_len, }; int ret; ret = sprd_spi_dma_submit(dma_chan, &config, &t->rx_sg, DMA_DEV_TO_MEM); if (ret) return ret; return ss->dma.rx_len; } static int sprd_spi_dma_tx_config(struct sprd_spi *ss, struct spi_transfer *t) { struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_TX]; struct dma_slave_config config = { .dst_addr = ss->phy_base, .src_addr_width = ss->dma.width, .dst_addr_width = ss->dma.width, .src_maxburst = ss->dma.fragmens_len, }; int ret; ret = sprd_spi_dma_submit(dma_chan, &config, &t->tx_sg, DMA_MEM_TO_DEV); if (ret) return ret; return t->len; } static int sprd_spi_dma_request(struct sprd_spi *ss) { ss->dma.dma_chan[SPRD_SPI_RX] = dma_request_chan(ss->dev, "rx_chn"); if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_RX])) { if (PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]) == -EPROBE_DEFER) return PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]); dev_err(ss->dev, "request RX DMA channel failed!\n"); return PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]); } ss->dma.dma_chan[SPRD_SPI_TX] = dma_request_chan(ss->dev, "tx_chn"); if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_TX])) { if (PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]) == -EPROBE_DEFER) return PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]); dev_err(ss->dev, "request TX DMA channel failed!\n"); dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]); return PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]); } return 0; } static void sprd_spi_dma_release(struct sprd_spi *ss) { if (ss->dma.dma_chan[SPRD_SPI_RX]) dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]); if (ss->dma.dma_chan[SPRD_SPI_TX]) dma_release_channel(ss->dma.dma_chan[SPRD_SPI_TX]); } static int sprd_spi_dma_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t) { struct sprd_spi *ss = spi_master_get_devdata(sdev->master); u32 trans_len = ss->trans_len; int ret, write_size = 0; reinit_completion(&ss->xfer_completion); sprd_spi_irq_enable(ss); if (ss->trans_mode & SPRD_SPI_TX_MODE) { write_size = sprd_spi_dma_tx_config(ss, t); sprd_spi_set_tx_length(ss, trans_len); /* * For our 3 wires mode or dual TX line mode, we need * to request the controller to transfer. */ if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) sprd_spi_tx_req(ss); } else { sprd_spi_set_rx_length(ss, trans_len); /* * For our 3 wires mode or dual TX line mode, we need * to request the controller to read. */ if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL) sprd_spi_rx_req(ss); else write_size = ss->write_bufs(ss, trans_len); } if (write_size < 0) { ret = write_size; dev_err(ss->dev, "failed to write, ret = %d\n", ret); goto trans_complete; } if (ss->trans_mode & SPRD_SPI_RX_MODE) { /* * Set up the DMA receive data length, which must be an * integral multiple of fragment length. But when the length * of received data is less than fragment length, DMA can be * configured to receive data according to the actual length * of received data. */ ss->dma.rx_len = t->len > ss->dma.fragmens_len ? (t->len - t->len % ss->dma.fragmens_len) : t->len; ret = sprd_spi_dma_rx_config(ss, t); if (ret < 0) { dev_err(&sdev->dev, "failed to configure rx DMA, ret = %d\n", ret); goto trans_complete; } } sprd_spi_dma_enable(ss, true); wait_for_completion(&(ss->xfer_completion)); if (ss->trans_mode & SPRD_SPI_TX_MODE) ret = write_size; else ret = ss->dma.rx_len; trans_complete: sprd_spi_dma_enable(ss, false); sprd_spi_enter_idle(ss); sprd_spi_irq_disable(ss); return ret; } static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz) { /* * From SPI datasheet, the prescale calculation formula: * prescale = SPI source clock / (2 * SPI_freq) - 1; */ u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1; /* Save the real hardware speed */ ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1); writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD); } static int sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t) { struct spi_delay *d = &t->word_delay; u16 word_delay, interval; u32 val; if (d->unit != SPI_DELAY_UNIT_SCK) return -EINVAL; val = readl_relaxed(ss->base + SPRD_SPI_CTL7); val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX); /* Set default chip selection, clock phase and clock polarity */ val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX; val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0; writel_relaxed(val, ss->base + SPRD_SPI_CTL0); /* * Set the intervals of two SPI frames, and the inteval calculation * formula as below per datasheet: * interval time (source clock cycles) = interval * 4 + 10. */ word_delay = clamp_t(u16, d->value, SPRD_SPI_MIN_DELAY_CYCLE, SPRD_SPI_MAX_DELAY_CYCLE); interval = DIV_ROUND_UP(word_delay - 10, 4); ss->word_delay = interval * 4 + 10; writel_relaxed(interval, ss->base + SPRD_SPI_CTL5); /* Reset SPI fifo */ writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST); writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST); /* Set SPI work mode */ val = readl_relaxed(ss->base + SPRD_SPI_CTL7); val &= ~SPRD_SPI_MODE_MASK; if (ss->hw_mode & SPI_3WIRE) val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET; else val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET; if (ss->hw_mode & SPI_TX_DUAL) val |= SPRD_SPI_DATA_LINE2_EN; else val &= ~SPRD_SPI_DATA_LINE2_EN; writel_relaxed(val, ss->base + SPRD_SPI_CTL7); return 0; } static int sprd_spi_setup_transfer(struct spi_device *sdev, struct spi_transfer *t) { struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller); u8 bits_per_word = t->bits_per_word; u32 val, mode = 0; int ret; ss->len = t->len; ss->tx_buf = t->tx_buf; ss->rx_buf = t->rx_buf; ss->hw_mode = sdev->mode; ret = sprd_spi_init_hw(ss, t); if (ret) return ret; /* Set tansfer speed and valid bits */ sprd_spi_set_speed(ss, t->speed_hz); sprd_spi_set_transfer_bits(ss, bits_per_word); if (bits_per_word > 16) bits_per_word = round_up(bits_per_word, 16); else bits_per_word = round_up(bits_per_word, 8); switch (bits_per_word) { case 8: ss->trans_len = t->len; ss->read_bufs = sprd_spi_read_bufs_u8; ss->write_bufs = sprd_spi_write_bufs_u8; ss->dma.width = DMA_SLAVE_BUSWIDTH_1_BYTE; ss->dma.fragmens_len = SPRD_SPI_DMA_STEP; break; case 16: ss->trans_len = t->len >> 1; ss->read_bufs = sprd_spi_read_bufs_u16; ss->write_bufs = sprd_spi_write_bufs_u16; ss->dma.width = DMA_SLAVE_BUSWIDTH_2_BYTES; ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 1; break; case 32: ss->trans_len = t->len >> 2; ss->read_bufs = sprd_spi_read_bufs_u32; ss->write_bufs = sprd_spi_write_bufs_u32; ss->dma.width = DMA_SLAVE_BUSWIDTH_4_BYTES; ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 2; break; default: return -EINVAL; } /* Set transfer read or write mode */ val = readl_relaxed(ss->base + SPRD_SPI_CTL1); val &= ~SPRD_SPI_RTX_MD_MASK; if (t->tx_buf) mode |= SPRD_SPI_TX_MODE; if (t->rx_buf) mode |= SPRD_SPI_RX_MODE; writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1); ss->trans_mode = mode; /* * If in only receive mode, we need to trigger the SPI controller to * receive data automatically. */ if (ss->trans_mode == SPRD_SPI_RX_MODE) ss->write_bufs = sprd_spi_write_only_receive; return 0; } static int sprd_spi_transfer_one(struct spi_controller *sctlr, struct spi_device *sdev, struct spi_transfer *t) { int ret; ret = sprd_spi_setup_transfer(sdev, t); if (ret) goto setup_err; if (sctlr->can_dma(sctlr, sdev, t)) ret = sprd_spi_dma_txrx_bufs(sdev, t); else ret = sprd_spi_txrx_bufs(sdev, t); if (ret == t->len) ret = 0; else if (ret >= 0) ret = -EREMOTEIO; setup_err: spi_finalize_current_transfer(sctlr); return ret; } static irqreturn_t sprd_spi_handle_irq(int irq, void *data) { struct sprd_spi *ss = (struct sprd_spi *)data; u32 val = readl_relaxed(ss->base + SPRD_SPI_INT_MASK_STS); if (val & SPRD_SPI_MASK_TX_END) { writel_relaxed(SPRD_SPI_TX_END_CLR, ss->base + SPRD_SPI_INT_CLR); if (!(ss->trans_mode & SPRD_SPI_RX_MODE)) complete(&ss->xfer_completion); return IRQ_HANDLED; } if (val & SPRD_SPI_MASK_RX_END) { writel_relaxed(SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR); if (ss->dma.rx_len < ss->len) { ss->rx_buf += ss->dma.rx_len; ss->dma.rx_len += ss->read_bufs(ss, ss->len - ss->dma.rx_len); } complete(&ss->xfer_completion); return IRQ_HANDLED; } return IRQ_NONE; } static int sprd_spi_irq_init(struct platform_device *pdev, struct sprd_spi *ss) { int ret; ss->irq = platform_get_irq(pdev, 0); if (ss->irq < 0) return ss->irq; ret = devm_request_irq(&pdev->dev, ss->irq, sprd_spi_handle_irq, 0, pdev->name, ss); if (ret) dev_err(&pdev->dev, "failed to request spi irq %d, ret = %d\n", ss->irq, ret); return ret; } static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss) { struct clk *clk_spi, *clk_parent; clk_spi = devm_clk_get(&pdev->dev, "spi"); if (IS_ERR(clk_spi)) { dev_warn(&pdev->dev, "can't get the spi clock\n"); clk_spi = NULL; } clk_parent = devm_clk_get(&pdev->dev, "source"); if (IS_ERR(clk_parent)) { dev_warn(&pdev->dev, "can't get the source clock\n"); clk_parent = NULL; } ss->clk = devm_clk_get(&pdev->dev, "enable"); if (IS_ERR(ss->clk)) { dev_err(&pdev->dev, "can't get the enable clock\n"); return PTR_ERR(ss->clk); } if (!clk_set_parent(clk_spi, clk_parent)) ss->src_clk = clk_get_rate(clk_spi); else ss->src_clk = SPRD_SPI_DEFAULT_SOURCE; return 0; } static bool sprd_spi_can_dma(struct spi_controller *sctlr, struct spi_device *spi, struct spi_transfer *t) { struct sprd_spi *ss = spi_controller_get_devdata(sctlr); return ss->dma.enable && (t->len > SPRD_SPI_FIFO_SIZE); } static int sprd_spi_dma_init(struct platform_device *pdev, struct sprd_spi *ss) { int ret; ret = sprd_spi_dma_request(ss); if (ret) { if (ret == -EPROBE_DEFER) return ret; dev_warn(&pdev->dev, "failed to request dma, enter no dma mode, ret = %d\n", ret); return 0; } ss->dma.enable = true; return 0; } static int sprd_spi_probe(struct platform_device *pdev) { struct spi_controller *sctlr; struct resource *res; struct sprd_spi *ss; int ret; pdev->id = of_alias_get_id(pdev->dev.of_node, "spi"); sctlr = spi_alloc_master(&pdev->dev, sizeof(*ss)); if (!sctlr) return -ENOMEM; ss = spi_controller_get_devdata(sctlr); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ss->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(ss->base)) { ret = PTR_ERR(ss->base); goto free_controller; } ss->phy_base = res->start; ss->dev = &pdev->dev; sctlr->dev.of_node = pdev->dev.of_node; sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL; sctlr->bus_num = pdev->id; sctlr->set_cs = sprd_spi_chipselect; sctlr->transfer_one = sprd_spi_transfer_one; sctlr->can_dma = sprd_spi_can_dma; sctlr->auto_runtime_pm = true; sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1, SPRD_SPI_MAX_SPEED_HZ); init_completion(&ss->xfer_completion); platform_set_drvdata(pdev, sctlr); ret = sprd_spi_clk_init(pdev, ss); if (ret) goto free_controller; ret = sprd_spi_irq_init(pdev, ss); if (ret) goto free_controller; ret = sprd_spi_dma_init(pdev, ss); if (ret) goto free_controller; ret = clk_prepare_enable(ss->clk); if (ret) goto release_dma; ret = pm_runtime_set_active(&pdev->dev); if (ret < 0) goto disable_clk; pm_runtime_set_autosuspend_delay(&pdev->dev, SPRD_SPI_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "failed to resume SPI controller\n"); goto err_rpm_put; } ret = devm_spi_register_controller(&pdev->dev, sctlr); if (ret) goto err_rpm_put; pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; err_rpm_put: pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); disable_clk: clk_disable_unprepare(ss->clk); release_dma: sprd_spi_dma_release(ss); free_controller: spi_controller_put(sctlr); return ret; } static int sprd_spi_remove(struct platform_device *pdev) { struct spi_controller *sctlr = platform_get_drvdata(pdev); struct sprd_spi *ss = spi_controller_get_devdata(sctlr); int ret; ret = pm_runtime_get_sync(ss->dev); if (ret < 0) { dev_err(ss->dev, "failed to resume SPI controller\n"); return ret; } spi_controller_suspend(sctlr); if (ss->dma.enable) sprd_spi_dma_release(ss); clk_disable_unprepare(ss->clk); pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); return 0; } static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev) { struct spi_controller *sctlr = dev_get_drvdata(dev); struct sprd_spi *ss = spi_controller_get_devdata(sctlr); if (ss->dma.enable) sprd_spi_dma_release(ss); clk_disable_unprepare(ss->clk); return 0; } static int __maybe_unused sprd_spi_runtime_resume(struct device *dev) { struct spi_controller *sctlr = dev_get_drvdata(dev); struct sprd_spi *ss = spi_controller_get_devdata(sctlr); int ret; ret = clk_prepare_enable(ss->clk); if (ret) return ret; if (!ss->dma.enable) return 0; ret = sprd_spi_dma_request(ss); if (ret) clk_disable_unprepare(ss->clk); return ret; } static const struct dev_pm_ops sprd_spi_pm_ops = { SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend, sprd_spi_runtime_resume, NULL) }; static const struct of_device_id sprd_spi_of_match[] = { { .compatible = "sprd,sc9860-spi", }, { /* sentinel */ } }; static struct platform_driver sprd_spi_driver = { .driver = { .name = "sprd-spi", .of_match_table = sprd_spi_of_match, .pm = &sprd_spi_pm_ops, }, .probe = sprd_spi_probe, .remove = sprd_spi_remove, }; module_platform_driver(sprd_spi_driver); MODULE_DESCRIPTION("Spreadtrum SPI Controller driver"); MODULE_AUTHOR("Lanqing Liu "); MODULE_LICENSE("GPL v2");