/* * Sonics Silicon Backplane PCI-Hostbus related functions. * * Copyright (C) 2005-2006 Michael Buesch * Copyright (C) 2005 Martin Langer * Copyright (C) 2005 Stefano Brivio * Copyright (C) 2005 Danny van Dyk * Copyright (C) 2005 Andreas Jaggi * * Derived from the Broadcom 4400 device driver. * Copyright (C) 2002 David S. Miller (davem@redhat.com) * Fixed by Pekka Pietikainen (pp@ee.oulu.fi) * Copyright (C) 2006 Broadcom Corporation. * * Licensed under the GNU/GPL. See COPYING for details. */ #include #include #include #include #include "ssb_private.h" /* Define the following to 1 to enable a printk on each coreswitch. */ #define SSB_VERBOSE_PCICORESWITCH_DEBUG 0 /* Lowlevel coreswitching */ int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx) { int err; int attempts = 0; u32 cur_core; while (1) { err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN, (coreidx * SSB_CORE_SIZE) + SSB_ENUM_BASE); if (err) goto error; err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN, &cur_core); if (err) goto error; cur_core = (cur_core - SSB_ENUM_BASE) / SSB_CORE_SIZE; if (cur_core == coreidx) break; if (attempts++ > SSB_BAR0_MAX_RETRIES) goto error; udelay(10); } return 0; error: ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx); return -ENODEV; } int ssb_pci_switch_core(struct ssb_bus *bus, struct ssb_device *dev) { int err; unsigned long flags; #if SSB_VERBOSE_PCICORESWITCH_DEBUG ssb_printk(KERN_INFO PFX "Switching to %s core, index %d\n", ssb_core_name(dev->id.coreid), dev->core_index); #endif spin_lock_irqsave(&bus->bar_lock, flags); err = ssb_pci_switch_coreidx(bus, dev->core_index); if (!err) bus->mapped_device = dev; spin_unlock_irqrestore(&bus->bar_lock, flags); return err; } /* Enable/disable the on board crystal oscillator and/or PLL. */ int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on) { int err; u32 in, out, outenable; u16 pci_status; if (bus->bustype != SSB_BUSTYPE_PCI) return 0; err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in); if (err) goto err_pci; err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out); if (err) goto err_pci; err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable); if (err) goto err_pci; outenable |= what; if (turn_on) { /* Avoid glitching the clock if GPRS is already using it. * We can't actually read the state of the PLLPD so we infer it * by the value of XTAL_PU which *is* readable via gpioin. */ if (!(in & SSB_GPIO_XTAL)) { if (what & SSB_GPIO_XTAL) { /* Turn the crystal on */ out |= SSB_GPIO_XTAL; if (what & SSB_GPIO_PLL) out |= SSB_GPIO_PLL; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out); if (err) goto err_pci; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable); if (err) goto err_pci; msleep(1); } if (what & SSB_GPIO_PLL) { /* Turn the PLL on */ out &= ~SSB_GPIO_PLL; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out); if (err) goto err_pci; msleep(5); } } err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status); if (err) goto err_pci; pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT; err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status); if (err) goto err_pci; } else { if (what & SSB_GPIO_XTAL) { /* Turn the crystal off */ out &= ~SSB_GPIO_XTAL; } if (what & SSB_GPIO_PLL) { /* Turn the PLL off */ out |= SSB_GPIO_PLL; } err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out); if (err) goto err_pci; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable); if (err) goto err_pci; } out: return err; err_pci: printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n"); err = -EBUSY; goto out; } /* Get the word-offset for a SSB_SPROM_XXX define. */ #define SPOFF(offset) (((offset) - SSB_SPROM_BASE) / sizeof(u16)) /* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */ #define SPEX(_outvar, _offset, _mask, _shift) \ out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift)) static inline u8 ssb_crc8(u8 crc, u8 data) { /* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */ static const u8 t[] = { 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B, 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21, 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF, 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5, 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14, 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E, 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80, 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA, 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95, 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF, 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01, 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B, 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA, 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0, 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E, 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34, 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0, 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A, 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54, 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E, 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF, 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5, 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B, 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61, 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E, 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74, 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA, 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0, 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41, 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B, 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5, 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F, }; return t[crc ^ data]; } static u8 ssb_sprom_crc(const u16 *sprom) { int word; u8 crc = 0xFF; for (word = 0; word < SSB_SPROMSIZE_WORDS - 1; word++) { crc = ssb_crc8(crc, sprom[word] & 0x00FF); crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8); } crc = ssb_crc8(crc, sprom[SPOFF(SSB_SPROM_REVISION)] & 0x00FF); crc ^= 0xFF; return crc; } static int sprom_check_crc(const u16 *sprom) { u8 crc; u8 expected_crc; u16 tmp; crc = ssb_sprom_crc(sprom); tmp = sprom[SPOFF(SSB_SPROM_REVISION)] & SSB_SPROM_REVISION_CRC; expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT; if (crc != expected_crc) return -EPROTO; return 0; } static void sprom_do_read(struct ssb_bus *bus, u16 *sprom) { int i; for (i = 0; i < SSB_SPROMSIZE_WORDS; i++) sprom[i] = readw(bus->mmio + SSB_SPROM_BASE + (i * 2)); } static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom) { struct pci_dev *pdev = bus->host_pci; int i, err; u32 spromctl; ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n"); err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl); if (err) goto err_ctlreg; spromctl |= SSB_SPROMCTL_WE; err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl); if (err) goto err_ctlreg; ssb_printk(KERN_NOTICE PFX "[ 0%%"); msleep(500); for (i = 0; i < SSB_SPROMSIZE_WORDS; i++) { if (i == SSB_SPROMSIZE_WORDS / 4) ssb_printk("25%%"); else if (i == SSB_SPROMSIZE_WORDS / 2) ssb_printk("50%%"); else if (i == (SSB_SPROMSIZE_WORDS / 4) * 3) ssb_printk("75%%"); else if (i % 2) ssb_printk("."); writew(sprom[i], bus->mmio + SSB_SPROM_BASE + (i * 2)); mmiowb(); msleep(20); } err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl); if (err) goto err_ctlreg; spromctl &= ~SSB_SPROMCTL_WE; err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl); if (err) goto err_ctlreg; msleep(500); ssb_printk("100%% ]\n"); ssb_printk(KERN_NOTICE PFX "SPROM written.\n"); return 0; err_ctlreg: ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n"); return err; } static void sprom_extract_r1(struct ssb_sprom_r1 *out, const u16 *in) { int i; u16 v; SPEX(pci_spid, SSB_SPROM1_SPID, 0xFFFF, 0); SPEX(pci_svid, SSB_SPROM1_SVID, 0xFFFF, 0); SPEX(pci_pid, SSB_SPROM1_PID, 0xFFFF, 0); for (i = 0; i < 3; i++) { v = in[SPOFF(SSB_SPROM1_IL0MAC) + i]; *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v); } for (i = 0; i < 3; i++) { v = in[SPOFF(SSB_SPROM1_ET0MAC) + i]; *(((__be16 *)out->et0mac) + i) = cpu_to_be16(v); } for (i = 0; i < 3; i++) { v = in[SPOFF(SSB_SPROM1_ET1MAC) + i]; *(((__be16 *)out->et1mac) + i) = cpu_to_be16(v); } SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0); SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A, SSB_SPROM1_ETHPHY_ET1A_SHIFT); SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14); SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15); SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0); SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE, SSB_SPROM1_BINF_CCODE_SHIFT); SPEX(antenna_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA, SSB_SPROM1_BINF_ANTA_SHIFT); SPEX(antenna_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG, SSB_SPROM1_BINF_ANTBG_SHIFT); SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0); SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0); SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0); SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0); SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0); SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0); SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0); SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1, SSB_SPROM1_GPIOA_P1_SHIFT); SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0); SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3, SSB_SPROM1_GPIOB_P3_SHIFT); SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A, SSB_SPROM1_MAXPWR_A_SHIFT); SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0); SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A, SSB_SPROM1_ITSSI_A_SHIFT); SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0); SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0); SPEX(antenna_gain_a, SSB_SPROM1_AGAIN, SSB_SPROM1_AGAIN_A, 0); SPEX(antenna_gain_bg, SSB_SPROM1_AGAIN, SSB_SPROM1_AGAIN_BG, SSB_SPROM1_AGAIN_BG_SHIFT); for (i = 0; i < 4; i++) { v = in[SPOFF(SSB_SPROM1_OEM) + i]; *(((__le16 *)out->oem) + i) = cpu_to_le16(v); } } static void sprom_extract_r2(struct ssb_sprom_r2 *out, const u16 *in) { int i; u16 v; SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0); SPEX(maxpwr_a_hi, SSB_SPROM2_MAXP_A, SSB_SPROM2_MAXP_A_HI, 0); SPEX(maxpwr_a_lo, SSB_SPROM2_MAXP_A, SSB_SPROM2_MAXP_A_LO, SSB_SPROM2_MAXP_A_LO_SHIFT); SPEX(pa1lob0, SSB_SPROM2_PA1LOB0, 0xFFFF, 0); SPEX(pa1lob1, SSB_SPROM2_PA1LOB1, 0xFFFF, 0); SPEX(pa1lob2, SSB_SPROM2_PA1LOB2, 0xFFFF, 0); SPEX(pa1hib0, SSB_SPROM2_PA1HIB0, 0xFFFF, 0); SPEX(pa1hib1, SSB_SPROM2_PA1HIB1, 0xFFFF, 0); SPEX(pa1hib2, SSB_SPROM2_PA1HIB2, 0xFFFF, 0); SPEX(ofdm_pwr_off, SSB_SPROM2_OPO, SSB_SPROM2_OPO_VALUE, 0); for (i = 0; i < 4; i++) { v = in[SPOFF(SSB_SPROM2_CCODE) + i]; *(((__le16 *)out->country_str) + i) = cpu_to_le16(v); } } static void sprom_extract_r3(struct ssb_sprom_r3 *out, const u16 *in) { out->ofdmapo = (in[SPOFF(SSB_SPROM3_OFDMAPO) + 0] & 0xFF00) >> 8; out->ofdmapo |= (in[SPOFF(SSB_SPROM3_OFDMAPO) + 0] & 0x00FF) << 8; out->ofdmapo <<= 16; out->ofdmapo |= (in[SPOFF(SSB_SPROM3_OFDMAPO) + 1] & 0xFF00) >> 8; out->ofdmapo |= (in[SPOFF(SSB_SPROM3_OFDMAPO) + 1] & 0x00FF) << 8; out->ofdmalpo = (in[SPOFF(SSB_SPROM3_OFDMALPO) + 0] & 0xFF00) >> 8; out->ofdmalpo |= (in[SPOFF(SSB_SPROM3_OFDMALPO) + 0] & 0x00FF) << 8; out->ofdmalpo <<= 16; out->ofdmalpo |= (in[SPOFF(SSB_SPROM3_OFDMALPO) + 1] & 0xFF00) >> 8; out->ofdmalpo |= (in[SPOFF(SSB_SPROM3_OFDMALPO) + 1] & 0x00FF) << 8; out->ofdmahpo = (in[SPOFF(SSB_SPROM3_OFDMAHPO) + 0] & 0xFF00) >> 8; out->ofdmahpo |= (in[SPOFF(SSB_SPROM3_OFDMAHPO) + 0] & 0x00FF) << 8; out->ofdmahpo <<= 16; out->ofdmahpo |= (in[SPOFF(SSB_SPROM3_OFDMAHPO) + 1] & 0xFF00) >> 8; out->ofdmahpo |= (in[SPOFF(SSB_SPROM3_OFDMAHPO) + 1] & 0x00FF) << 8; SPEX(gpioldc_on_cnt, SSB_SPROM3_GPIOLDC, SSB_SPROM3_GPIOLDC_ON, SSB_SPROM3_GPIOLDC_ON_SHIFT); SPEX(gpioldc_off_cnt, SSB_SPROM3_GPIOLDC, SSB_SPROM3_GPIOLDC_OFF, SSB_SPROM3_GPIOLDC_OFF_SHIFT); SPEX(cckpo_1M, SSB_SPROM3_CCKPO, SSB_SPROM3_CCKPO_1M, 0); SPEX(cckpo_2M, SSB_SPROM3_CCKPO, SSB_SPROM3_CCKPO_2M, SSB_SPROM3_CCKPO_2M_SHIFT); SPEX(cckpo_55M, SSB_SPROM3_CCKPO, SSB_SPROM3_CCKPO_55M, SSB_SPROM3_CCKPO_55M_SHIFT); SPEX(cckpo_11M, SSB_SPROM3_CCKPO, SSB_SPROM3_CCKPO_11M, SSB_SPROM3_CCKPO_11M_SHIFT); out->ofdmgpo = (in[SPOFF(SSB_SPROM3_OFDMGPO) + 0] & 0xFF00) >> 8; out->ofdmgpo |= (in[SPOFF(SSB_SPROM3_OFDMGPO) + 0] & 0x00FF) << 8; out->ofdmgpo <<= 16; out->ofdmgpo |= (in[SPOFF(SSB_SPROM3_OFDMGPO) + 1] & 0xFF00) >> 8; out->ofdmgpo |= (in[SPOFF(SSB_SPROM3_OFDMGPO) + 1] & 0x00FF) << 8; } static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out, const u16 *in) { memset(out, 0, sizeof(*out)); SPEX(revision, SSB_SPROM_REVISION, SSB_SPROM_REVISION_REV, 0); SPEX(crc, SSB_SPROM_REVISION, SSB_SPROM_REVISION_CRC, SSB_SPROM_REVISION_CRC_SHIFT); if ((bus->chip_id & 0xFF00) == 0x4400) { /* Workaround: The BCM44XX chip has a stupid revision * number stored in the SPROM. * Always extract r1. */ sprom_extract_r1(&out->r1, in); } else { if (out->revision == 0) goto unsupported; if (out->revision >= 1 && out->revision <= 3) sprom_extract_r1(&out->r1, in); if (out->revision >= 2 && out->revision <= 3) sprom_extract_r2(&out->r2, in); if (out->revision == 3) sprom_extract_r3(&out->r3, in); if (out->revision >= 4) goto unsupported; } return 0; unsupported: ssb_printk(KERN_WARNING PFX "Unsupported SPROM revision %d " "detected. Will extract v1\n", out->revision); sprom_extract_r1(&out->r1, in); return 0; } static int ssb_pci_sprom_get(struct ssb_bus *bus, struct ssb_sprom *sprom) { int err = -ENOMEM; u16 *buf; buf = kcalloc(SSB_SPROMSIZE_WORDS, sizeof(u16), GFP_KERNEL); if (!buf) goto out; sprom_do_read(bus, buf); err = sprom_check_crc(buf); if (err) { ssb_printk(KERN_WARNING PFX "WARNING: Invalid SPROM CRC (corrupt SPROM)\n"); } err = sprom_extract(bus, sprom, buf); kfree(buf); out: return err; } static void ssb_pci_get_boardinfo(struct ssb_bus *bus, struct ssb_boardinfo *bi) { pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_VENDOR_ID, &bi->vendor); pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_ID, &bi->type); pci_read_config_word(bus->host_pci, PCI_REVISION_ID, &bi->rev); } int ssb_pci_get_invariants(struct ssb_bus *bus, struct ssb_init_invariants *iv) { int err; err = ssb_pci_sprom_get(bus, &iv->sprom); if (err) goto out; ssb_pci_get_boardinfo(bus, &iv->boardinfo); out: return err; } #ifdef CONFIG_SSB_DEBUG static int ssb_pci_assert_buspower(struct ssb_bus *bus) { if (likely(bus->powered_up)) return 0; printk(KERN_ERR PFX "FATAL ERROR: Bus powered down " "while accessing PCI MMIO space\n"); if (bus->power_warn_count <= 10) { bus->power_warn_count++; dump_stack(); } return -ENODEV; } #else /* DEBUG */ static inline int ssb_pci_assert_buspower(struct ssb_bus *bus) { return 0; } #endif /* DEBUG */ static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return 0xFFFF; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return 0xFFFF; } return ioread16(bus->mmio + offset); } static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return 0xFFFFFFFF; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return 0xFFFFFFFF; } return ioread32(bus->mmio + offset); } static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } iowrite16(value, bus->mmio + offset); } static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } iowrite32(value, bus->mmio + offset); } /* Not "static", as it's used in main.c */ const struct ssb_bus_ops ssb_pci_ops = { .read16 = ssb_pci_read16, .read32 = ssb_pci_read32, .write16 = ssb_pci_write16, .write32 = ssb_pci_write32, }; static int sprom2hex(const u16 *sprom, char *buf, size_t buf_len) { int i, pos = 0; for (i = 0; i < SSB_SPROMSIZE_WORDS; i++) { pos += snprintf(buf + pos, buf_len - pos - 1, "%04X", swab16(sprom[i]) & 0xFFFF); } pos += snprintf(buf + pos, buf_len - pos - 1, "\n"); return pos + 1; } static int hex2sprom(u16 *sprom, const char *dump, size_t len) { char tmp[5] = { 0 }; int cnt = 0; unsigned long parsed; if (len < SSB_SPROMSIZE_BYTES * 2) return -EINVAL; while (cnt < SSB_SPROMSIZE_WORDS) { memcpy(tmp, dump, 4); dump += 4; parsed = simple_strtoul(tmp, NULL, 16); sprom[cnt++] = swab16((u16)parsed); } return 0; } static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev, struct device_attribute *attr, char *buf) { struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev); struct ssb_bus *bus; u16 *sprom; int err = -ENODEV; ssize_t count = 0; bus = ssb_pci_dev_to_bus(pdev); if (!bus) goto out; err = -ENOMEM; sprom = kcalloc(SSB_SPROMSIZE_WORDS, sizeof(u16), GFP_KERNEL); if (!sprom) goto out; /* Use interruptible locking, as the SPROM write might * be holding the lock for several seconds. So allow userspace * to cancel operation. */ err = -ERESTARTSYS; if (mutex_lock_interruptible(&bus->pci_sprom_mutex)) goto out_kfree; sprom_do_read(bus, sprom); mutex_unlock(&bus->pci_sprom_mutex); count = sprom2hex(sprom, buf, PAGE_SIZE); err = 0; out_kfree: kfree(sprom); out: return err ? err : count; } static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev, struct device_attribute *attr, const char *buf, size_t count) { struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev); struct ssb_bus *bus; u16 *sprom; int res = 0, err = -ENODEV; bus = ssb_pci_dev_to_bus(pdev); if (!bus) goto out; err = -ENOMEM; sprom = kcalloc(SSB_SPROMSIZE_WORDS, sizeof(u16), GFP_KERNEL); if (!sprom) goto out; err = hex2sprom(sprom, buf, count); if (err) { err = -EINVAL; goto out_kfree; } err = sprom_check_crc(sprom); if (err) { err = -EINVAL; goto out_kfree; } /* Use interruptible locking, as the SPROM write might * be holding the lock for several seconds. So allow userspace * to cancel operation. */ err = -ERESTARTSYS; if (mutex_lock_interruptible(&bus->pci_sprom_mutex)) goto out_kfree; err = ssb_devices_freeze(bus); if (err == -EOPNOTSUPP) { ssb_printk(KERN_ERR PFX "SPROM write: Could not freeze devices. " "No suspend support. Is CONFIG_PM enabled?\n"); goto out_unlock; } if (err) { ssb_printk(KERN_ERR PFX "SPROM write: Could not freeze all devices\n"); goto out_unlock; } res = sprom_do_write(bus, sprom); err = ssb_devices_thaw(bus); if (err) ssb_printk(KERN_ERR PFX "SPROM write: Could not thaw all devices\n"); out_unlock: mutex_unlock(&bus->pci_sprom_mutex); out_kfree: kfree(sprom); out: if (res) return res; return err ? err : count; } static DEVICE_ATTR(ssb_sprom, 0600, ssb_pci_attr_sprom_show, ssb_pci_attr_sprom_store); void ssb_pci_exit(struct ssb_bus *bus) { struct pci_dev *pdev; if (bus->bustype != SSB_BUSTYPE_PCI) return; pdev = bus->host_pci; device_remove_file(&pdev->dev, &dev_attr_ssb_sprom); } int ssb_pci_init(struct ssb_bus *bus) { struct pci_dev *pdev; int err; if (bus->bustype != SSB_BUSTYPE_PCI) return 0; pdev = bus->host_pci; mutex_init(&bus->pci_sprom_mutex); err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom); if (err) goto out; out: return err; }