/* * Copyright (c) 2011 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include "pub.h" #include "aiutils.h" #include "pmu.h" /* * external LPO crystal frequency */ #define EXT_ILP_HZ 32768 /* * Duration for ILP clock frequency measurment in milliseconds * * remark: 1000 must be an integer multiple of this duration */ #define ILP_CALC_DUR 10 /* Fields in pmucontrol */ #define PCTL_ILP_DIV_MASK 0xffff0000 #define PCTL_ILP_DIV_SHIFT 16 #define PCTL_PLL_PLLCTL_UPD 0x00000400 /* rev 2 */ #define PCTL_NOILP_ON_WAIT 0x00000200 /* rev 1 */ #define PCTL_HT_REQ_EN 0x00000100 #define PCTL_ALP_REQ_EN 0x00000080 #define PCTL_XTALFREQ_MASK 0x0000007c #define PCTL_XTALFREQ_SHIFT 2 #define PCTL_ILP_DIV_EN 0x00000002 #define PCTL_LPO_SEL 0x00000001 /* ILP clock */ #define ILP_CLOCK 32000 /* ALP clock on pre-PMU chips */ #define ALP_CLOCK 20000000 /* pmustatus */ #define PST_EXTLPOAVAIL 0x0100 #define PST_WDRESET 0x0080 #define PST_INTPEND 0x0040 #define PST_SBCLKST 0x0030 #define PST_SBCLKST_ILP 0x0010 #define PST_SBCLKST_ALP 0x0020 #define PST_SBCLKST_HT 0x0030 #define PST_ALPAVAIL 0x0008 #define PST_HTAVAIL 0x0004 #define PST_RESINIT 0x0003 /* PMU resource bit position */ #define PMURES_BIT(bit) (1 << (bit)) /* PMU corerev and chip specific PLL controls. * PMU_PLL_XX where is PMU corerev and is an arbitrary number * to differentiate different PLLs controlled by the same PMU rev. */ /* pllcontrol registers */ /* ndiv_pwrdn, pwrdn_ch, refcomp_pwrdn, dly_ch, p1div, p2div, _bypass_sdmod */ #define PMU1_PLL0_PLLCTL0 0 #define PMU1_PLL0_PLLCTL1 1 #define PMU1_PLL0_PLLCTL2 2 #define PMU1_PLL0_PLLCTL3 3 #define PMU1_PLL0_PLLCTL4 4 #define PMU1_PLL0_PLLCTL5 5 /* pmu XtalFreqRatio */ #define PMU_XTALFREQ_REG_ILPCTR_MASK 0x00001FFF #define PMU_XTALFREQ_REG_MEASURE_MASK 0x80000000 #define PMU_XTALFREQ_REG_MEASURE_SHIFT 31 /* 4313 resources */ #define RES4313_BB_PU_RSRC 0 #define RES4313_ILP_REQ_RSRC 1 #define RES4313_XTAL_PU_RSRC 2 #define RES4313_ALP_AVAIL_RSRC 3 #define RES4313_RADIO_PU_RSRC 4 #define RES4313_BG_PU_RSRC 5 #define RES4313_VREG1P4_PU_RSRC 6 #define RES4313_AFE_PWRSW_RSRC 7 #define RES4313_RX_PWRSW_RSRC 8 #define RES4313_TX_PWRSW_RSRC 9 #define RES4313_BB_PWRSW_RSRC 10 #define RES4313_SYNTH_PWRSW_RSRC 11 #define RES4313_MISC_PWRSW_RSRC 12 #define RES4313_BB_PLL_PWRSW_RSRC 13 #define RES4313_HT_AVAIL_RSRC 14 #define RES4313_MACPHY_CLK_AVAIL_RSRC 15 /* Determine min/max rsrc masks. Value 0 leaves hardware at default. */ static void si_pmu_res_masks(struct si_pub *sih, u32 * pmin, u32 * pmax) { u32 min_mask = 0, max_mask = 0; uint rsrcs; /* # resources */ rsrcs = (sih->pmucaps & PCAP_RC_MASK) >> PCAP_RC_SHIFT; /* determine min/max rsrc masks */ switch (sih->chip) { case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: /* ??? */ break; case BCM4313_CHIP_ID: min_mask = PMURES_BIT(RES4313_BB_PU_RSRC) | PMURES_BIT(RES4313_XTAL_PU_RSRC) | PMURES_BIT(RES4313_ALP_AVAIL_RSRC) | PMURES_BIT(RES4313_BB_PLL_PWRSW_RSRC); max_mask = 0xffff; break; default: break; } *pmin = min_mask; *pmax = max_mask; } static void si_pmu_spuravoid_pllupdate(struct si_pub *sih, chipcregs_t *cc, u8 spuravoid) { u32 tmp = 0; switch (sih->chip) { case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: if (spuravoid == 1) { W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0); W_REG(&cc->pllcontrol_data, 0x11500010); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1); W_REG(&cc->pllcontrol_data, 0x000C0C06); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2); W_REG(&cc->pllcontrol_data, 0x0F600a08); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3); W_REG(&cc->pllcontrol_data, 0x00000000); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4); W_REG(&cc->pllcontrol_data, 0x2001E920); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5); W_REG(&cc->pllcontrol_data, 0x88888815); } else { W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0); W_REG(&cc->pllcontrol_data, 0x11100010); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1); W_REG(&cc->pllcontrol_data, 0x000c0c06); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2); W_REG(&cc->pllcontrol_data, 0x03000a08); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3); W_REG(&cc->pllcontrol_data, 0x00000000); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4); W_REG(&cc->pllcontrol_data, 0x200005c0); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5); W_REG(&cc->pllcontrol_data, 0x88888815); } tmp = 1 << 10; break; W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0); W_REG(&cc->pllcontrol_data, 0x11100008); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1); W_REG(&cc->pllcontrol_data, 0x0c000c06); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2); W_REG(&cc->pllcontrol_data, 0x03000a08); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3); W_REG(&cc->pllcontrol_data, 0x00000000); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4); W_REG(&cc->pllcontrol_data, 0x200005c0); W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5); W_REG(&cc->pllcontrol_data, 0x88888855); tmp = 1 << 10; break; default: /* bail out */ return; } tmp |= R_REG(&cc->pmucontrol); W_REG(&cc->pmucontrol, tmp); } u32 si_pmu_ilp_clock(struct si_pub *sih) { static u32 ilpcycles_per_sec; if (!PMUCTL_ENAB(sih)) return ILP_CLOCK; if (ilpcycles_per_sec == 0) { u32 start, end, delta; u32 origidx = ai_coreidx(sih); chipcregs_t *cc = ai_setcoreidx(sih, SI_CC_IDX); start = R_REG(&cc->pmutimer); mdelay(ILP_CALC_DUR); end = R_REG(&cc->pmutimer); delta = end - start; ilpcycles_per_sec = delta * (1000 / ILP_CALC_DUR); ai_setcoreidx(sih, origidx); } return ilpcycles_per_sec; } u16 si_pmu_fast_pwrup_delay(struct si_pub *sih) { uint delay = PMU_MAX_TRANSITION_DLY; switch (sih->chip) { case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: case BCM4313_CHIP_ID: delay = 3700; break; default: break; } return (u16) delay; } void si_pmu_sprom_enable(struct si_pub *sih, bool enable) { chipcregs_t *cc; uint origidx; /* Remember original core before switch to chipc */ origidx = ai_coreidx(sih); cc = ai_setcoreidx(sih, SI_CC_IDX); /* Return to original core */ ai_setcoreidx(sih, origidx); } /* Read/write a chipcontrol reg */ u32 si_pmu_chipcontrol(struct si_pub *sih, uint reg, u32 mask, u32 val) { ai_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, chipcontrol_addr), ~0, reg); return ai_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, chipcontrol_data), mask, val); } /* Read/write a regcontrol reg */ u32 si_pmu_regcontrol(struct si_pub *sih, uint reg, u32 mask, u32 val) { ai_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_addr), ~0, reg); return ai_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_data), mask, val); } /* Read/write a pllcontrol reg */ u32 si_pmu_pllcontrol(struct si_pub *sih, uint reg, u32 mask, u32 val) { ai_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pllcontrol_addr), ~0, reg); return ai_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pllcontrol_data), mask, val); } /* PMU PLL update */ void si_pmu_pllupd(struct si_pub *sih) { ai_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pmucontrol), PCTL_PLL_PLLCTL_UPD, PCTL_PLL_PLLCTL_UPD); } /* query alp/xtal clock frequency */ u32 si_pmu_alp_clock(struct si_pub *sih) { u32 clock = ALP_CLOCK; /* bail out with default */ if (!PMUCTL_ENAB(sih)) return clock; switch (sih->chip) { case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: case BCM4313_CHIP_ID: /* always 20Mhz */ clock = 20000 * 1000; break; default: break; } return clock; } void si_pmu_spuravoid(struct si_pub *sih, u8 spuravoid) { chipcregs_t *cc; uint origidx, intr_val; /* Remember original core before switch to chipc */ cc = (chipcregs_t *) ai_switch_core(sih, CC_CORE_ID, &origidx, &intr_val); /* update the pll changes */ si_pmu_spuravoid_pllupdate(sih, cc, spuravoid); /* Return to original core */ ai_restore_core(sih, origidx, intr_val); } /* initialize PMU */ void si_pmu_init(struct si_pub *sih) { chipcregs_t *cc; uint origidx; /* Remember original core before switch to chipc */ origidx = ai_coreidx(sih); cc = ai_setcoreidx(sih, SI_CC_IDX); if (sih->pmurev == 1) AND_REG(&cc->pmucontrol, ~PCTL_NOILP_ON_WAIT); else if (sih->pmurev >= 2) OR_REG(&cc->pmucontrol, PCTL_NOILP_ON_WAIT); /* Return to original core */ ai_setcoreidx(sih, origidx); } /* initialize PMU chip controls and other chip level stuff */ void si_pmu_chip_init(struct si_pub *sih) { uint origidx; /* Gate off SPROM clock and chip select signals */ si_pmu_sprom_enable(sih, false); /* Remember original core */ origidx = ai_coreidx(sih); /* Return to original core */ ai_setcoreidx(sih, origidx); } /* initialize PMU switch/regulators */ void si_pmu_swreg_init(struct si_pub *sih) { } /* initialize PLL */ void si_pmu_pll_init(struct si_pub *sih, uint xtalfreq) { chipcregs_t *cc; uint origidx; /* Remember original core before switch to chipc */ origidx = ai_coreidx(sih); cc = ai_setcoreidx(sih, SI_CC_IDX); switch (sih->chip) { case BCM4313_CHIP_ID: case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: /* ??? */ break; default: break; } /* Return to original core */ ai_setcoreidx(sih, origidx); } /* initialize PMU resources */ void si_pmu_res_init(struct si_pub *sih) { chipcregs_t *cc; uint origidx; u32 min_mask = 0, max_mask = 0; /* Remember original core before switch to chipc */ origidx = ai_coreidx(sih); cc = ai_setcoreidx(sih, SI_CC_IDX); /* Determine min/max rsrc masks */ si_pmu_res_masks(sih, &min_mask, &max_mask); /* It is required to program max_mask first and then min_mask */ /* Program max resource mask */ if (max_mask) W_REG(&cc->max_res_mask, max_mask); /* Program min resource mask */ if (min_mask) W_REG(&cc->min_res_mask, min_mask); /* Add some delay; allow resources to come up and settle. */ mdelay(2); /* Return to original core */ ai_setcoreidx(sih, origidx); } u32 si_pmu_measure_alpclk(struct si_pub *sih) { chipcregs_t *cc; uint origidx; u32 alp_khz; if (sih->pmurev < 10) return 0; /* Remember original core before switch to chipc */ origidx = ai_coreidx(sih); cc = ai_setcoreidx(sih, SI_CC_IDX); if (R_REG(&cc->pmustatus) & PST_EXTLPOAVAIL) { u32 ilp_ctr, alp_hz; /* * Enable the reg to measure the freq, * in case it was disabled before */ W_REG(&cc->pmu_xtalfreq, 1U << PMU_XTALFREQ_REG_MEASURE_SHIFT); /* Delay for well over 4 ILP clocks */ udelay(1000); /* Read the latched number of ALP ticks per 4 ILP ticks */ ilp_ctr = R_REG(&cc->pmu_xtalfreq) & PMU_XTALFREQ_REG_ILPCTR_MASK; /* * Turn off the PMU_XTALFREQ_REG_MEASURE_SHIFT * bit to save power */ W_REG(&cc->pmu_xtalfreq, 0); /* Calculate ALP frequency */ alp_hz = (ilp_ctr * EXT_ILP_HZ) / 4; /* * Round to nearest 100KHz, and at * the same time convert to KHz */ alp_khz = (alp_hz + 50000) / 100000 * 100; } else alp_khz = 0; /* Return to original core */ ai_setcoreidx(sih, origidx); return alp_khz; }