/* * Copyright (C) 2012-2017 ARM Limited or its affiliates. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include "ssi_config.h" #include "ssi_driver.h" #include "cc_lli_defs.h" #include "ssi_buffer_mgr.h" #include "ssi_cipher.h" #include "ssi_request_mgr.h" #include "ssi_sysfs.h" #define MAX_ABLKCIPHER_SEQ_LEN 6 #define template_ablkcipher template_u.ablkcipher #define SSI_MIN_AES_XTS_SIZE 0x10 #define SSI_MAX_AES_XTS_SIZE 0x2000 struct ssi_blkcipher_handle { struct list_head blkcipher_alg_list; }; struct cc_user_key_info { u8 *key; dma_addr_t key_dma_addr; }; struct cc_hw_key_info { enum cc_hw_crypto_key key1_slot; enum cc_hw_crypto_key key2_slot; }; struct ssi_ablkcipher_ctx { struct ssi_drvdata *drvdata; int keylen; int key_round_number; int cipher_mode; int flow_mode; unsigned int flags; struct blkcipher_req_ctx *sync_ctx; struct cc_user_key_info user; struct cc_hw_key_info hw; struct crypto_shash *shash_tfm; }; static void ssi_ablkcipher_complete(struct device *dev, void *ssi_req, void __iomem *cc_base); static int validate_keys_sizes(struct ssi_ablkcipher_ctx *ctx_p, u32 size) { switch (ctx_p->flow_mode) { case S_DIN_to_AES: switch (size) { case CC_AES_128_BIT_KEY_SIZE: case CC_AES_192_BIT_KEY_SIZE: if (likely((ctx_p->cipher_mode != DRV_CIPHER_XTS) && (ctx_p->cipher_mode != DRV_CIPHER_ESSIV) && (ctx_p->cipher_mode != DRV_CIPHER_BITLOCKER))) return 0; break; case CC_AES_256_BIT_KEY_SIZE: return 0; case (CC_AES_192_BIT_KEY_SIZE * 2): case (CC_AES_256_BIT_KEY_SIZE * 2): if (likely((ctx_p->cipher_mode == DRV_CIPHER_XTS) || (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) || (ctx_p->cipher_mode == DRV_CIPHER_BITLOCKER))) return 0; break; default: break; } case S_DIN_to_DES: if (likely(size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)) return 0; break; #if SSI_CC_HAS_MULTI2 case S_DIN_to_MULTI2: if (likely(size == CC_MULTI2_SYSTEM_N_DATA_KEY_SIZE)) return 0; break; #endif default: break; } return -EINVAL; } static int validate_data_size(struct ssi_ablkcipher_ctx *ctx_p, unsigned int size) { switch (ctx_p->flow_mode) { case S_DIN_to_AES: switch (ctx_p->cipher_mode) { case DRV_CIPHER_XTS: if ((size >= SSI_MIN_AES_XTS_SIZE) && (size <= SSI_MAX_AES_XTS_SIZE) && IS_ALIGNED(size, AES_BLOCK_SIZE)) return 0; break; case DRV_CIPHER_CBC_CTS: if (likely(size >= AES_BLOCK_SIZE)) return 0; break; case DRV_CIPHER_OFB: case DRV_CIPHER_CTR: return 0; case DRV_CIPHER_ECB: case DRV_CIPHER_CBC: case DRV_CIPHER_ESSIV: case DRV_CIPHER_BITLOCKER: if (likely(IS_ALIGNED(size, AES_BLOCK_SIZE))) return 0; break; default: break; } break; case S_DIN_to_DES: if (likely(IS_ALIGNED(size, DES_BLOCK_SIZE))) return 0; break; #if SSI_CC_HAS_MULTI2 case S_DIN_to_MULTI2: switch (ctx_p->cipher_mode) { case DRV_MULTI2_CBC: if (likely(IS_ALIGNED(size, CC_MULTI2_BLOCK_SIZE))) return 0; break; case DRV_MULTI2_OFB: return 0; default: break; } break; #endif /*SSI_CC_HAS_MULTI2*/ default: break; } return -EINVAL; } static unsigned int get_max_keysize(struct crypto_tfm *tfm) { struct ssi_crypto_alg *ssi_alg = container_of(tfm->__crt_alg, struct ssi_crypto_alg, crypto_alg); if ((ssi_alg->crypto_alg.cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_ABLKCIPHER) return ssi_alg->crypto_alg.cra_ablkcipher.max_keysize; if ((ssi_alg->crypto_alg.cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) return ssi_alg->crypto_alg.cra_blkcipher.max_keysize; return 0; } static int ssi_blkcipher_init(struct crypto_tfm *tfm) { struct ssi_ablkcipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct crypto_alg *alg = tfm->__crt_alg; struct ssi_crypto_alg *ssi_alg = container_of(alg, struct ssi_crypto_alg, crypto_alg); struct device *dev = drvdata_to_dev(ssi_alg->drvdata); int rc = 0; unsigned int max_key_buf_size = get_max_keysize(tfm); dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p, crypto_tfm_alg_name(tfm)); ctx_p->cipher_mode = ssi_alg->cipher_mode; ctx_p->flow_mode = ssi_alg->flow_mode; ctx_p->drvdata = ssi_alg->drvdata; /* Allocate key buffer, cache line aligned */ ctx_p->user.key = kmalloc(max_key_buf_size, GFP_KERNEL | GFP_DMA); if (!ctx_p->user.key) return -ENOMEM; dev_dbg(dev, "Allocated key buffer in context. key=@%p\n", ctx_p->user.key); /* Map key buffer */ ctx_p->user.key_dma_addr = dma_map_single(dev, (void *)ctx_p->user.key, max_key_buf_size, DMA_TO_DEVICE); if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) { dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n", max_key_buf_size, ctx_p->user.key); return -ENOMEM; } dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n", max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr); if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { /* Alloc hash tfm for essiv */ ctx_p->shash_tfm = crypto_alloc_shash("sha256-generic", 0, 0); if (IS_ERR(ctx_p->shash_tfm)) { dev_err(dev, "Error allocating hash tfm for ESSIV.\n"); return PTR_ERR(ctx_p->shash_tfm); } } return rc; } static void ssi_blkcipher_exit(struct crypto_tfm *tfm) { struct ssi_ablkcipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); unsigned int max_key_buf_size = get_max_keysize(tfm); dev_dbg(dev, "Clearing context @%p for %s\n", crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm)); if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { /* Free hash tfm for essiv */ crypto_free_shash(ctx_p->shash_tfm); ctx_p->shash_tfm = NULL; } /* Unmap key buffer */ dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size, DMA_TO_DEVICE); dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n", &ctx_p->user.key_dma_addr); /* Free key buffer in context */ kfree(ctx_p->user.key); dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key); } struct tdes_keys { u8 key1[DES_KEY_SIZE]; u8 key2[DES_KEY_SIZE]; u8 key3[DES_KEY_SIZE]; }; static const u8 zero_buff[] = { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}; /* The function verifies that tdes keys are not weak.*/ static int ssi_verify_3des_keys(const u8 *key, unsigned int keylen) { struct tdes_keys *tdes_key = (struct tdes_keys *)key; /* verify key1 != key2 and key3 != key2*/ if (unlikely((memcmp((u8 *)tdes_key->key1, (u8 *)tdes_key->key2, sizeof(tdes_key->key1)) == 0) || (memcmp((u8 *)tdes_key->key3, (u8 *)tdes_key->key2, sizeof(tdes_key->key3)) == 0))) { return -ENOEXEC; } return 0; } static enum cc_hw_crypto_key hw_key_to_cc_hw_key(int slot_num) { switch (slot_num) { case 0: return KFDE0_KEY; case 1: return KFDE1_KEY; case 2: return KFDE2_KEY; case 3: return KFDE3_KEY; } return END_OF_KEYS; } static int ssi_blkcipher_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct ssi_ablkcipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); u32 tmp[DES_EXPKEY_WORDS]; unsigned int max_key_buf_size = get_max_keysize(tfm); dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n", ctx_p, crypto_tfm_alg_name(tfm), keylen); dump_byte_array("key", (u8 *)key, keylen); /* STAT_PHASE_0: Init and sanity checks */ #if SSI_CC_HAS_MULTI2 /*last byte of key buffer is round number and should not be a part of key size*/ if (ctx_p->flow_mode == S_DIN_to_MULTI2) keylen -= 1; #endif /*SSI_CC_HAS_MULTI2*/ if (unlikely(validate_keys_sizes(ctx_p, keylen) != 0)) { dev_err(dev, "Unsupported key size %d.\n", keylen); crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } if (ssi_is_hw_key(tfm)) { /* setting HW key slots */ struct arm_hw_key_info *hki = (struct arm_hw_key_info *)key; if (unlikely(ctx_p->flow_mode != S_DIN_to_AES)) { dev_err(dev, "HW key not supported for non-AES flows\n"); return -EINVAL; } ctx_p->hw.key1_slot = hw_key_to_cc_hw_key(hki->hw_key1); if (unlikely(ctx_p->hw.key1_slot == END_OF_KEYS)) { dev_err(dev, "Unsupported hw key1 number (%d)\n", hki->hw_key1); return -EINVAL; } if ((ctx_p->cipher_mode == DRV_CIPHER_XTS) || (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) || (ctx_p->cipher_mode == DRV_CIPHER_BITLOCKER)) { if (unlikely(hki->hw_key1 == hki->hw_key2)) { dev_err(dev, "Illegal hw key numbers (%d,%d)\n", hki->hw_key1, hki->hw_key2); return -EINVAL; } ctx_p->hw.key2_slot = hw_key_to_cc_hw_key(hki->hw_key2); if (unlikely(ctx_p->hw.key2_slot == END_OF_KEYS)) { dev_err(dev, "Unsupported hw key2 number (%d)\n", hki->hw_key2); return -EINVAL; } } ctx_p->keylen = keylen; dev_dbg(dev, "ssi_is_hw_key ret 0"); return 0; } // verify weak keys if (ctx_p->flow_mode == S_DIN_to_DES) { if (unlikely(!des_ekey(tmp, key)) && (crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_WEAK_KEY)) { tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; dev_dbg(dev, "weak DES key"); return -EINVAL; } } if ((ctx_p->cipher_mode == DRV_CIPHER_XTS) && xts_check_key(tfm, key, keylen) != 0) { dev_dbg(dev, "weak XTS key"); return -EINVAL; } if ((ctx_p->flow_mode == S_DIN_to_DES) && (keylen == DES3_EDE_KEY_SIZE) && ssi_verify_3des_keys(key, keylen) != 0) { dev_dbg(dev, "weak 3DES key"); return -EINVAL; } /* STAT_PHASE_1: Copy key to ctx */ dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr, max_key_buf_size, DMA_TO_DEVICE); if (ctx_p->flow_mode == S_DIN_to_MULTI2) { #if SSI_CC_HAS_MULTI2 memcpy(ctx_p->user.key, key, CC_MULTI2_SYSTEM_N_DATA_KEY_SIZE); ctx_p->key_round_number = key[CC_MULTI2_SYSTEM_N_DATA_KEY_SIZE]; if (ctx_p->key_round_number < CC_MULTI2_MIN_NUM_ROUNDS || ctx_p->key_round_number > CC_MULTI2_MAX_NUM_ROUNDS) { crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); dev_dbg(dev, "SSI_CC_HAS_MULTI2 einval"); return -EINVAL; #endif /*SSI_CC_HAS_MULTI2*/ } else { memcpy(ctx_p->user.key, key, keylen); if (keylen == 24) memset(ctx_p->user.key + 24, 0, CC_AES_KEY_SIZE_MAX - 24); if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { /* sha256 for key2 - use sw implementation */ int key_len = keylen >> 1; int err; SHASH_DESC_ON_STACK(desc, ctx_p->shash_tfm); desc->tfm = ctx_p->shash_tfm; err = crypto_shash_digest(desc, ctx_p->user.key, key_len, ctx_p->user.key + key_len); if (err) { dev_err(dev, "Failed to hash ESSIV key.\n"); return err; } } } dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr, max_key_buf_size, DMA_TO_DEVICE); ctx_p->keylen = keylen; dev_dbg(dev, "return safely"); return 0; } static inline void ssi_blkcipher_create_setup_desc( struct crypto_tfm *tfm, struct blkcipher_req_ctx *req_ctx, unsigned int ivsize, unsigned int nbytes, struct cc_hw_desc desc[], unsigned int *seq_size) { struct ssi_ablkcipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); int cipher_mode = ctx_p->cipher_mode; int flow_mode = ctx_p->flow_mode; int direction = req_ctx->gen_ctx.op_type; dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr; unsigned int key_len = ctx_p->keylen; dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr; unsigned int du_size = nbytes; struct ssi_crypto_alg *ssi_alg = container_of(tfm->__crt_alg, struct ssi_crypto_alg, crypto_alg); if ((ssi_alg->crypto_alg.cra_flags & CRYPTO_ALG_BULK_MASK) == CRYPTO_ALG_BULK_DU_512) du_size = 512; if ((ssi_alg->crypto_alg.cra_flags & CRYPTO_ALG_BULK_MASK) == CRYPTO_ALG_BULK_DU_4096) du_size = 4096; switch (cipher_mode) { case DRV_CIPHER_CBC: case DRV_CIPHER_CBC_CTS: case DRV_CIPHER_CTR: case DRV_CIPHER_OFB: /* Load cipher state */ hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize, NS_BIT); set_cipher_config0(&desc[*seq_size], direction); set_flow_mode(&desc[*seq_size], flow_mode); set_cipher_mode(&desc[*seq_size], cipher_mode); if ((cipher_mode == DRV_CIPHER_CTR) || (cipher_mode == DRV_CIPHER_OFB)) { set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1); } else { set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0); } (*seq_size)++; /*FALLTHROUGH*/ case DRV_CIPHER_ECB: /* Load key */ hw_desc_init(&desc[*seq_size]); set_cipher_mode(&desc[*seq_size], cipher_mode); set_cipher_config0(&desc[*seq_size], direction); if (flow_mode == S_DIN_to_AES) { if (ssi_is_hw_key(tfm)) { set_hw_crypto_key(&desc[*seq_size], ctx_p->hw.key1_slot); } else { set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr, ((key_len == 24) ? AES_MAX_KEY_SIZE : key_len), NS_BIT); } set_key_size_aes(&desc[*seq_size], key_len); } else { /*des*/ set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr, key_len, NS_BIT); set_key_size_des(&desc[*seq_size], key_len); } set_flow_mode(&desc[*seq_size], flow_mode); set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0); (*seq_size)++; break; case DRV_CIPHER_XTS: case DRV_CIPHER_ESSIV: case DRV_CIPHER_BITLOCKER: /* Load AES key */ hw_desc_init(&desc[*seq_size]); set_cipher_mode(&desc[*seq_size], cipher_mode); set_cipher_config0(&desc[*seq_size], direction); if (ssi_is_hw_key(tfm)) { set_hw_crypto_key(&desc[*seq_size], ctx_p->hw.key1_slot); } else { set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr, (key_len / 2), NS_BIT); } set_key_size_aes(&desc[*seq_size], (key_len / 2)); set_flow_mode(&desc[*seq_size], flow_mode); set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0); (*seq_size)++; /* load XEX key */ hw_desc_init(&desc[*seq_size]); set_cipher_mode(&desc[*seq_size], cipher_mode); set_cipher_config0(&desc[*seq_size], direction); if (ssi_is_hw_key(tfm)) { set_hw_crypto_key(&desc[*seq_size], ctx_p->hw.key2_slot); } else { set_din_type(&desc[*seq_size], DMA_DLLI, (key_dma_addr + (key_len / 2)), (key_len / 2), NS_BIT); } set_xex_data_unit_size(&desc[*seq_size], du_size); set_flow_mode(&desc[*seq_size], S_DIN_to_AES2); set_key_size_aes(&desc[*seq_size], (key_len / 2)); set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY); (*seq_size)++; /* Set state */ hw_desc_init(&desc[*seq_size]); set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1); set_cipher_mode(&desc[*seq_size], cipher_mode); set_cipher_config0(&desc[*seq_size], direction); set_key_size_aes(&desc[*seq_size], (key_len / 2)); set_flow_mode(&desc[*seq_size], flow_mode); set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT); (*seq_size)++; break; default: dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode); } } #if SSI_CC_HAS_MULTI2 static inline void ssi_blkcipher_create_multi2_setup_desc( struct crypto_tfm *tfm, struct blkcipher_req_ctx *req_ctx, unsigned int ivsize, struct cc_hw_desc desc[], unsigned int *seq_size) { struct ssi_ablkcipher_ctx *ctx_p = crypto_tfm_ctx(tfm); int direction = req_ctx->gen_ctx.op_type; /* Load system key */ hw_desc_init(&desc[*seq_size]); set_cipher_mode(&desc[*seq_size], ctx_p->cipher_mode); set_cipher_config0(&desc[*seq_size], direction); set_din_type(&desc[*seq_size], DMA_DLLI, ctx_p->user.key_dma_addr, CC_MULTI2_SYSTEM_KEY_SIZE, NS_BIT); set_flow_mode(&desc[*seq_size], ctx_p->flow_mode); set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0); (*seq_size)++; /* load data key */ hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_DLLI, (ctx_p->user.key_dma_addr + CC_MULTI2_SYSTEM_KEY_SIZE), CC_MULTI2_DATA_KEY_SIZE, NS_BIT); set_multi2_num_rounds(&desc[*seq_size], ctx_p->key_round_number); set_flow_mode(&desc[*seq_size], ctx_p->flow_mode); set_cipher_mode(&desc[*seq_size], ctx_p->cipher_mode); set_cipher_config0(&desc[*seq_size], direction); set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0); (*seq_size)++; /* Set state */ hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr, ivsize, NS_BIT); set_cipher_config0(&desc[*seq_size], direction); set_flow_mode(&desc[*seq_size], ctx_p->flow_mode); set_cipher_mode(&desc[*seq_size], ctx_p->cipher_mode); set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1); (*seq_size)++; } #endif /*SSI_CC_HAS_MULTI2*/ static inline void ssi_blkcipher_create_data_desc( struct crypto_tfm *tfm, struct blkcipher_req_ctx *req_ctx, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes, void *areq, struct cc_hw_desc desc[], unsigned int *seq_size) { struct ssi_ablkcipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); unsigned int flow_mode = ctx_p->flow_mode; switch (ctx_p->flow_mode) { case S_DIN_to_AES: flow_mode = DIN_AES_DOUT; break; case S_DIN_to_DES: flow_mode = DIN_DES_DOUT; break; #if SSI_CC_HAS_MULTI2 case S_DIN_to_MULTI2: flow_mode = DIN_MULTI2_DOUT; break; #endif /*SSI_CC_HAS_MULTI2*/ default: dev_err(dev, "invalid flow mode, flow_mode = %d\n", flow_mode); return; } /* Process */ if (likely(req_ctx->dma_buf_type == SSI_DMA_BUF_DLLI)) { dev_dbg(dev, " data params addr %pad length 0x%X\n", &sg_dma_address(src), nbytes); dev_dbg(dev, " data params addr %pad length 0x%X\n", &sg_dma_address(dst), nbytes); hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src), nbytes, NS_BIT); set_dout_dlli(&desc[*seq_size], sg_dma_address(dst), nbytes, NS_BIT, (!areq ? 0 : 1)); if (areq) set_queue_last_ind(&desc[*seq_size]); set_flow_mode(&desc[*seq_size], flow_mode); (*seq_size)++; } else { /* bypass */ dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n", &req_ctx->mlli_params.mlli_dma_addr, req_ctx->mlli_params.mlli_len, (unsigned int)ctx_p->drvdata->mlli_sram_addr); hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_DLLI, req_ctx->mlli_params.mlli_dma_addr, req_ctx->mlli_params.mlli_len, NS_BIT); set_dout_sram(&desc[*seq_size], ctx_p->drvdata->mlli_sram_addr, req_ctx->mlli_params.mlli_len); set_flow_mode(&desc[*seq_size], BYPASS); (*seq_size)++; hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_MLLI, ctx_p->drvdata->mlli_sram_addr, req_ctx->in_mlli_nents, NS_BIT); if (req_ctx->out_nents == 0) { dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n", (unsigned int)ctx_p->drvdata->mlli_sram_addr, (unsigned int)ctx_p->drvdata->mlli_sram_addr); set_dout_mlli(&desc[*seq_size], ctx_p->drvdata->mlli_sram_addr, req_ctx->in_mlli_nents, NS_BIT, (!areq ? 0 : 1)); } else { dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n", (unsigned int)ctx_p->drvdata->mlli_sram_addr, (unsigned int)ctx_p->drvdata->mlli_sram_addr + (u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents); set_dout_mlli(&desc[*seq_size], (ctx_p->drvdata->mlli_sram_addr + (LLI_ENTRY_BYTE_SIZE * req_ctx->in_mlli_nents)), req_ctx->out_mlli_nents, NS_BIT, (!areq ? 0 : 1)); } if (areq) set_queue_last_ind(&desc[*seq_size]); set_flow_mode(&desc[*seq_size], flow_mode); (*seq_size)++; } } static int ssi_blkcipher_complete(struct device *dev, struct ssi_ablkcipher_ctx *ctx_p, struct blkcipher_req_ctx *req_ctx, struct scatterlist *dst, struct scatterlist *src, unsigned int ivsize, void *areq, void __iomem *cc_base) { int completion_error = 0; struct ablkcipher_request *req = (struct ablkcipher_request *)areq; ssi_buffer_mgr_unmap_blkcipher_request(dev, req_ctx, ivsize, src, dst); kfree(req_ctx->iv); /*Decrease the inflight counter*/ if (ctx_p->flow_mode == BYPASS && ctx_p->drvdata->inflight_counter > 0) ctx_p->drvdata->inflight_counter--; if (areq) { /* * The crypto API expects us to set the req->info to the last * ciphertext block. For encrypt, simply copy from the result. * For decrypt, we must copy from a saved buffer since this * could be an in-place decryption operation and the src is * lost by this point. */ if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) { memcpy(req->info, req_ctx->backup_info, ivsize); kfree(req_ctx->backup_info); } else { scatterwalk_map_and_copy(req->info, req->dst, (req->nbytes - ivsize), ivsize, 0); } ablkcipher_request_complete(areq, completion_error); return 0; } return completion_error; } static int ssi_blkcipher_process( struct crypto_tfm *tfm, struct blkcipher_req_ctx *req_ctx, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes, void *info, //req info unsigned int ivsize, void *areq, enum drv_crypto_direction direction) { struct ssi_ablkcipher_ctx *ctx_p = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx_p->drvdata); struct cc_hw_desc desc[MAX_ABLKCIPHER_SEQ_LEN]; struct ssi_crypto_req ssi_req = {}; int rc, seq_len = 0, cts_restore_flag = 0; dev_dbg(dev, "%s areq=%p info=%p nbytes=%d\n", ((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Encrypt" : "Decrypt"), areq, info, nbytes); /* STAT_PHASE_0: Init and sanity checks */ /* TODO: check data length according to mode */ if (unlikely(validate_data_size(ctx_p, nbytes))) { dev_err(dev, "Unsupported data size %d.\n", nbytes); crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN); rc = -EINVAL; goto exit_process; } if (nbytes == 0) { /* No data to process is valid */ rc = 0; goto exit_process; } /* The IV we are handed may be allocted from the stack so * we must copy it to a DMAable buffer before use. */ req_ctx->iv = kmalloc(ivsize, GFP_KERNEL); if (!req_ctx->iv) { rc = -ENOMEM; goto exit_process; } memcpy(req_ctx->iv, info, ivsize); /*For CTS in case of data size aligned to 16 use CBC mode*/ if (((nbytes % AES_BLOCK_SIZE) == 0) && (ctx_p->cipher_mode == DRV_CIPHER_CBC_CTS)) { ctx_p->cipher_mode = DRV_CIPHER_CBC; cts_restore_flag = 1; } /* Setup DX request structure */ ssi_req.user_cb = (void *)ssi_ablkcipher_complete; ssi_req.user_arg = (void *)areq; #ifdef ENABLE_CYCLE_COUNT ssi_req.op_type = (direction == DRV_CRYPTO_DIRECTION_DECRYPT) ? STAT_OP_TYPE_DECODE : STAT_OP_TYPE_ENCODE; #endif /* Setup request context */ req_ctx->gen_ctx.op_type = direction; /* STAT_PHASE_1: Map buffers */ rc = ssi_buffer_mgr_map_blkcipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes, req_ctx->iv, src, dst); if (unlikely(rc != 0)) { dev_err(dev, "map_request() failed\n"); goto exit_process; } /* STAT_PHASE_2: Create sequence */ /* Setup processing */ #if SSI_CC_HAS_MULTI2 if (ctx_p->flow_mode == S_DIN_to_MULTI2) ssi_blkcipher_create_multi2_setup_desc(tfm, req_ctx, ivsize, desc, &seq_len); else #endif /*SSI_CC_HAS_MULTI2*/ ssi_blkcipher_create_setup_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len); /* Data processing */ ssi_blkcipher_create_data_desc(tfm, req_ctx, dst, src, nbytes, areq, desc, &seq_len); /* do we need to generate IV? */ if (req_ctx->is_giv) { ssi_req.ivgen_dma_addr[0] = req_ctx->gen_ctx.iv_dma_addr; ssi_req.ivgen_dma_addr_len = 1; /* set the IV size (8/16 B long)*/ ssi_req.ivgen_size = ivsize; } /* STAT_PHASE_3: Lock HW and push sequence */ rc = send_request(ctx_p->drvdata, &ssi_req, desc, seq_len, (!areq) ? 0 : 1); if (areq) { if (unlikely(rc != -EINPROGRESS)) { /* Failed to send the request or request completed synchronously */ ssi_buffer_mgr_unmap_blkcipher_request(dev, req_ctx, ivsize, src, dst); } } else { if (rc != 0) { ssi_buffer_mgr_unmap_blkcipher_request(dev, req_ctx, ivsize, src, dst); } else { rc = ssi_blkcipher_complete(dev, ctx_p, req_ctx, dst, src, ivsize, NULL, ctx_p->drvdata->cc_base); } } exit_process: if (cts_restore_flag != 0) ctx_p->cipher_mode = DRV_CIPHER_CBC_CTS; if (rc != -EINPROGRESS) { kfree(req_ctx->backup_info); kfree(req_ctx->iv); } return rc; } static void ssi_ablkcipher_complete(struct device *dev, void *ssi_req, void __iomem *cc_base) { struct ablkcipher_request *areq = (struct ablkcipher_request *)ssi_req; struct blkcipher_req_ctx *req_ctx = ablkcipher_request_ctx(areq); struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct ssi_ablkcipher_ctx *ctx_p = crypto_ablkcipher_ctx(tfm); unsigned int ivsize = crypto_ablkcipher_ivsize(tfm); ssi_blkcipher_complete(dev, ctx_p, req_ctx, areq->dst, areq->src, ivsize, areq, cc_base); } /* Async wrap functions */ static int ssi_ablkcipher_init(struct crypto_tfm *tfm) { struct ablkcipher_tfm *ablktfm = &tfm->crt_ablkcipher; ablktfm->reqsize = sizeof(struct blkcipher_req_ctx); return ssi_blkcipher_init(tfm); } static int ssi_ablkcipher_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { return ssi_blkcipher_setkey(crypto_ablkcipher_tfm(tfm), key, keylen); } static int ssi_ablkcipher_encrypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *ablk_tfm = crypto_ablkcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablk_tfm); struct blkcipher_req_ctx *req_ctx = ablkcipher_request_ctx(req); unsigned int ivsize = crypto_ablkcipher_ivsize(ablk_tfm); req_ctx->is_giv = false; return ssi_blkcipher_process(tfm, req_ctx, req->dst, req->src, req->nbytes, req->info, ivsize, (void *)req, DRV_CRYPTO_DIRECTION_ENCRYPT); } static int ssi_ablkcipher_decrypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *ablk_tfm = crypto_ablkcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablk_tfm); struct blkcipher_req_ctx *req_ctx = ablkcipher_request_ctx(req); unsigned int ivsize = crypto_ablkcipher_ivsize(ablk_tfm); /* * Allocate and save the last IV sized bytes of the source, which will * be lost in case of in-place decryption and might be needed for CTS. */ req_ctx->backup_info = kmalloc(ivsize, GFP_KERNEL); if (!req_ctx->backup_info) return -ENOMEM; scatterwalk_map_and_copy(req_ctx->backup_info, req->src, (req->nbytes - ivsize), ivsize, 0); req_ctx->is_giv = false; return ssi_blkcipher_process(tfm, req_ctx, req->dst, req->src, req->nbytes, req->info, ivsize, (void *)req, DRV_CRYPTO_DIRECTION_DECRYPT); } /* DX Block cipher alg */ static struct ssi_alg_template blkcipher_algs[] = { /* Async template */ #if SSI_CC_HAS_AES_XTS { .name = "xts(aes)", .driver_name = "xts-aes-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, .geniv = "eseqiv", }, .cipher_mode = DRV_CIPHER_XTS, .flow_mode = S_DIN_to_AES, }, { .name = "xts(aes)", .driver_name = "xts-aes-du512-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_BULK_DU_512, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_XTS, .flow_mode = S_DIN_to_AES, }, { .name = "xts(aes)", .driver_name = "xts-aes-du4096-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_BULK_DU_4096, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_XTS, .flow_mode = S_DIN_to_AES, }, #endif /*SSI_CC_HAS_AES_XTS*/ #if SSI_CC_HAS_AES_ESSIV { .name = "essiv(aes)", .driver_name = "essiv-aes-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_ESSIV, .flow_mode = S_DIN_to_AES, }, { .name = "essiv(aes)", .driver_name = "essiv-aes-du512-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_BULK_DU_512, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_ESSIV, .flow_mode = S_DIN_to_AES, }, { .name = "essiv(aes)", .driver_name = "essiv-aes-du4096-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_BULK_DU_4096, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_ESSIV, .flow_mode = S_DIN_to_AES, }, #endif /*SSI_CC_HAS_AES_ESSIV*/ #if SSI_CC_HAS_AES_BITLOCKER { .name = "bitlocker(aes)", .driver_name = "bitlocker-aes-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_BITLOCKER, .flow_mode = S_DIN_to_AES, }, { .name = "bitlocker(aes)", .driver_name = "bitlocker-aes-du512-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_BULK_DU_512, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_BITLOCKER, .flow_mode = S_DIN_to_AES, }, { .name = "bitlocker(aes)", .driver_name = "bitlocker-aes-du4096-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_BULK_DU_4096, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_BITLOCKER, .flow_mode = S_DIN_to_AES, }, #endif /*SSI_CC_HAS_AES_BITLOCKER*/ { .name = "ecb(aes)", .driver_name = "ecb-aes-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = 0, }, .cipher_mode = DRV_CIPHER_ECB, .flow_mode = S_DIN_to_AES, }, { .name = "cbc(aes)", .driver_name = "cbc-aes-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_AES, }, { .name = "ofb(aes)", .driver_name = "ofb-aes-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_OFB, .flow_mode = S_DIN_to_AES, }, #if SSI_CC_HAS_AES_CTS { .name = "cts1(cbc(aes))", .driver_name = "cts1-cbc-aes-dx", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC_CTS, .flow_mode = S_DIN_to_AES, }, #endif { .name = "ctr(aes)", .driver_name = "ctr-aes-dx", .blocksize = 1, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CTR, .flow_mode = S_DIN_to_AES, }, { .name = "cbc(des3_ede)", .driver_name = "cbc-3des-dx", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_DES, }, { .name = "ecb(des3_ede)", .driver_name = "ecb-3des-dx", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = 0, }, .cipher_mode = DRV_CIPHER_ECB, .flow_mode = S_DIN_to_DES, }, { .name = "cbc(des)", .driver_name = "cbc-des-dx", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_DES, }, { .name = "ecb(des)", .driver_name = "ecb-des-dx", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = 0, }, .cipher_mode = DRV_CIPHER_ECB, .flow_mode = S_DIN_to_DES, }, #if SSI_CC_HAS_MULTI2 { .name = "cbc(multi2)", .driver_name = "cbc-multi2-dx", .blocksize = CC_MULTI2_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_decrypt, .min_keysize = CC_MULTI2_SYSTEM_N_DATA_KEY_SIZE + 1, .max_keysize = CC_MULTI2_SYSTEM_N_DATA_KEY_SIZE + 1, .ivsize = CC_MULTI2_IV_SIZE, }, .cipher_mode = DRV_MULTI2_CBC, .flow_mode = S_DIN_to_MULTI2, }, { .name = "ofb(multi2)", .driver_name = "ofb-multi2-dx", .blocksize = 1, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ssi_ablkcipher_setkey, .encrypt = ssi_ablkcipher_encrypt, .decrypt = ssi_ablkcipher_encrypt, .min_keysize = CC_MULTI2_SYSTEM_N_DATA_KEY_SIZE + 1, .max_keysize = CC_MULTI2_SYSTEM_N_DATA_KEY_SIZE + 1, .ivsize = CC_MULTI2_IV_SIZE, }, .cipher_mode = DRV_MULTI2_OFB, .flow_mode = S_DIN_to_MULTI2, }, #endif /*SSI_CC_HAS_MULTI2*/ }; static struct ssi_crypto_alg *ssi_ablkcipher_create_alg(struct ssi_alg_template *template, struct device *dev) { struct ssi_crypto_alg *t_alg; struct crypto_alg *alg; t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL); if (!t_alg) return ERR_PTR(-ENOMEM); alg = &t_alg->crypto_alg; snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->driver_name); alg->cra_module = THIS_MODULE; alg->cra_priority = SSI_CRA_PRIO; alg->cra_blocksize = template->blocksize; alg->cra_alignmask = 0; alg->cra_ctxsize = sizeof(struct ssi_ablkcipher_ctx); alg->cra_init = ssi_ablkcipher_init; alg->cra_exit = ssi_blkcipher_exit; alg->cra_type = &crypto_ablkcipher_type; alg->cra_ablkcipher = template->template_ablkcipher; alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | template->type; t_alg->cipher_mode = template->cipher_mode; t_alg->flow_mode = template->flow_mode; return t_alg; } int ssi_ablkcipher_free(struct ssi_drvdata *drvdata) { struct ssi_crypto_alg *t_alg, *n; struct ssi_blkcipher_handle *blkcipher_handle = drvdata->blkcipher_handle; if (blkcipher_handle) { /* Remove registered algs */ list_for_each_entry_safe(t_alg, n, &blkcipher_handle->blkcipher_alg_list, entry) { crypto_unregister_alg(&t_alg->crypto_alg); list_del(&t_alg->entry); kfree(t_alg); } kfree(blkcipher_handle); drvdata->blkcipher_handle = NULL; } return 0; } int ssi_ablkcipher_alloc(struct ssi_drvdata *drvdata) { struct ssi_blkcipher_handle *ablkcipher_handle; struct ssi_crypto_alg *t_alg; struct device *dev = drvdata_to_dev(drvdata); int rc = -ENOMEM; int alg; ablkcipher_handle = kmalloc(sizeof(*ablkcipher_handle), GFP_KERNEL); if (!ablkcipher_handle) return -ENOMEM; INIT_LIST_HEAD(&ablkcipher_handle->blkcipher_alg_list); drvdata->blkcipher_handle = ablkcipher_handle; /* Linux crypto */ dev_dbg(dev, "Number of algorithms = %zu\n", ARRAY_SIZE(blkcipher_algs)); for (alg = 0; alg < ARRAY_SIZE(blkcipher_algs); alg++) { dev_dbg(dev, "creating %s\n", blkcipher_algs[alg].driver_name); t_alg = ssi_ablkcipher_create_alg(&blkcipher_algs[alg], dev); if (IS_ERR(t_alg)) { rc = PTR_ERR(t_alg); dev_err(dev, "%s alg allocation failed\n", blkcipher_algs[alg].driver_name); goto fail0; } t_alg->drvdata = drvdata; dev_dbg(dev, "registering %s\n", blkcipher_algs[alg].driver_name); rc = crypto_register_alg(&t_alg->crypto_alg); dev_dbg(dev, "%s alg registration rc = %x\n", t_alg->crypto_alg.cra_driver_name, rc); if (unlikely(rc != 0)) { dev_err(dev, "%s alg registration failed\n", t_alg->crypto_alg.cra_driver_name); kfree(t_alg); goto fail0; } else { list_add_tail(&t_alg->entry, &ablkcipher_handle->blkcipher_alg_list); dev_dbg(dev, "Registered %s\n", t_alg->crypto_alg.cra_driver_name); } } return 0; fail0: ssi_ablkcipher_free(drvdata); return rc; }