/* * Copyright (C) 2012-2017 ARM Limited or its affiliates. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include "ssi_config.h" #include "ssi_driver.h" #include "ssi_ivgen.h" #include "ssi_request_mgr.h" #include "ssi_sram_mgr.h" #include "ssi_buffer_mgr.h" /* The max. size of pool *MUST* be <= SRAM total size */ #define SSI_IVPOOL_SIZE 1024 /* The first 32B fraction of pool are dedicated to the next encryption "key" & "IV" for pool regeneration */ #define SSI_IVPOOL_META_SIZE (CC_AES_IV_SIZE + AES_KEYSIZE_128) #define SSI_IVPOOL_GEN_SEQ_LEN 4 /** * struct ssi_ivgen_ctx -IV pool generation context * @pool: the start address of the iv-pool resides in internal RAM * @ctr_key_dma: address of pool's encryption key material in internal RAM * @ctr_iv_dma: address of pool's counter iv in internal RAM * @next_iv_ofs: the offset to the next available IV in pool * @pool_meta: virt. address of the initial enc. key/IV * @pool_meta_dma: phys. address of the initial enc. key/IV */ struct ssi_ivgen_ctx { ssi_sram_addr_t pool; ssi_sram_addr_t ctr_key; ssi_sram_addr_t ctr_iv; u32 next_iv_ofs; u8 *pool_meta; dma_addr_t pool_meta_dma; }; /*! * Generates SSI_IVPOOL_SIZE of random bytes by * encrypting 0's using AES128-CTR. * * \param ivgen iv-pool context * \param iv_seq IN/OUT array to the descriptors sequence * \param iv_seq_len IN/OUT pointer to the sequence length */ static int ssi_ivgen_generate_pool( struct ssi_ivgen_ctx *ivgen_ctx, struct cc_hw_desc iv_seq[], unsigned int *iv_seq_len) { unsigned int idx = *iv_seq_len; if ( (*iv_seq_len + SSI_IVPOOL_GEN_SEQ_LEN) > SSI_IVPOOL_SEQ_LEN) { /* The sequence will be longer than allowed */ return -EINVAL; } /* Setup key */ HW_DESC_INIT(&iv_seq[idx]); HW_DESC_SET_DIN_SRAM(&iv_seq[idx], ivgen_ctx->ctr_key, AES_KEYSIZE_128); HW_DESC_SET_SETUP_MODE(&iv_seq[idx], SETUP_LOAD_KEY0); HW_DESC_SET_CIPHER_CONFIG0(&iv_seq[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); HW_DESC_SET_FLOW_MODE(&iv_seq[idx], S_DIN_to_AES); HW_DESC_SET_KEY_SIZE_AES(&iv_seq[idx], CC_AES_128_BIT_KEY_SIZE); HW_DESC_SET_CIPHER_MODE(&iv_seq[idx], DRV_CIPHER_CTR); idx++; /* Setup cipher state */ HW_DESC_INIT(&iv_seq[idx]); HW_DESC_SET_DIN_SRAM(&iv_seq[idx], ivgen_ctx->ctr_iv, CC_AES_IV_SIZE); HW_DESC_SET_CIPHER_CONFIG0(&iv_seq[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); HW_DESC_SET_FLOW_MODE(&iv_seq[idx], S_DIN_to_AES); HW_DESC_SET_SETUP_MODE(&iv_seq[idx], SETUP_LOAD_STATE1); HW_DESC_SET_KEY_SIZE_AES(&iv_seq[idx], CC_AES_128_BIT_KEY_SIZE); HW_DESC_SET_CIPHER_MODE(&iv_seq[idx], DRV_CIPHER_CTR); idx++; /* Perform dummy encrypt to skip first block */ HW_DESC_INIT(&iv_seq[idx]); HW_DESC_SET_DIN_CONST(&iv_seq[idx], 0, CC_AES_IV_SIZE); HW_DESC_SET_DOUT_SRAM(&iv_seq[idx], ivgen_ctx->pool, CC_AES_IV_SIZE); HW_DESC_SET_FLOW_MODE(&iv_seq[idx], DIN_AES_DOUT); idx++; /* Generate IV pool */ HW_DESC_INIT(&iv_seq[idx]); HW_DESC_SET_DIN_CONST(&iv_seq[idx], 0, SSI_IVPOOL_SIZE); HW_DESC_SET_DOUT_SRAM(&iv_seq[idx], ivgen_ctx->pool, SSI_IVPOOL_SIZE); HW_DESC_SET_FLOW_MODE(&iv_seq[idx], DIN_AES_DOUT); idx++; *iv_seq_len = idx; /* Update sequence length */ /* queue ordering assures pool readiness */ ivgen_ctx->next_iv_ofs = SSI_IVPOOL_META_SIZE; return 0; } /*! * Generates the initial pool in SRAM. * This function should be invoked when resuming DX driver. * * \param drvdata * * \return int Zero for success, negative value otherwise. */ int ssi_ivgen_init_sram_pool(struct ssi_drvdata *drvdata) { struct ssi_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle; struct cc_hw_desc iv_seq[SSI_IVPOOL_SEQ_LEN]; unsigned int iv_seq_len = 0; int rc; /* Generate initial enc. key/iv */ get_random_bytes(ivgen_ctx->pool_meta, SSI_IVPOOL_META_SIZE); /* The first 32B reserved for the enc. Key/IV */ ivgen_ctx->ctr_key = ivgen_ctx->pool; ivgen_ctx->ctr_iv = ivgen_ctx->pool + AES_KEYSIZE_128; /* Copy initial enc. key and IV to SRAM at a single descriptor */ HW_DESC_INIT(&iv_seq[iv_seq_len]); HW_DESC_SET_DIN_TYPE(&iv_seq[iv_seq_len], DMA_DLLI, ivgen_ctx->pool_meta_dma, SSI_IVPOOL_META_SIZE, NS_BIT); HW_DESC_SET_DOUT_SRAM(&iv_seq[iv_seq_len], ivgen_ctx->pool, SSI_IVPOOL_META_SIZE); HW_DESC_SET_FLOW_MODE(&iv_seq[iv_seq_len], BYPASS); iv_seq_len++; /* Generate initial pool */ rc = ssi_ivgen_generate_pool(ivgen_ctx, iv_seq, &iv_seq_len); if (unlikely(rc != 0)) { return rc; } /* Fire-and-forget */ return send_request_init(drvdata, iv_seq, iv_seq_len); } /*! * Free iv-pool and ivgen context. * * \param drvdata */ void ssi_ivgen_fini(struct ssi_drvdata *drvdata) { struct ssi_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle; struct device *device = &(drvdata->plat_dev->dev); if (ivgen_ctx == NULL) return; if (ivgen_ctx->pool_meta != NULL) { memset(ivgen_ctx->pool_meta, 0, SSI_IVPOOL_META_SIZE); SSI_RESTORE_DMA_ADDR_TO_48BIT(ivgen_ctx->pool_meta_dma); dma_free_coherent(device, SSI_IVPOOL_META_SIZE, ivgen_ctx->pool_meta, ivgen_ctx->pool_meta_dma); } ivgen_ctx->pool = NULL_SRAM_ADDR; /* release "this" context */ kfree(ivgen_ctx); } /*! * Allocates iv-pool and maps resources. * This function generates the first IV pool. * * \param drvdata Driver's private context * * \return int Zero for success, negative value otherwise. */ int ssi_ivgen_init(struct ssi_drvdata *drvdata) { struct ssi_ivgen_ctx *ivgen_ctx; struct device *device = &drvdata->plat_dev->dev; int rc; /* Allocate "this" context */ drvdata->ivgen_handle = kzalloc(sizeof(struct ssi_ivgen_ctx), GFP_KERNEL); if (!drvdata->ivgen_handle) { SSI_LOG_ERR("Not enough memory to allocate IVGEN context " "(%zu B)\n", sizeof(struct ssi_ivgen_ctx)); rc = -ENOMEM; goto out; } ivgen_ctx = drvdata->ivgen_handle; /* Allocate pool's header for intial enc. key/IV */ ivgen_ctx->pool_meta = dma_alloc_coherent(device, SSI_IVPOOL_META_SIZE, &ivgen_ctx->pool_meta_dma, GFP_KERNEL); if (!ivgen_ctx->pool_meta) { SSI_LOG_ERR("Not enough memory to allocate DMA of pool_meta " "(%u B)\n", SSI_IVPOOL_META_SIZE); rc = -ENOMEM; goto out; } SSI_UPDATE_DMA_ADDR_TO_48BIT(ivgen_ctx->pool_meta_dma, SSI_IVPOOL_META_SIZE); /* Allocate IV pool in SRAM */ ivgen_ctx->pool = ssi_sram_mgr_alloc(drvdata, SSI_IVPOOL_SIZE); if (ivgen_ctx->pool == NULL_SRAM_ADDR) { SSI_LOG_ERR("SRAM pool exhausted\n"); rc = -ENOMEM; goto out; } return ssi_ivgen_init_sram_pool(drvdata); out: ssi_ivgen_fini(drvdata); return rc; } /*! * Acquires 16 Bytes IV from the iv-pool * * \param drvdata Driver private context * \param iv_out_dma Array of physical IV out addresses * \param iv_out_dma_len Length of iv_out_dma array (additional elements of iv_out_dma array are ignore) * \param iv_out_size May be 8 or 16 bytes long * \param iv_seq IN/OUT array to the descriptors sequence * \param iv_seq_len IN/OUT pointer to the sequence length * * \return int Zero for success, negative value otherwise. */ int ssi_ivgen_getiv( struct ssi_drvdata *drvdata, dma_addr_t iv_out_dma[], unsigned int iv_out_dma_len, unsigned int iv_out_size, struct cc_hw_desc iv_seq[], unsigned int *iv_seq_len) { struct ssi_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle; unsigned int idx = *iv_seq_len; unsigned int t; if ((iv_out_size != CC_AES_IV_SIZE) && (iv_out_size != CTR_RFC3686_IV_SIZE)) { return -EINVAL; } if ( (iv_out_dma_len + 1) > SSI_IVPOOL_SEQ_LEN) { /* The sequence will be longer than allowed */ return -EINVAL; } //check that number of generated IV is limited to max dma address iv buffer size if ( iv_out_dma_len > SSI_MAX_IVGEN_DMA_ADDRESSES) { /* The sequence will be longer than allowed */ return -EINVAL; } for (t = 0; t < iv_out_dma_len; t++) { /* Acquire IV from pool */ HW_DESC_INIT(&iv_seq[idx]); HW_DESC_SET_DIN_SRAM(&iv_seq[idx], ivgen_ctx->pool + ivgen_ctx->next_iv_ofs, iv_out_size); HW_DESC_SET_DOUT_DLLI(&iv_seq[idx], iv_out_dma[t], iv_out_size, NS_BIT, 0); HW_DESC_SET_FLOW_MODE(&iv_seq[idx], BYPASS); idx++; } /* Bypass operation is proceeded by crypto sequence, hence must * assure bypass-write-transaction by a memory barrier */ HW_DESC_INIT(&iv_seq[idx]); HW_DESC_SET_DIN_NO_DMA(&iv_seq[idx], 0, 0xfffff0); HW_DESC_SET_DOUT_NO_DMA(&iv_seq[idx], 0, 0, 1); idx++; *iv_seq_len = idx; /* update seq length */ /* Update iv index */ ivgen_ctx->next_iv_ofs += iv_out_size; if ((SSI_IVPOOL_SIZE - ivgen_ctx->next_iv_ofs) < CC_AES_IV_SIZE) { SSI_LOG_DEBUG("Pool exhausted, regenerating iv-pool\n"); /* pool is drained -regenerate it! */ return ssi_ivgen_generate_pool(ivgen_ctx, iv_seq, iv_seq_len); } return 0; }