/* * Copyright (C) 2012-2017 ARM Limited or its affiliates. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "ssi_config.h" #include #include #include #include #include #ifdef FLUSH_CACHE_ALL #include #endif #include #include "ssi_driver.h" #include "ssi_buffer_mgr.h" #include "ssi_request_mgr.h" #include "ssi_sysfs.h" #include "ssi_ivgen.h" #include "ssi_pm.h" #include "ssi_fips.h" #include "ssi_fips_local.h" #define SSI_MAX_POLL_ITER 10 #define AXIM_MON_BASE_OFFSET CC_REG_OFFSET(CRY_KERNEL, AXIM_MON_COMP) #ifdef CC_CYCLE_COUNT #define MONITOR_CNTR_BIT 0 /** * Monitor descriptor. * Used to measure CC performance. */ #define INIT_CC_MONITOR_DESC(desc_p) \ do { \ HW_DESC_INIT(desc_p); \ HW_DESC_SET_DIN_MONITOR_CNTR(desc_p); \ } while (0) /** * Try adding monitor descriptor BEFORE enqueuing sequence. */ #define CC_CYCLE_DESC_HEAD(cc_base_addr, desc_p, lock_p, is_monitored_p) \ do { \ if (!test_and_set_bit(MONITOR_CNTR_BIT, (lock_p))) { \ enqueue_seq((cc_base_addr), (desc_p), 1); \ *(is_monitored_p) = true; \ } else { \ *(is_monitored_p) = false; \ } \ } while (0) /** * If CC_CYCLE_DESC_HEAD was successfully added: * 1. Add memory barrier descriptor to ensure last AXI transaction. * 2. Add monitor descriptor to sequence tail AFTER enqueuing sequence. */ #define CC_CYCLE_DESC_TAIL(cc_base_addr, desc_p, is_monitored) \ do { \ if ((is_monitored) == true) { \ HwDesc_s barrier_desc; \ HW_DESC_INIT(&barrier_desc); \ HW_DESC_SET_DIN_NO_DMA(&barrier_desc, 0, 0xfffff0); \ HW_DESC_SET_DOUT_NO_DMA(&barrier_desc, 0, 0, 1); \ enqueue_seq((cc_base_addr), &barrier_desc, 1); \ enqueue_seq((cc_base_addr), (desc_p), 1); \ } \ } while (0) /** * Try reading CC monitor counter value upon sequence complete. * Can only succeed if the lock_p is taken by the owner of the given request. */ #define END_CC_MONITOR_COUNT(cc_base_addr, stat_op_type, stat_phase, monitor_null_cycles, lock_p, is_monitored) \ do { \ uint32_t elapsed_cycles; \ if ((is_monitored) == true) { \ elapsed_cycles = READ_REGISTER((cc_base_addr) + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_MEASURE_CNTR)); \ clear_bit(MONITOR_CNTR_BIT, (lock_p)); \ if (elapsed_cycles > 0) \ update_cc_stat(stat_op_type, stat_phase, (elapsed_cycles - monitor_null_cycles)); \ } \ } while (0) #else /*CC_CYCLE_COUNT*/ #define INIT_CC_MONITOR_DESC(desc_p) do { } while (0) #define CC_CYCLE_DESC_HEAD(cc_base_addr, desc_p, lock_p, is_monitored_p) do { } while (0) #define CC_CYCLE_DESC_TAIL(cc_base_addr, desc_p, is_monitored) do { } while (0) #define END_CC_MONITOR_COUNT(cc_base_addr, stat_op_type, stat_phase, monitor_null_cycles, lock_p, is_monitored) do { } while (0) #endif /*CC_CYCLE_COUNT*/ struct ssi_request_mgr_handle { /* Request manager resources */ unsigned int hw_queue_size; /* HW capability */ unsigned int min_free_hw_slots; unsigned int max_used_sw_slots; struct ssi_crypto_req req_queue[MAX_REQUEST_QUEUE_SIZE]; uint32_t req_queue_head; uint32_t req_queue_tail; uint32_t axi_completed; uint32_t q_free_slots; spinlock_t hw_lock; HwDesc_s compl_desc; uint8_t *dummy_comp_buff; dma_addr_t dummy_comp_buff_dma; HwDesc_s monitor_desc; volatile unsigned long monitor_lock; #ifdef COMP_IN_WQ struct workqueue_struct *workq; struct delayed_work compwork; #else struct tasklet_struct comptask; #endif #if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP) bool is_runtime_suspended; #endif }; static void comp_handler(unsigned long devarg); #ifdef COMP_IN_WQ static void comp_work_handler(struct work_struct *work); #endif void request_mgr_fini(struct ssi_drvdata *drvdata) { struct ssi_request_mgr_handle *req_mgr_h = drvdata->request_mgr_handle; if (req_mgr_h == NULL) return; /* Not allocated */ if (req_mgr_h->dummy_comp_buff_dma != 0) { SSI_RESTORE_DMA_ADDR_TO_48BIT(req_mgr_h->dummy_comp_buff_dma); dma_free_coherent(&drvdata->plat_dev->dev, sizeof(uint32_t), req_mgr_h->dummy_comp_buff, req_mgr_h->dummy_comp_buff_dma); } SSI_LOG_DEBUG("max_used_hw_slots=%d\n", (req_mgr_h->hw_queue_size - req_mgr_h->min_free_hw_slots) ); SSI_LOG_DEBUG("max_used_sw_slots=%d\n", req_mgr_h->max_used_sw_slots); #ifdef COMP_IN_WQ flush_workqueue(req_mgr_h->workq); destroy_workqueue(req_mgr_h->workq); #else /* Kill tasklet */ tasklet_kill(&req_mgr_h->comptask); #endif memset(req_mgr_h, 0, sizeof(struct ssi_request_mgr_handle)); kfree(req_mgr_h); drvdata->request_mgr_handle = NULL; } int request_mgr_init(struct ssi_drvdata *drvdata) { #ifdef CC_CYCLE_COUNT HwDesc_s monitor_desc[2]; struct ssi_crypto_req monitor_req = {0}; #endif struct ssi_request_mgr_handle *req_mgr_h; int rc = 0; req_mgr_h = kzalloc(sizeof(struct ssi_request_mgr_handle),GFP_KERNEL); if (req_mgr_h == NULL) { rc = -ENOMEM; goto req_mgr_init_err; } drvdata->request_mgr_handle = req_mgr_h; spin_lock_init(&req_mgr_h->hw_lock); #ifdef COMP_IN_WQ SSI_LOG_DEBUG("Initializing completion workqueue\n"); req_mgr_h->workq = create_singlethread_workqueue("arm_cc7x_wq"); if (unlikely(req_mgr_h->workq == NULL)) { SSI_LOG_ERR("Failed creating work queue\n"); rc = -ENOMEM; goto req_mgr_init_err; } INIT_DELAYED_WORK(&req_mgr_h->compwork, comp_work_handler); #else SSI_LOG_DEBUG("Initializing completion tasklet\n"); tasklet_init(&req_mgr_h->comptask, comp_handler, (unsigned long)drvdata); #endif req_mgr_h->hw_queue_size = READ_REGISTER(drvdata->cc_base + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_SRAM_SIZE)); SSI_LOG_DEBUG("hw_queue_size=0x%08X\n", req_mgr_h->hw_queue_size); if (req_mgr_h->hw_queue_size < MIN_HW_QUEUE_SIZE) { SSI_LOG_ERR("Invalid HW queue size = %u (Min. required is %u)\n", req_mgr_h->hw_queue_size, MIN_HW_QUEUE_SIZE); rc = -ENOMEM; goto req_mgr_init_err; } req_mgr_h->min_free_hw_slots = req_mgr_h->hw_queue_size; req_mgr_h->max_used_sw_slots = 0; /* Allocate DMA word for "dummy" completion descriptor use */ req_mgr_h->dummy_comp_buff = dma_alloc_coherent(&drvdata->plat_dev->dev, sizeof(uint32_t), &req_mgr_h->dummy_comp_buff_dma, GFP_KERNEL); if (!req_mgr_h->dummy_comp_buff) { SSI_LOG_ERR("Not enough memory to allocate DMA (%zu) dropped " "buffer\n", sizeof(uint32_t)); rc = -ENOMEM; goto req_mgr_init_err; } SSI_UPDATE_DMA_ADDR_TO_48BIT(req_mgr_h->dummy_comp_buff_dma, sizeof(uint32_t)); /* Init. "dummy" completion descriptor */ HW_DESC_INIT(&req_mgr_h->compl_desc); HW_DESC_SET_DIN_CONST(&req_mgr_h->compl_desc, 0, sizeof(uint32_t)); HW_DESC_SET_DOUT_DLLI(&req_mgr_h->compl_desc, req_mgr_h->dummy_comp_buff_dma, sizeof(uint32_t), NS_BIT, 1); HW_DESC_SET_FLOW_MODE(&req_mgr_h->compl_desc, BYPASS); HW_DESC_SET_QUEUE_LAST_IND(&req_mgr_h->compl_desc); #ifdef CC_CYCLE_COUNT /* For CC-HW cycle performance trace */ INIT_CC_MONITOR_DESC(&req_mgr_h->monitor_desc); set_bit(MONITOR_CNTR_BIT, &req_mgr_h->monitor_lock); monitor_desc[0] = req_mgr_h->monitor_desc; monitor_desc[1] = req_mgr_h->monitor_desc; rc = send_request(drvdata, &monitor_req, monitor_desc, 2, 0); if (unlikely(rc != 0)) goto req_mgr_init_err; drvdata->monitor_null_cycles = READ_REGISTER(drvdata->cc_base + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_MEASURE_CNTR)); SSI_LOG_ERR("Calibration time=0x%08x\n", drvdata->monitor_null_cycles); clear_bit(MONITOR_CNTR_BIT, &req_mgr_h->monitor_lock); #endif return 0; req_mgr_init_err: request_mgr_fini(drvdata); return rc; } static inline void enqueue_seq( void __iomem *cc_base, HwDesc_s seq[], unsigned int seq_len) { int i; for (i = 0; i < seq_len; i++) { writel_relaxed(seq[i].word[0], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0))); writel_relaxed(seq[i].word[1], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0))); writel_relaxed(seq[i].word[2], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0))); writel_relaxed(seq[i].word[3], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0))); writel_relaxed(seq[i].word[4], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0))); wmb(); writel_relaxed(seq[i].word[5], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0))); #ifdef DX_DUMP_DESCS SSI_LOG_DEBUG("desc[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", i, seq[i].word[0], seq[i].word[1], seq[i].word[2], seq[i].word[3], seq[i].word[4], seq[i].word[5]); #endif } } /*! * Completion will take place if and only if user requested completion * by setting "is_dout = 0" in send_request(). * * \param dev * \param dx_compl_h The completion event to signal */ static void request_mgr_complete(struct device *dev, void *dx_compl_h, void __iomem *cc_base) { struct completion *this_compl = dx_compl_h; complete(this_compl); } static inline int request_mgr_queues_status_check( struct ssi_request_mgr_handle *req_mgr_h, void __iomem *cc_base, unsigned int total_seq_len) { unsigned long poll_queue; /* SW queue is checked only once as it will not be chaned during the poll becasue the spinlock_bh is held by the thread */ if (unlikely(((req_mgr_h->req_queue_head + 1) & (MAX_REQUEST_QUEUE_SIZE - 1)) == req_mgr_h->req_queue_tail)) { SSI_LOG_ERR("SW FIFO is full. req_queue_head=%d sw_fifo_len=%d\n", req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE); return -EBUSY; } if ((likely(req_mgr_h->q_free_slots >= total_seq_len)) ) { return 0; } /* Wait for space in HW queue. Poll constant num of iterations. */ for (poll_queue =0; poll_queue < SSI_MAX_POLL_ITER ; poll_queue ++) { req_mgr_h->q_free_slots = CC_HAL_READ_REGISTER( CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_CONTENT)); if (unlikely(req_mgr_h->q_free_slots < req_mgr_h->min_free_hw_slots)) { req_mgr_h->min_free_hw_slots = req_mgr_h->q_free_slots; } if (likely (req_mgr_h->q_free_slots >= total_seq_len)) { /* If there is enough place return */ return 0; } SSI_LOG_DEBUG("HW FIFO is full. q_free_slots=%d total_seq_len=%d\n", req_mgr_h->q_free_slots, total_seq_len); } /* No room in the HW queue try again later */ SSI_LOG_DEBUG("HW FIFO full, timeout. req_queue_head=%d " "sw_fifo_len=%d q_free_slots=%d total_seq_len=%d\n", req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE, req_mgr_h->q_free_slots, total_seq_len); return -EAGAIN; } /*! * Enqueue caller request to crypto hardware. * * \param drvdata * \param ssi_req The request to enqueue * \param desc The crypto sequence * \param len The crypto sequence length * \param is_dout If "true": completion is handled by the caller * If "false": this function adds a dummy descriptor completion * and waits upon completion signal. * * \return int Returns -EINPROGRESS if "is_dout=true"; "0" if "is_dout=false" */ int send_request( struct ssi_drvdata *drvdata, struct ssi_crypto_req *ssi_req, HwDesc_s *desc, unsigned int len, bool is_dout) { void __iomem *cc_base = drvdata->cc_base; struct ssi_request_mgr_handle *req_mgr_h = drvdata->request_mgr_handle; unsigned int used_sw_slots; unsigned int iv_seq_len = 0; unsigned int total_seq_len = len; /*initial sequence length*/ HwDesc_s iv_seq[SSI_IVPOOL_SEQ_LEN]; int rc; unsigned int max_required_seq_len = (total_seq_len + ((ssi_req->ivgen_dma_addr_len == 0) ? 0 : SSI_IVPOOL_SEQ_LEN ) + ((is_dout == 0 )? 1 : 0)); DECL_CYCLE_COUNT_RESOURCES; #if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP) rc = ssi_power_mgr_runtime_get(&drvdata->plat_dev->dev); if (rc != 0) { SSI_LOG_ERR("ssi_power_mgr_runtime_get returned %x\n",rc); spin_unlock_bh(&req_mgr_h->hw_lock); return rc; } #endif do { spin_lock_bh(&req_mgr_h->hw_lock); /* Check if there is enough place in the SW/HW queues in case iv gen add the max size and in case of no dout add 1 for the internal completion descriptor */ rc = request_mgr_queues_status_check(req_mgr_h, cc_base, max_required_seq_len); if (likely(rc == 0 )) /* There is enough place in the queue */ break; /* something wrong release the spinlock*/ spin_unlock_bh(&req_mgr_h->hw_lock); if (rc != -EAGAIN) { /* Any error other than HW queue full (SW queue is full) */ #if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP) ssi_power_mgr_runtime_put_suspend(&drvdata->plat_dev->dev); #endif return rc; } /* HW queue is full - short sleep */ msleep(1); } while (1); /* Additional completion descriptor is needed incase caller did not enabled any DLLI/MLLI DOUT bit in the given sequence */ if (!is_dout) { init_completion(&ssi_req->seq_compl); ssi_req->user_cb = request_mgr_complete; ssi_req->user_arg = &(ssi_req->seq_compl); total_seq_len++; } if (ssi_req->ivgen_dma_addr_len > 0) { SSI_LOG_DEBUG("Acquire IV from pool into %d DMA addresses 0x%llX, 0x%llX, 0x%llX, IV-size=%u\n", ssi_req->ivgen_dma_addr_len, (unsigned long long)ssi_req->ivgen_dma_addr[0], (unsigned long long)ssi_req->ivgen_dma_addr[1], (unsigned long long)ssi_req->ivgen_dma_addr[2], ssi_req->ivgen_size); /* Acquire IV from pool */ rc = ssi_ivgen_getiv(drvdata, ssi_req->ivgen_dma_addr, ssi_req->ivgen_dma_addr_len, ssi_req->ivgen_size, iv_seq, &iv_seq_len); if (unlikely(rc != 0)) { SSI_LOG_ERR("Failed to generate IV (rc=%d)\n", rc); spin_unlock_bh(&req_mgr_h->hw_lock); #if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP) ssi_power_mgr_runtime_put_suspend(&drvdata->plat_dev->dev); #endif return rc; } total_seq_len += iv_seq_len; } used_sw_slots = ((req_mgr_h->req_queue_head - req_mgr_h->req_queue_tail) & (MAX_REQUEST_QUEUE_SIZE-1)); if (unlikely(used_sw_slots > req_mgr_h->max_used_sw_slots)) { req_mgr_h->max_used_sw_slots = used_sw_slots; } CC_CYCLE_DESC_HEAD(cc_base, &req_mgr_h->monitor_desc, &req_mgr_h->monitor_lock, &ssi_req->is_monitored_p); /* Enqueue request - must be locked with HW lock*/ req_mgr_h->req_queue[req_mgr_h->req_queue_head] = *ssi_req; START_CYCLE_COUNT_AT(req_mgr_h->req_queue[req_mgr_h->req_queue_head].submit_cycle); req_mgr_h->req_queue_head = (req_mgr_h->req_queue_head + 1) & (MAX_REQUEST_QUEUE_SIZE - 1); /* TODO: Use circ_buf.h ? */ SSI_LOG_DEBUG("Enqueue request head=%u\n", req_mgr_h->req_queue_head); #ifdef FLUSH_CACHE_ALL flush_cache_all(); #endif /* STAT_PHASE_4: Push sequence */ START_CYCLE_COUNT(); enqueue_seq(cc_base, iv_seq, iv_seq_len); enqueue_seq(cc_base, desc, len); enqueue_seq(cc_base, &req_mgr_h->compl_desc, (is_dout ? 0 : 1)); END_CYCLE_COUNT(ssi_req->op_type, STAT_PHASE_4); CC_CYCLE_DESC_TAIL(cc_base, &req_mgr_h->monitor_desc, ssi_req->is_monitored_p); if (unlikely(req_mgr_h->q_free_slots < total_seq_len)) { /*This means that there was a problem with the resume*/ BUG(); } /* Update the free slots in HW queue */ req_mgr_h->q_free_slots -= total_seq_len; spin_unlock_bh(&req_mgr_h->hw_lock); if (!is_dout) { /* Wait upon sequence completion. * Return "0" -Operation done successfully. */ return wait_for_completion_interruptible(&ssi_req->seq_compl); } else { /* Operation still in process */ return -EINPROGRESS; } } /*! * Enqueue caller request to crypto hardware during init process. * assume this function is not called in middle of a flow, * since we set QUEUE_LAST_IND flag in the last descriptor. * * \param drvdata * \param desc The crypto sequence * \param len The crypto sequence length * * \return int Returns "0" upon success */ int send_request_init( struct ssi_drvdata *drvdata, HwDesc_s *desc, unsigned int len) { void __iomem *cc_base = drvdata->cc_base; struct ssi_request_mgr_handle *req_mgr_h = drvdata->request_mgr_handle; unsigned int total_seq_len = len; /*initial sequence length*/ int rc = 0; /* Wait for space in HW and SW FIFO. Poll for as much as FIFO_TIMEOUT. */ rc = request_mgr_queues_status_check(req_mgr_h, cc_base, total_seq_len); if (unlikely(rc != 0 )) { return rc; } HW_DESC_SET_QUEUE_LAST_IND(&desc[len-1]); enqueue_seq(cc_base, desc, len); /* Update the free slots in HW queue */ req_mgr_h->q_free_slots = CC_HAL_READ_REGISTER( CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_CONTENT)); return 0; } void complete_request(struct ssi_drvdata *drvdata) { struct ssi_request_mgr_handle *request_mgr_handle = drvdata->request_mgr_handle; #ifdef COMP_IN_WQ queue_delayed_work(request_mgr_handle->workq, &request_mgr_handle->compwork, 0); #else tasklet_schedule(&request_mgr_handle->comptask); #endif } #ifdef COMP_IN_WQ static void comp_work_handler(struct work_struct *work) { struct ssi_drvdata *drvdata = container_of(work, struct ssi_drvdata, compwork.work); comp_handler((unsigned long)drvdata); } #endif static void proc_completions(struct ssi_drvdata *drvdata) { struct ssi_crypto_req *ssi_req; struct platform_device *plat_dev = drvdata->plat_dev; struct ssi_request_mgr_handle * request_mgr_handle = drvdata->request_mgr_handle; #if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP) int rc = 0; #endif DECL_CYCLE_COUNT_RESOURCES; while(request_mgr_handle->axi_completed) { request_mgr_handle->axi_completed--; /* Dequeue request */ if (unlikely(request_mgr_handle->req_queue_head == request_mgr_handle->req_queue_tail)) { SSI_LOG_ERR("Request queue is empty req_queue_head==req_queue_tail==%u\n", request_mgr_handle->req_queue_head); BUG(); } ssi_req = &request_mgr_handle->req_queue[request_mgr_handle->req_queue_tail]; END_CYCLE_COUNT_AT(ssi_req->submit_cycle, ssi_req->op_type, STAT_PHASE_5); /* Seq. Comp. */ END_CC_MONITOR_COUNT(drvdata->cc_base, ssi_req->op_type, STAT_PHASE_6, drvdata->monitor_null_cycles, &request_mgr_handle->monitor_lock, ssi_req->is_monitored_p); #ifdef FLUSH_CACHE_ALL flush_cache_all(); #endif #ifdef COMPLETION_DELAY /* Delay */ { uint32_t axi_err; int i; SSI_LOG_INFO("Delay\n"); for (i=0;i<1000000;i++) { axi_err = READ_REGISTER(drvdata->cc_base + CC_REG_OFFSET(CRY_KERNEL, AXIM_MON_ERR)); } } #endif /* COMPLETION_DELAY */ if (likely(ssi_req->user_cb != NULL)) { START_CYCLE_COUNT(); ssi_req->user_cb(&plat_dev->dev, ssi_req->user_arg, drvdata->cc_base); END_CYCLE_COUNT(STAT_OP_TYPE_GENERIC, STAT_PHASE_3); } request_mgr_handle->req_queue_tail = (request_mgr_handle->req_queue_tail + 1) & (MAX_REQUEST_QUEUE_SIZE - 1); SSI_LOG_DEBUG("Dequeue request tail=%u\n", request_mgr_handle->req_queue_tail); SSI_LOG_DEBUG("Request completed. axi_completed=%d\n", request_mgr_handle->axi_completed); #if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP) rc = ssi_power_mgr_runtime_put_suspend(&plat_dev->dev); if (rc != 0) { SSI_LOG_ERR("Failed to set runtime suspension %d\n",rc); } #endif } } /* Deferred service handler, run as interrupt-fired tasklet */ static void comp_handler(unsigned long devarg) { struct ssi_drvdata *drvdata = (struct ssi_drvdata *)devarg; void __iomem *cc_base = drvdata->cc_base; struct ssi_request_mgr_handle * request_mgr_handle = drvdata->request_mgr_handle; uint32_t irq; DECL_CYCLE_COUNT_RESOURCES; START_CYCLE_COUNT(); irq = (drvdata->irq & SSI_COMP_IRQ_MASK); if (irq & SSI_COMP_IRQ_MASK) { /* To avoid the interrupt from firing as we unmask it, we clear it now */ CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_ICR), SSI_COMP_IRQ_MASK); /* Avoid race with above clear: Test completion counter once more */ request_mgr_handle->axi_completed += CC_REG_FLD_GET(CRY_KERNEL, AXIM_MON_COMP, VALUE, CC_HAL_READ_REGISTER(AXIM_MON_BASE_OFFSET)); /* ISR-to-Tasklet latency */ if (request_mgr_handle->axi_completed) { /* Only if actually reflects ISR-to-completion-handling latency, i.e., not duplicate as a result of interrupt after AXIM_MON_ERR clear, before end of loop */ END_CYCLE_COUNT_AT(drvdata->isr_exit_cycles, STAT_OP_TYPE_GENERIC, STAT_PHASE_1); } while (request_mgr_handle->axi_completed) { do { proc_completions(drvdata); /* At this point (after proc_completions()), request_mgr_handle->axi_completed is always 0. The following assignment was changed to = (previously was +=) to conform KW restrictions. */ request_mgr_handle->axi_completed = CC_REG_FLD_GET(CRY_KERNEL, AXIM_MON_COMP, VALUE, CC_HAL_READ_REGISTER(AXIM_MON_BASE_OFFSET)); } while (request_mgr_handle->axi_completed > 0); /* To avoid the interrupt from firing as we unmask it, we clear it now */ CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_ICR), SSI_COMP_IRQ_MASK); /* Avoid race with above clear: Test completion counter once more */ request_mgr_handle->axi_completed += CC_REG_FLD_GET(CRY_KERNEL, AXIM_MON_COMP, VALUE, CC_HAL_READ_REGISTER(AXIM_MON_BASE_OFFSET)); } } /* after verifing that there is nothing to do, Unmask AXI completion interrupt */ CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_IMR), CC_HAL_READ_REGISTER( CC_REG_OFFSET(HOST_RGF, HOST_IMR)) & ~irq); END_CYCLE_COUNT(STAT_OP_TYPE_GENERIC, STAT_PHASE_2); } /* resume the queue configuration - no need to take the lock as this happens inside the spin lock protection */ #if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP) int ssi_request_mgr_runtime_resume_queue(struct ssi_drvdata *drvdata) { struct ssi_request_mgr_handle * request_mgr_handle = drvdata->request_mgr_handle; spin_lock_bh(&request_mgr_handle->hw_lock); request_mgr_handle->is_runtime_suspended = false; spin_unlock_bh(&request_mgr_handle->hw_lock); return 0 ; } /* suspend the queue configuration. Since it is used for the runtime suspend only verify that the queue can be suspended. */ int ssi_request_mgr_runtime_suspend_queue(struct ssi_drvdata *drvdata) { struct ssi_request_mgr_handle * request_mgr_handle = drvdata->request_mgr_handle; /* lock the send_request */ spin_lock_bh(&request_mgr_handle->hw_lock); if (request_mgr_handle->req_queue_head != request_mgr_handle->req_queue_tail) { spin_unlock_bh(&request_mgr_handle->hw_lock); return -EBUSY; } request_mgr_handle->is_runtime_suspended = true; spin_unlock_bh(&request_mgr_handle->hw_lock); return 0; } bool ssi_request_mgr_is_queue_runtime_suspend(struct ssi_drvdata *drvdata) { struct ssi_request_mgr_handle * request_mgr_handle = drvdata->request_mgr_handle; return request_mgr_handle->is_runtime_suspended; } #endif