/* * Device driver for monitoring ambient light intensity in (lux) * and proximity detection (prox) within the TAOS TSL2X7X family of devices. * * Copyright (c) 2012, TAOS Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include "tsl2x7x.h" /* Cal defs*/ #define PROX_STAT_CAL 0 #define PROX_STAT_SAMP 1 #define MAX_SAMPLES_CAL 200 /* TSL2X7X Device ID */ #define TRITON_ID 0x00 #define SWORDFISH_ID 0x30 #define HALIBUT_ID 0x20 /* Lux calculation constants */ #define TSL2X7X_LUX_CALC_OVER_FLOW 65535 /* TAOS Register definitions - note: * depending on device, some of these register are not used and the * register address is benign. */ /* 2X7X register offsets */ #define TSL2X7X_MAX_CONFIG_REG 16 /* Device Registers and Masks */ #define TSL2X7X_CNTRL 0x00 #define TSL2X7X_ALS_TIME 0X01 #define TSL2X7X_PRX_TIME 0x02 #define TSL2X7X_WAIT_TIME 0x03 #define TSL2X7X_ALS_MINTHRESHLO 0X04 #define TSL2X7X_ALS_MINTHRESHHI 0X05 #define TSL2X7X_ALS_MAXTHRESHLO 0X06 #define TSL2X7X_ALS_MAXTHRESHHI 0X07 #define TSL2X7X_PRX_MINTHRESHLO 0X08 #define TSL2X7X_PRX_MINTHRESHHI 0X09 #define TSL2X7X_PRX_MAXTHRESHLO 0X0A #define TSL2X7X_PRX_MAXTHRESHHI 0X0B #define TSL2X7X_PERSISTENCE 0x0C #define TSL2X7X_PRX_CONFIG 0x0D #define TSL2X7X_PRX_COUNT 0x0E #define TSL2X7X_GAIN 0x0F #define TSL2X7X_NOTUSED 0x10 #define TSL2X7X_REVID 0x11 #define TSL2X7X_CHIPID 0x12 #define TSL2X7X_STATUS 0x13 #define TSL2X7X_ALS_CHAN0LO 0x14 #define TSL2X7X_ALS_CHAN0HI 0x15 #define TSL2X7X_ALS_CHAN1LO 0x16 #define TSL2X7X_ALS_CHAN1HI 0x17 #define TSL2X7X_PRX_LO 0x18 #define TSL2X7X_PRX_HI 0x19 /* tsl2X7X cmd reg masks */ #define TSL2X7X_CMD_REG 0x80 #define TSL2X7X_CMD_SPL_FN 0x60 #define TSL2X7X_CMD_PROX_INT_CLR 0X05 #define TSL2X7X_CMD_ALS_INT_CLR 0x06 #define TSL2X7X_CMD_PROXALS_INT_CLR 0X07 /* tsl2X7X cntrl reg masks */ #define TSL2X7X_CNTL_ADC_ENBL 0x02 #define TSL2X7X_CNTL_PWR_ON 0x01 /* tsl2X7X status reg masks */ #define TSL2X7X_STA_ADC_VALID 0x01 #define TSL2X7X_STA_PRX_VALID 0x02 #define TSL2X7X_STA_ADC_PRX_VALID (TSL2X7X_STA_ADC_VALID | \ TSL2X7X_STA_PRX_VALID) #define TSL2X7X_STA_ALS_INTR 0x10 #define TSL2X7X_STA_PRX_INTR 0x20 /* tsl2X7X cntrl reg masks */ #define TSL2X7X_CNTL_REG_CLEAR 0x00 #define TSL2X7X_CNTL_PROX_INT_ENBL 0X20 #define TSL2X7X_CNTL_ALS_INT_ENBL 0X10 #define TSL2X7X_CNTL_WAIT_TMR_ENBL 0X08 #define TSL2X7X_CNTL_PROX_DET_ENBL 0X04 #define TSL2X7X_CNTL_PWRON 0x01 #define TSL2X7X_CNTL_ALSPON_ENBL 0x03 #define TSL2X7X_CNTL_INTALSPON_ENBL 0x13 #define TSL2X7X_CNTL_PROXPON_ENBL 0x0F #define TSL2X7X_CNTL_INTPROXPON_ENBL 0x2F /*Prox diode to use */ #define TSL2X7X_DIODE0 0x01 #define TSL2X7X_DIODE1 0x02 #define TSL2X7X_DIODE_BOTH 0x03 /* LED Power */ #define TSL2X7X_100_mA 0x00 #define TSL2X7X_50_mA 0x01 #define TSL2X7X_25_mA 0x02 #define TSL2X7X_13_mA 0x03 #define TSL2X7X_MAX_TIMER_CNT 0xFF #define TSL2X7X_MIN_ITIME 3 /* TAOS txx2x7x Device family members */ enum { tsl2571, tsl2671, tmd2671, tsl2771, tmd2771, tsl2572, tsl2672, tmd2672, tsl2772, tmd2772 }; enum { TSL2X7X_CHIP_UNKNOWN = 0, TSL2X7X_CHIP_WORKING = 1, TSL2X7X_CHIP_SUSPENDED = 2 }; /* Per-device data */ struct tsl2x7x_als_info { u16 als_ch0; u16 als_ch1; u16 lux; }; struct tsl2x7x_prox_stat { int min; int max; int mean; unsigned long stddev; }; struct tsl2x7x_chip_info { int chan_table_elements; struct iio_chan_spec channel[4]; const struct iio_info *info; }; struct tsl2X7X_chip { kernel_ulong_t id; struct mutex prox_mutex; struct mutex als_mutex; struct i2c_client *client; u16 prox_data; struct tsl2x7x_als_info als_cur_info; struct tsl2x7x_settings settings; struct tsl2X7X_platform_data *pdata; int als_time_scale; int als_saturation; int tsl2x7x_chip_status; u8 tsl2x7x_config[TSL2X7X_MAX_CONFIG_REG]; const struct tsl2x7x_chip_info *chip_info; const struct iio_info *info; s64 event_timestamp; /* * This structure is intentionally large to accommodate * updates via sysfs. * Sized to 9 = max 8 segments + 1 termination segment */ struct tsl2x7x_lux tsl2x7x_device_lux[TSL2X7X_MAX_LUX_TABLE_SIZE]; }; /* Different devices require different coefficents */ static const struct tsl2x7x_lux tsl2x71_lux_table[TSL2X7X_DEF_LUX_TABLE_SZ] = { { 14461, 611, 1211 }, { 18540, 352, 623 }, { 0, 0, 0 }, }; static const struct tsl2x7x_lux tmd2x71_lux_table[TSL2X7X_DEF_LUX_TABLE_SZ] = { { 11635, 115, 256 }, { 15536, 87, 179 }, { 0, 0, 0 }, }; static const struct tsl2x7x_lux tsl2x72_lux_table[TSL2X7X_DEF_LUX_TABLE_SZ] = { { 14013, 466, 917 }, { 18222, 310, 552 }, { 0, 0, 0 }, }; static const struct tsl2x7x_lux tmd2x72_lux_table[TSL2X7X_DEF_LUX_TABLE_SZ] = { { 13218, 130, 262 }, { 17592, 92, 169 }, { 0, 0, 0 }, }; static const struct tsl2x7x_lux *tsl2x7x_default_lux_table_group[] = { [tsl2571] = tsl2x71_lux_table, [tsl2671] = tsl2x71_lux_table, [tmd2671] = tmd2x71_lux_table, [tsl2771] = tsl2x71_lux_table, [tmd2771] = tmd2x71_lux_table, [tsl2572] = tsl2x72_lux_table, [tsl2672] = tsl2x72_lux_table, [tmd2672] = tmd2x72_lux_table, [tsl2772] = tsl2x72_lux_table, [tmd2772] = tmd2x72_lux_table, }; static const struct tsl2x7x_settings tsl2x7x_default_settings = { .als_time = 219, /* 101 ms */ .als_gain = 0, .prx_time = 254, /* 5.4 ms */ .prox_gain = 0, .wait_time = 245, .prox_config = 0, .als_gain_trim = 1000, .als_cal_target = 150, .als_thresh_low = 200, .als_thresh_high = 256, .persistence = 255, .interrupts_en = 0, .prox_thres_low = 0, .prox_thres_high = 512, .prox_max_samples_cal = 30, .prox_pulse_count = 8, .prox_diode = TSL2X7X_DIODE1, .prox_power = TSL2X7X_100_mA }; static const s16 tsl2x7x_als_gain[] = { 1, 8, 16, 120 }; static const s16 tsl2x7x_prx_gain[] = { 1, 2, 4, 8 }; /* Channel variations */ enum { ALS, PRX, ALSPRX, PRX2, ALSPRX2, }; static const u8 device_channel_config[] = { ALS, PRX, PRX, ALSPRX, ALSPRX, ALS, PRX2, PRX2, ALSPRX2, ALSPRX2 }; static int tsl2x7x_clear_interrupts(struct tsl2X7X_chip *chip, int reg) { int ret; ret = i2c_smbus_write_byte(chip->client, TSL2X7X_CMD_REG | TSL2X7X_CMD_SPL_FN | reg); if (ret < 0) dev_err(&chip->client->dev, "%s: failed to clear interrupt status %x: %d\n", __func__, reg, ret); return ret; } static int tsl2x7x_read_status(struct tsl2X7X_chip *chip) { int ret; ret = i2c_smbus_read_byte_data(chip->client, TSL2X7X_CMD_REG | TSL2X7X_STATUS); if (ret < 0) dev_err(&chip->client->dev, "%s: failed to read STATUS register: %d\n", __func__, ret); return ret; } static int tsl2x7x_write_control_reg(struct tsl2X7X_chip *chip, u8 data) { int ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2X7X_CMD_REG | TSL2X7X_CNTRL, data); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to write to control register %x: %d\n", __func__, data, ret); } return ret; } /** * tsl2x7x_get_lux() - Reads and calculates current lux value. * @indio_dev: pointer to IIO device * * The raw ch0 and ch1 values of the ambient light sensed in the last * integration cycle are read from the device. * Time scale factor array values are adjusted based on the integration time. * The raw values are multiplied by a scale factor, and device gain is obtained * using gain index. Limit checks are done next, then the ratio of a multiple * of ch1 value, to the ch0 value, is calculated. Array tsl2x7x_device_lux[] * is then scanned to find the first ratio value that is just above the ratio * we just calculated. The ch0 and ch1 multiplier constants in the array are * then used along with the time scale factor array values, to calculate the * lux. */ static int tsl2x7x_get_lux(struct iio_dev *indio_dev) { u16 ch0, ch1; /* separated ch0/ch1 data from device */ u32 lux; /* raw lux calculated from device data */ u64 lux64; u32 ratio; u8 buf[4]; struct tsl2x7x_lux *p; struct tsl2X7X_chip *chip = iio_priv(indio_dev); int i, ret; u32 ch0lux = 0; u32 ch1lux = 0; mutex_lock(&chip->als_mutex); if (chip->tsl2x7x_chip_status != TSL2X7X_CHIP_WORKING) { /* device is not enabled */ dev_err(&chip->client->dev, "%s: device is not enabled\n", __func__); ret = -EBUSY; goto out_unlock; } ret = tsl2x7x_read_status(chip); if (ret < 0) goto out_unlock; /* is data new & valid */ if (!(ret & TSL2X7X_STA_ADC_VALID)) { dev_err(&chip->client->dev, "%s: data not valid yet\n", __func__); ret = chip->als_cur_info.lux; /* return LAST VALUE */ goto out_unlock; } for (i = 0; i < 4; i++) { int reg = TSL2X7X_CMD_REG | (TSL2X7X_ALS_CHAN0LO + i); ret = i2c_smbus_read_byte_data(chip->client, reg); if (ret < 0) { dev_err(&chip->client->dev, "failed to read. err=%x\n", ret); goto out_unlock; } buf[i] = ret; } ret = tsl2x7x_clear_interrupts(chip, TSL2X7X_CMD_ALS_INT_CLR); if (ret < 0) goto out_unlock; /* extract ALS/lux data */ ch0 = le16_to_cpup((const __le16 *)&buf[0]); ch1 = le16_to_cpup((const __le16 *)&buf[2]); chip->als_cur_info.als_ch0 = ch0; chip->als_cur_info.als_ch1 = ch1; if (ch0 >= chip->als_saturation || ch1 >= chip->als_saturation) { lux = TSL2X7X_LUX_CALC_OVER_FLOW; goto return_max; } if (!ch0) { /* have no data, so return LAST VALUE */ ret = chip->als_cur_info.lux; goto out_unlock; } /* calculate ratio */ ratio = (ch1 << 15) / ch0; /* convert to unscaled lux using the pointer to the table */ p = (struct tsl2x7x_lux *)chip->tsl2x7x_device_lux; while (p->ratio != 0 && p->ratio < ratio) p++; if (p->ratio == 0) { lux = 0; } else { lux = DIV_ROUND_UP(ch0 * p->ch0, tsl2x7x_als_gain[chip->settings.als_gain]) - DIV_ROUND_UP(ch1 * p->ch1, tsl2x7x_als_gain[chip->settings.als_gain]); } /* note: lux is 31 bit max at this point */ if (ch1lux > ch0lux) { dev_dbg(&chip->client->dev, "ch1lux > ch0lux-return last value\n"); ret = chip->als_cur_info.lux; goto out_unlock; } /* adjust for active time scale */ if (chip->als_time_scale == 0) lux = 0; else lux = (lux + (chip->als_time_scale >> 1)) / chip->als_time_scale; /* adjust for active gain scale * The tsl2x7x_device_lux tables have a factor of 256 built-in. * User-specified gain provides a multiplier. * Apply user-specified gain before shifting right to retain precision. * Use 64 bits to avoid overflow on multiplication. * Then go back to 32 bits before division to avoid using div_u64(). */ lux64 = lux; lux64 = lux64 * chip->settings.als_gain_trim; lux64 >>= 8; lux = lux64; lux = (lux + 500) / 1000; if (lux > TSL2X7X_LUX_CALC_OVER_FLOW) /* check for overflow */ lux = TSL2X7X_LUX_CALC_OVER_FLOW; /* Update the structure with the latest lux. */ return_max: chip->als_cur_info.lux = lux; ret = lux; out_unlock: mutex_unlock(&chip->als_mutex); return ret; } /** * tsl2x7x_get_prox() - Reads proximity data registers and updates * chip->prox_data. * * @indio_dev: pointer to IIO device */ static int tsl2x7x_get_prox(struct iio_dev *indio_dev) { int i; int ret; u8 chdata[2]; struct tsl2X7X_chip *chip = iio_priv(indio_dev); mutex_lock(&chip->prox_mutex); ret = tsl2x7x_read_status(chip); if (ret < 0) goto prox_poll_err; switch (chip->id) { case tsl2571: case tsl2671: case tmd2671: case tsl2771: case tmd2771: if (!(ret & TSL2X7X_STA_ADC_VALID)) { ret = -EINVAL; goto prox_poll_err; } break; case tsl2572: case tsl2672: case tmd2672: case tsl2772: case tmd2772: if (!(ret & TSL2X7X_STA_PRX_VALID)) { ret = -EINVAL; goto prox_poll_err; } break; } for (i = 0; i < 2; i++) { int reg = TSL2X7X_CMD_REG | (TSL2X7X_PRX_LO + i); ret = i2c_smbus_read_byte_data(chip->client, reg); if (ret < 0) goto prox_poll_err; chdata[i] = ret; } chip->prox_data = le16_to_cpup((const __le16 *)&chdata[0]); ret = chip->prox_data; prox_poll_err: mutex_unlock(&chip->prox_mutex); return ret; } /** * tsl2x7x_defaults() - Populates the device nominal operating parameters * with those provided by a 'platform' data struct or * with prefined defaults. * * @chip: pointer to device structure. */ static void tsl2x7x_defaults(struct tsl2X7X_chip *chip) { /* If Operational settings defined elsewhere.. */ if (chip->pdata && chip->pdata->platform_default_settings) memcpy(&chip->settings, chip->pdata->platform_default_settings, sizeof(tsl2x7x_default_settings)); else memcpy(&chip->settings, &tsl2x7x_default_settings, sizeof(tsl2x7x_default_settings)); /* Load up the proper lux table. */ if (chip->pdata && chip->pdata->platform_lux_table[0].ratio != 0) memcpy(chip->tsl2x7x_device_lux, chip->pdata->platform_lux_table, sizeof(chip->pdata->platform_lux_table)); else memcpy(chip->tsl2x7x_device_lux, tsl2x7x_default_lux_table_group[chip->id], TSL2X7X_DEFAULT_TABLE_BYTES); } /** * tsl2x7x_als_calibrate() - Obtain single reading and calculate * the als_gain_trim. * * @indio_dev: pointer to IIO device */ static int tsl2x7x_als_calibrate(struct iio_dev *indio_dev) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret, lux_val; ret = i2c_smbus_read_byte_data(chip->client, TSL2X7X_CMD_REG | TSL2X7X_CNTRL); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to read from the CNTRL register\n", __func__); return ret; } if ((ret & (TSL2X7X_CNTL_ADC_ENBL | TSL2X7X_CNTL_PWR_ON)) != (TSL2X7X_CNTL_ADC_ENBL | TSL2X7X_CNTL_PWR_ON)) { dev_err(&chip->client->dev, "%s: Device is not powered on and/or ADC is not enabled\n", __func__); return -EINVAL; } else if ((ret & TSL2X7X_STA_ADC_VALID) != TSL2X7X_STA_ADC_VALID) { dev_err(&chip->client->dev, "%s: The two ADC channels have not completed an integration cycle\n", __func__); return -ENODATA; } lux_val = tsl2x7x_get_lux(indio_dev); if (lux_val < 0) { dev_err(&chip->client->dev, "%s: failed to get lux\n", __func__); return lux_val; } ret = (chip->settings.als_cal_target * chip->settings.als_gain_trim) / lux_val; if (ret < 250 || ret > 4000) return -ERANGE; chip->settings.als_gain_trim = ret; dev_info(&chip->client->dev, "%s als_calibrate completed\n", chip->client->name); return ret; } static int tsl2x7x_chip_on(struct iio_dev *indio_dev) { int i; int ret = 0; u8 *dev_reg; int als_count; int als_time; struct tsl2X7X_chip *chip = iio_priv(indio_dev); u8 reg_val = 0; /* Non calculated parameters */ chip->tsl2x7x_config[TSL2X7X_PRX_TIME] = chip->settings.prx_time; chip->tsl2x7x_config[TSL2X7X_WAIT_TIME] = chip->settings.wait_time; chip->tsl2x7x_config[TSL2X7X_PRX_CONFIG] = chip->settings.prox_config; chip->tsl2x7x_config[TSL2X7X_ALS_MINTHRESHLO] = (chip->settings.als_thresh_low) & 0xFF; chip->tsl2x7x_config[TSL2X7X_ALS_MINTHRESHHI] = (chip->settings.als_thresh_low >> 8) & 0xFF; chip->tsl2x7x_config[TSL2X7X_ALS_MAXTHRESHLO] = (chip->settings.als_thresh_high) & 0xFF; chip->tsl2x7x_config[TSL2X7X_ALS_MAXTHRESHHI] = (chip->settings.als_thresh_high >> 8) & 0xFF; chip->tsl2x7x_config[TSL2X7X_PERSISTENCE] = chip->settings.persistence; chip->tsl2x7x_config[TSL2X7X_PRX_COUNT] = chip->settings.prox_pulse_count; chip->tsl2x7x_config[TSL2X7X_PRX_MINTHRESHLO] = (chip->settings.prox_thres_low) & 0xFF; chip->tsl2x7x_config[TSL2X7X_PRX_MINTHRESHHI] = (chip->settings.prox_thres_low >> 8) & 0xFF; chip->tsl2x7x_config[TSL2X7X_PRX_MAXTHRESHLO] = (chip->settings.prox_thres_high) & 0xFF; chip->tsl2x7x_config[TSL2X7X_PRX_MAXTHRESHHI] = (chip->settings.prox_thres_high >> 8) & 0xFF; /* and make sure we're not already on */ if (chip->tsl2x7x_chip_status == TSL2X7X_CHIP_WORKING) { /* if forcing a register update - turn off, then on */ dev_info(&chip->client->dev, "device is already enabled\n"); return -EINVAL; } /* determine als integration register */ als_count = (chip->settings.als_time * 100 + 135) / 270; if (!als_count) als_count = 1; /* ensure at least one cycle */ /* convert back to time (encompasses overrides) */ als_time = (als_count * 27 + 5) / 10; chip->tsl2x7x_config[TSL2X7X_ALS_TIME] = 256 - als_count; /* Set the gain based on tsl2x7x_settings struct */ chip->tsl2x7x_config[TSL2X7X_GAIN] = (chip->settings.als_gain & 0xFF) | ((chip->settings.prox_gain & 0xFF) << 2) | (chip->settings.prox_diode << 4) | (chip->settings.prox_power << 6); /* set chip struct re scaling and saturation */ chip->als_saturation = als_count * 922; /* 90% of full scale */ chip->als_time_scale = (als_time + 25) / 50; /* * TSL2X7X Specific power-on / adc enable sequence * Power on the device 1st. */ ret = tsl2x7x_write_control_reg(chip, TSL2X7X_CNTL_PWR_ON); if (ret < 0) return ret; /* * Use the following shadow copy for our delay before enabling ADC. * Write all the registers. */ for (i = 0, dev_reg = chip->tsl2x7x_config; i < TSL2X7X_MAX_CONFIG_REG; i++) { ret = i2c_smbus_write_byte_data(chip->client, TSL2X7X_CMD_REG + i, *dev_reg++); if (ret < 0) { dev_err(&chip->client->dev, "failed on write to reg %d.\n", i); return ret; } } /* Power-on settling time */ usleep_range(3000, 3500); /* * NOW enable the ADC * initialize the desired mode of operation */ ret = tsl2x7x_write_control_reg(chip, TSL2X7X_CNTL_PWR_ON | TSL2X7X_CNTL_ADC_ENBL | TSL2X7X_CNTL_PROX_DET_ENBL); if (ret < 0) return ret; chip->tsl2x7x_chip_status = TSL2X7X_CHIP_WORKING; if (chip->settings.interrupts_en != 0) { dev_info(&chip->client->dev, "Setting Up Interrupt(s)\n"); reg_val = TSL2X7X_CNTL_PWR_ON | TSL2X7X_CNTL_ADC_ENBL; if (chip->settings.interrupts_en == 0x20 || chip->settings.interrupts_en == 0x30) reg_val |= TSL2X7X_CNTL_PROX_DET_ENBL; reg_val |= chip->settings.interrupts_en; ret = tsl2x7x_write_control_reg(chip, reg_val); if (ret < 0) return ret; ret = tsl2x7x_clear_interrupts(chip, TSL2X7X_CMD_PROXALS_INT_CLR); if (ret < 0) return ret; } return ret; } static int tsl2x7x_chip_off(struct iio_dev *indio_dev) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); /* turn device off */ chip->tsl2x7x_chip_status = TSL2X7X_CHIP_SUSPENDED; return tsl2x7x_write_control_reg(chip, 0x00); } /** * tsl2x7x_invoke_change * @indio_dev: pointer to IIO device * * Obtain and lock both ALS and PROX resources, * determine and save device state (On/Off), * cycle device to implement updated parameter, * put device back into proper state, and unlock * resource. */ static int tsl2x7x_invoke_change(struct iio_dev *indio_dev) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); int device_status = chip->tsl2x7x_chip_status; int ret; mutex_lock(&chip->als_mutex); mutex_lock(&chip->prox_mutex); if (device_status == TSL2X7X_CHIP_WORKING) { ret = tsl2x7x_chip_off(indio_dev); if (ret < 0) goto unlock; } ret = tsl2x7x_chip_on(indio_dev); unlock: mutex_unlock(&chip->prox_mutex); mutex_unlock(&chip->als_mutex); return ret; } static void tsl2x7x_prox_calculate(int *data, int length, struct tsl2x7x_prox_stat *stat) { int i; int sample_sum; int tmp; if (!length) length = 1; sample_sum = 0; stat->min = INT_MAX; stat->max = INT_MIN; for (i = 0; i < length; i++) { sample_sum += data[i]; stat->min = min(stat->min, data[i]); stat->max = max(stat->max, data[i]); } stat->mean = sample_sum / length; sample_sum = 0; for (i = 0; i < length; i++) { tmp = data[i] - stat->mean; sample_sum += tmp * tmp; } stat->stddev = int_sqrt((long)sample_sum / length); } /** * tsl2x7x_prox_cal() - Calculates std. and sets thresholds. * @indio_dev: pointer to IIO device * * Calculates a standard deviation based on the samples, * and sets the threshold accordingly. */ static int tsl2x7x_prox_cal(struct iio_dev *indio_dev) { int prox_history[MAX_SAMPLES_CAL + 1]; int i, ret; struct tsl2x7x_prox_stat prox_stat_data[2]; struct tsl2x7x_prox_stat *cal; struct tsl2X7X_chip *chip = iio_priv(indio_dev); u8 tmp_irq_settings; u8 current_state = chip->tsl2x7x_chip_status; if (chip->settings.prox_max_samples_cal > MAX_SAMPLES_CAL) { dev_err(&chip->client->dev, "max prox samples cal is too big: %d\n", chip->settings.prox_max_samples_cal); chip->settings.prox_max_samples_cal = MAX_SAMPLES_CAL; } /* have to stop to change settings */ ret = tsl2x7x_chip_off(indio_dev); if (ret < 0) return ret; /* Enable proximity detection save just in case prox not wanted yet*/ tmp_irq_settings = chip->settings.interrupts_en; chip->settings.interrupts_en |= TSL2X7X_CNTL_PROX_INT_ENBL; /*turn on device if not already on*/ ret = tsl2x7x_chip_on(indio_dev); if (ret < 0) return ret; /*gather the samples*/ for (i = 0; i < chip->settings.prox_max_samples_cal; i++) { usleep_range(15000, 17500); ret = tsl2x7x_get_prox(indio_dev); if (ret < 0) return ret; prox_history[i] = chip->prox_data; dev_info(&chip->client->dev, "2 i=%d prox data= %d\n", i, chip->prox_data); } ret = tsl2x7x_chip_off(indio_dev); if (ret < 0) return ret; cal = &prox_stat_data[PROX_STAT_CAL]; tsl2x7x_prox_calculate(prox_history, chip->settings.prox_max_samples_cal, cal); chip->settings.prox_thres_high = (cal->max << 1) - cal->mean; dev_info(&chip->client->dev, " cal min=%d mean=%d max=%d\n", cal->min, cal->mean, cal->max); dev_info(&chip->client->dev, "%s proximity threshold set to %d\n", chip->client->name, chip->settings.prox_thres_high); /* back to the way they were */ chip->settings.interrupts_en = tmp_irq_settings; if (current_state == TSL2X7X_CHIP_WORKING) { ret = tsl2x7x_chip_on(indio_dev); if (ret < 0) return ret; } return 0; } static ssize_t in_illuminance0_calibscale_available_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); switch (chip->id) { case tsl2571: case tsl2671: case tmd2671: case tsl2771: case tmd2771: return snprintf(buf, PAGE_SIZE, "%s\n", "1 8 16 128"); } return snprintf(buf, PAGE_SIZE, "%s\n", "1 8 16 120"); } static IIO_CONST_ATTR(in_proximity0_calibscale_available, "1 2 4 8"); static IIO_CONST_ATTR(in_illuminance0_integration_time_available, ".00272 - .696"); static ssize_t in_illuminance0_target_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); return snprintf(buf, PAGE_SIZE, "%d\n", chip->settings.als_cal_target); } static ssize_t in_illuminance0_target_input_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); unsigned long value; int ret; if (kstrtoul(buf, 0, &value)) return -EINVAL; if (value) chip->settings.als_cal_target = value; ret = tsl2x7x_invoke_change(indio_dev); if (ret < 0) return ret; return len; } static ssize_t in_illuminance0_calibrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); bool value; int ret; if (strtobool(buf, &value)) return -EINVAL; if (value) { ret = tsl2x7x_als_calibrate(indio_dev); if (ret < 0) return ret; } ret = tsl2x7x_invoke_change(indio_dev); if (ret < 0) return ret; return len; } static ssize_t in_illuminance0_lux_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); int i = 0; int offset = 0; while (i < TSL2X7X_MAX_LUX_TABLE_SIZE) { offset += snprintf(buf + offset, PAGE_SIZE, "%u,%u,%u,", chip->tsl2x7x_device_lux[i].ratio, chip->tsl2x7x_device_lux[i].ch0, chip->tsl2x7x_device_lux[i].ch1); if (chip->tsl2x7x_device_lux[i].ratio == 0) { /* * We just printed the first "0" entry. * Now get rid of the extra "," and break. */ offset--; break; } i++; } offset += snprintf(buf + offset, PAGE_SIZE, "\n"); return offset; } static ssize_t in_illuminance0_lux_table_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); int value[ARRAY_SIZE(chip->tsl2x7x_device_lux) * 3 + 1]; int n, ret; get_options(buf, ARRAY_SIZE(value), value); /* We now have an array of ints starting at value[1], and * enumerated by value[0]. * We expect each group of three ints is one table entry, * and the last table entry is all 0. */ n = value[0]; if ((n % 3) || n < 6 || n > ((ARRAY_SIZE(chip->tsl2x7x_device_lux) - 1) * 3)) { dev_info(dev, "LUX TABLE INPUT ERROR 1 Value[0]=%d\n", n); return -EINVAL; } if ((value[(n - 2)] | value[(n - 1)] | value[n]) != 0) { dev_info(dev, "LUX TABLE INPUT ERROR 2 Value[0]=%d\n", n); return -EINVAL; } if (chip->tsl2x7x_chip_status == TSL2X7X_CHIP_WORKING) { ret = tsl2x7x_chip_off(indio_dev); if (ret < 0) return ret; } /* Zero out the table */ memset(chip->tsl2x7x_device_lux, 0, sizeof(chip->tsl2x7x_device_lux)); memcpy(chip->tsl2x7x_device_lux, &value[1], (value[0] * 4)); ret = tsl2x7x_invoke_change(indio_dev); if (ret < 0) return ret; return len; } static ssize_t in_proximity0_calibrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); bool value; int ret; if (strtobool(buf, &value)) return -EINVAL; if (value) { ret = tsl2x7x_prox_cal(indio_dev); if (ret < 0) return ret; } ret = tsl2x7x_invoke_change(indio_dev); if (ret < 0) return ret; return len; } static int tsl2x7x_read_interrupt_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret; if (chan->type == IIO_INTENSITY) ret = !!(chip->settings.interrupts_en & 0x10); else ret = !!(chip->settings.interrupts_en & 0x20); return ret; } static int tsl2x7x_write_interrupt_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int val) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret; if (chan->type == IIO_INTENSITY) { if (val) chip->settings.interrupts_en |= 0x10; else chip->settings.interrupts_en &= 0x20; } else { if (val) chip->settings.interrupts_en |= 0x20; else chip->settings.interrupts_en &= 0x10; } ret = tsl2x7x_invoke_change(indio_dev); if (ret < 0) return ret; return 0; } static int tsl2x7x_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret = -EINVAL, y, z, filter_delay; u8 time; switch (info) { case IIO_EV_INFO_VALUE: if (chan->type == IIO_INTENSITY) { switch (dir) { case IIO_EV_DIR_RISING: chip->settings.als_thresh_high = val; ret = 0; break; case IIO_EV_DIR_FALLING: chip->settings.als_thresh_low = val; ret = 0; break; default: break; } } else { switch (dir) { case IIO_EV_DIR_RISING: chip->settings.prox_thres_high = val; ret = 0; break; case IIO_EV_DIR_FALLING: chip->settings.prox_thres_low = val; ret = 0; break; default: break; } } break; case IIO_EV_INFO_PERIOD: if (chan->type == IIO_INTENSITY) time = chip->settings.als_time; else time = chip->settings.prx_time; y = (TSL2X7X_MAX_TIMER_CNT - time) + 1; z = y * TSL2X7X_MIN_ITIME; filter_delay = DIV_ROUND_UP((val * 1000) + val2, z); if (chan->type == IIO_INTENSITY) { chip->settings.persistence &= 0xF0; chip->settings.persistence |= (filter_delay & 0x0F); dev_info(&chip->client->dev, "%s: ALS persistence = %d", __func__, filter_delay); } else { chip->settings.persistence &= 0x0F; chip->settings.persistence |= ((filter_delay << 4) & 0xF0); dev_info(&chip->client->dev, "%s: Proximity persistence = %d", __func__, filter_delay); } ret = 0; break; default: break; } if (ret < 0) return ret; return tsl2x7x_invoke_change(indio_dev); } static int tsl2x7x_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret = -EINVAL, filter_delay, mult; u8 time; switch (info) { case IIO_EV_INFO_VALUE: if (chan->type == IIO_INTENSITY) { switch (dir) { case IIO_EV_DIR_RISING: *val = chip->settings.als_thresh_high; ret = IIO_VAL_INT; break; case IIO_EV_DIR_FALLING: *val = chip->settings.als_thresh_low; ret = IIO_VAL_INT; break; default: break; } } else { switch (dir) { case IIO_EV_DIR_RISING: *val = chip->settings.prox_thres_high; ret = IIO_VAL_INT; break; case IIO_EV_DIR_FALLING: *val = chip->settings.prox_thres_low; ret = IIO_VAL_INT; break; default: break; } } break; case IIO_EV_INFO_PERIOD: if (chan->type == IIO_INTENSITY) { time = chip->settings.als_time; mult = chip->settings.persistence & 0x0F; } else { time = chip->settings.prx_time; mult = (chip->settings.persistence & 0xF0) >> 4; } /* Determine integration time */ *val = (TSL2X7X_MAX_TIMER_CNT - time) + 1; *val2 = *val * TSL2X7X_MIN_ITIME; filter_delay = *val2 * mult; *val = filter_delay / 1000; *val2 = filter_delay % 1000; ret = IIO_VAL_INT_PLUS_MICRO; break; default: break; } return ret; } static int tsl2x7x_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret = -EINVAL; struct tsl2X7X_chip *chip = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_LIGHT: tsl2x7x_get_lux(indio_dev); *val = chip->als_cur_info.lux; ret = IIO_VAL_INT; break; default: return -EINVAL; } break; case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_INTENSITY: tsl2x7x_get_lux(indio_dev); if (chan->channel == 0) *val = chip->als_cur_info.als_ch0; else *val = chip->als_cur_info.als_ch1; ret = IIO_VAL_INT; break; case IIO_PROXIMITY: tsl2x7x_get_prox(indio_dev); *val = chip->prox_data; ret = IIO_VAL_INT; break; default: return -EINVAL; } break; case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_LIGHT) *val = tsl2x7x_als_gain[chip->settings.als_gain]; else *val = tsl2x7x_prx_gain[chip->settings.prox_gain]; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_CALIBBIAS: *val = chip->settings.als_gain_trim; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_INT_TIME: *val = (TSL2X7X_MAX_TIMER_CNT - chip->settings.als_time) + 1; *val2 = ((*val * TSL2X7X_MIN_ITIME) % 1000) / 1000; ret = IIO_VAL_INT_PLUS_MICRO; break; default: ret = -EINVAL; } return ret; } static int tsl2x7x_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_INTENSITY) { switch (val) { case 1: chip->settings.als_gain = 0; break; case 8: chip->settings.als_gain = 1; break; case 16: chip->settings.als_gain = 2; break; case 120: switch (chip->id) { case tsl2572: case tsl2672: case tmd2672: case tsl2772: case tmd2772: return -EINVAL; } chip->settings.als_gain = 3; break; case 128: switch (chip->id) { case tsl2571: case tsl2671: case tmd2671: case tsl2771: case tmd2771: return -EINVAL; } chip->settings.als_gain = 3; break; default: return -EINVAL; } } else { switch (val) { case 1: chip->settings.prox_gain = 0; break; case 2: chip->settings.prox_gain = 1; break; case 4: chip->settings.prox_gain = 2; break; case 8: chip->settings.prox_gain = 3; break; default: return -EINVAL; } } break; case IIO_CHAN_INFO_CALIBBIAS: chip->settings.als_gain_trim = val; break; case IIO_CHAN_INFO_INT_TIME: chip->settings.als_time = TSL2X7X_MAX_TIMER_CNT - (val2 / TSL2X7X_MIN_ITIME); dev_info(&chip->client->dev, "%s: als time = %d", __func__, chip->settings.als_time); break; default: return -EINVAL; } return tsl2x7x_invoke_change(indio_dev); } static DEVICE_ATTR_RO(in_illuminance0_calibscale_available); static DEVICE_ATTR_RW(in_illuminance0_target_input); static DEVICE_ATTR_WO(in_illuminance0_calibrate); static DEVICE_ATTR_WO(in_proximity0_calibrate); static DEVICE_ATTR_RW(in_illuminance0_lux_table); /* Use the default register values to identify the Taos device */ static int tsl2x7x_device_id(int *id, int target) { switch (target) { case tsl2571: case tsl2671: case tsl2771: return (*id & 0xf0) == TRITON_ID; case tmd2671: case tmd2771: return (*id & 0xf0) == HALIBUT_ID; case tsl2572: case tsl2672: case tmd2672: case tsl2772: case tmd2772: return (*id & 0xf0) == SWORDFISH_ID; } return -EINVAL; } static irqreturn_t tsl2x7x_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct tsl2X7X_chip *chip = iio_priv(indio_dev); s64 timestamp = iio_get_time_ns(indio_dev); int ret; ret = tsl2x7x_read_status(chip); if (ret < 0) return ret; /* What type of interrupt do we need to process */ if (ret & TSL2X7X_STA_PRX_INTR) { tsl2x7x_get_prox(indio_dev); /* freshen data for ABI */ iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), timestamp); } if (ret & TSL2X7X_STA_ALS_INTR) { tsl2x7x_get_lux(indio_dev); /* freshen data for ABI */ iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), timestamp); } ret = tsl2x7x_clear_interrupts(chip, TSL2X7X_CMD_PROXALS_INT_CLR); if (ret < 0) return ret; return IRQ_HANDLED; } static struct attribute *tsl2x7x_ALS_device_attrs[] = { &dev_attr_in_illuminance0_calibscale_available.attr, &iio_const_attr_in_illuminance0_integration_time_available .dev_attr.attr, &dev_attr_in_illuminance0_target_input.attr, &dev_attr_in_illuminance0_calibrate.attr, &dev_attr_in_illuminance0_lux_table.attr, NULL }; static struct attribute *tsl2x7x_PRX_device_attrs[] = { &dev_attr_in_proximity0_calibrate.attr, NULL }; static struct attribute *tsl2x7x_ALSPRX_device_attrs[] = { &dev_attr_in_illuminance0_calibscale_available.attr, &iio_const_attr_in_illuminance0_integration_time_available .dev_attr.attr, &dev_attr_in_illuminance0_target_input.attr, &dev_attr_in_illuminance0_calibrate.attr, &dev_attr_in_illuminance0_lux_table.attr, NULL }; static struct attribute *tsl2x7x_PRX2_device_attrs[] = { &dev_attr_in_proximity0_calibrate.attr, &iio_const_attr_in_proximity0_calibscale_available.dev_attr.attr, NULL }; static struct attribute *tsl2x7x_ALSPRX2_device_attrs[] = { &dev_attr_in_illuminance0_calibscale_available.attr, &iio_const_attr_in_illuminance0_integration_time_available .dev_attr.attr, &dev_attr_in_illuminance0_target_input.attr, &dev_attr_in_illuminance0_calibrate.attr, &dev_attr_in_illuminance0_lux_table.attr, &dev_attr_in_proximity0_calibrate.attr, &iio_const_attr_in_proximity0_calibscale_available.dev_attr.attr, NULL }; static const struct attribute_group tsl2X7X_device_attr_group_tbl[] = { [ALS] = { .attrs = tsl2x7x_ALS_device_attrs, }, [PRX] = { .attrs = tsl2x7x_PRX_device_attrs, }, [ALSPRX] = { .attrs = tsl2x7x_ALSPRX_device_attrs, }, [PRX2] = { .attrs = tsl2x7x_PRX2_device_attrs, }, [ALSPRX2] = { .attrs = tsl2x7x_ALSPRX2_device_attrs, }, }; static const struct iio_info tsl2X7X_device_info[] = { [ALS] = { .attrs = &tsl2X7X_device_attr_group_tbl[ALS], .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_event_value, .write_event_value = &tsl2x7x_write_event_value, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, [PRX] = { .attrs = &tsl2X7X_device_attr_group_tbl[PRX], .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_event_value, .write_event_value = &tsl2x7x_write_event_value, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, [ALSPRX] = { .attrs = &tsl2X7X_device_attr_group_tbl[ALSPRX], .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_event_value, .write_event_value = &tsl2x7x_write_event_value, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, [PRX2] = { .attrs = &tsl2X7X_device_attr_group_tbl[PRX2], .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_event_value, .write_event_value = &tsl2x7x_write_event_value, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, [ALSPRX2] = { .attrs = &tsl2X7X_device_attr_group_tbl[ALSPRX2], .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_event_value, .write_event_value = &tsl2x7x_write_event_value, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, }; static const struct iio_event_spec tsl2x7x_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_PERIOD), }, }; static const struct tsl2x7x_chip_info tsl2x7x_chip_info_tbl[] = { [ALS] = { .channel = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_INT_TIME), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .event_spec = tsl2x7x_events, .num_event_specs = ARRAY_SIZE(tsl2x7x_events), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, }, }, .chan_table_elements = 3, .info = &tsl2X7X_device_info[ALS], }, [PRX] = { .channel = { { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .event_spec = tsl2x7x_events, .num_event_specs = ARRAY_SIZE(tsl2x7x_events), }, }, .chan_table_elements = 1, .info = &tsl2X7X_device_info[PRX], }, [ALSPRX] = { .channel = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_INT_TIME), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .event_spec = tsl2x7x_events, .num_event_specs = ARRAY_SIZE(tsl2x7x_events), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .event_spec = tsl2x7x_events, .num_event_specs = ARRAY_SIZE(tsl2x7x_events), }, }, .chan_table_elements = 4, .info = &tsl2X7X_device_info[ALSPRX], }, [PRX2] = { .channel = { { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE), .event_spec = tsl2x7x_events, .num_event_specs = ARRAY_SIZE(tsl2x7x_events), }, }, .chan_table_elements = 1, .info = &tsl2X7X_device_info[PRX2], }, [ALSPRX2] = { .channel = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_INT_TIME), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .event_spec = tsl2x7x_events, .num_event_specs = ARRAY_SIZE(tsl2x7x_events), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE), .event_spec = tsl2x7x_events, .num_event_specs = ARRAY_SIZE(tsl2x7x_events), }, }, .chan_table_elements = 4, .info = &tsl2X7X_device_info[ALSPRX2], }, }; static int tsl2x7x_probe(struct i2c_client *clientp, const struct i2c_device_id *id) { int ret; struct iio_dev *indio_dev; struct tsl2X7X_chip *chip; indio_dev = devm_iio_device_alloc(&clientp->dev, sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); chip->client = clientp; i2c_set_clientdata(clientp, indio_dev); ret = i2c_smbus_read_byte_data(chip->client, TSL2X7X_CMD_REG | TSL2X7X_CHIPID); if (ret < 0) return ret; if ((!tsl2x7x_device_id(&ret, id->driver_data)) || (tsl2x7x_device_id(&ret, id->driver_data) == -EINVAL)) { dev_info(&chip->client->dev, "%s: i2c device found does not match expected id\n", __func__); return -EINVAL; } ret = i2c_smbus_write_byte(clientp, TSL2X7X_CMD_REG | TSL2X7X_CNTRL); if (ret < 0) { dev_err(&clientp->dev, "write to cmd reg failed. err = %d\n", ret); return ret; } /* * ALS and PROX functions can be invoked via user space poll * or H/W interrupt. If busy return last sample. */ mutex_init(&chip->als_mutex); mutex_init(&chip->prox_mutex); chip->tsl2x7x_chip_status = TSL2X7X_CHIP_UNKNOWN; chip->pdata = dev_get_platdata(&clientp->dev); chip->id = id->driver_data; chip->chip_info = &tsl2x7x_chip_info_tbl[device_channel_config[id->driver_data]]; indio_dev->info = chip->chip_info->info; indio_dev->dev.parent = &clientp->dev; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->name = chip->client->name; indio_dev->channels = chip->chip_info->channel; indio_dev->num_channels = chip->chip_info->chan_table_elements; if (clientp->irq) { ret = devm_request_threaded_irq(&clientp->dev, clientp->irq, NULL, &tsl2x7x_event_handler, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "TSL2X7X_event", indio_dev); if (ret) { dev_err(&clientp->dev, "%s: irq request failed", __func__); return ret; } } /* Load up the defaults */ tsl2x7x_defaults(chip); /* Make sure the chip is on */ tsl2x7x_chip_on(indio_dev); ret = iio_device_register(indio_dev); if (ret) { dev_err(&clientp->dev, "%s: iio registration failed\n", __func__); return ret; } dev_info(&clientp->dev, "%s Light sensor found.\n", id->name); return 0; } static int tsl2x7x_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret = 0; if (chip->tsl2x7x_chip_status == TSL2X7X_CHIP_WORKING) { ret = tsl2x7x_chip_off(indio_dev); chip->tsl2x7x_chip_status = TSL2X7X_CHIP_SUSPENDED; } return ret; } static int tsl2x7x_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret = 0; if (chip->tsl2x7x_chip_status == TSL2X7X_CHIP_SUSPENDED) ret = tsl2x7x_chip_on(indio_dev); return ret; } static int tsl2x7x_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); tsl2x7x_chip_off(indio_dev); iio_device_unregister(indio_dev); return 0; } static const struct i2c_device_id tsl2x7x_idtable[] = { { "tsl2571", tsl2571 }, { "tsl2671", tsl2671 }, { "tmd2671", tmd2671 }, { "tsl2771", tsl2771 }, { "tmd2771", tmd2771 }, { "tsl2572", tsl2572 }, { "tsl2672", tsl2672 }, { "tmd2672", tmd2672 }, { "tsl2772", tsl2772 }, { "tmd2772", tmd2772 }, {} }; MODULE_DEVICE_TABLE(i2c, tsl2x7x_idtable); static const struct of_device_id tsl2x7x_of_match[] = { { .compatible = "amstaos,tsl2571" }, { .compatible = "amstaos,tsl2671" }, { .compatible = "amstaos,tmd2671" }, { .compatible = "amstaos,tsl2771" }, { .compatible = "amstaos,tmd2771" }, { .compatible = "amstaos,tsl2572" }, { .compatible = "amstaos,tsl2672" }, { .compatible = "amstaos,tmd2672" }, { .compatible = "amstaos,tsl2772" }, { .compatible = "amstaos,tmd2772" }, {} }; MODULE_DEVICE_TABLE(of, tsl2x7x_of_match); static const struct dev_pm_ops tsl2x7x_pm_ops = { .suspend = tsl2x7x_suspend, .resume = tsl2x7x_resume, }; /* Driver definition */ static struct i2c_driver tsl2x7x_driver = { .driver = { .name = "tsl2x7x", .of_match_table = tsl2x7x_of_match, .pm = &tsl2x7x_pm_ops, }, .id_table = tsl2x7x_idtable, .probe = tsl2x7x_probe, .remove = tsl2x7x_remove, }; module_i2c_driver(tsl2x7x_driver); MODULE_AUTHOR("J. August Brenner"); MODULE_DESCRIPTION("TAOS tsl2x7x ambient and proximity light sensor driver"); MODULE_LICENSE("GPL");