/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2012, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * libcfs/include/libcfs/libcfs_private.h * * Various defines for libcfs. * */ #ifndef __LIBCFS_PRIVATE_H__ #define __LIBCFS_PRIVATE_H__ #ifndef DEBUG_SUBSYSTEM # define DEBUG_SUBSYSTEM S_UNDEFINED #endif /* * When this is on, LASSERT macro includes check for assignment used instead * of equality check, but doesn't have unlikely(). Turn this on from time to * time to make test-builds. This shouldn't be on for production release. */ #define LASSERT_CHECKED (0) #define LASSERTF(cond, fmt, ...) \ do { \ if (unlikely(!(cond))) { \ LIBCFS_DEBUG_MSG_DATA_DECL(__msg_data, D_EMERG, NULL); \ libcfs_debug_msg(&__msg_data, \ "ASSERTION( %s ) failed: " fmt, #cond, \ ## __VA_ARGS__); \ lbug_with_loc(&__msg_data); \ } \ } while (0) #define LASSERT(cond) LASSERTF(cond, "\n") #ifdef CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK /** * This is for more expensive checks that one doesn't want to be enabled all * the time. LINVRNT() has to be explicitly enabled by * CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK option. */ # define LINVRNT(exp) LASSERT(exp) #else # define LINVRNT(exp) ((void)sizeof !!(exp)) #endif #define KLASSERT(e) LASSERT(e) void __noreturn lbug_with_loc(struct libcfs_debug_msg_data *); #define LBUG() \ do { \ LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, D_EMERG, NULL); \ lbug_with_loc(&msgdata); \ } while (0) #ifndef LIBCFS_VMALLOC_SIZE #define LIBCFS_VMALLOC_SIZE (2 << PAGE_CACHE_SHIFT) /* 2 pages */ #endif #define LIBCFS_ALLOC_PRE(size, mask) \ do { \ LASSERT(!in_interrupt() || \ ((size) <= LIBCFS_VMALLOC_SIZE && \ !gfpflags_allow_blocking(mask))); \ } while (0) #define LIBCFS_ALLOC_POST(ptr, size) \ do { \ if (unlikely((ptr) == NULL)) { \ CERROR("LNET: out of memory at %s:%d (tried to alloc '" \ #ptr "' = %d)\n", __FILE__, __LINE__, (int)(size)); \ } else { \ memset((ptr), 0, (size)); \ } \ } while (0) /** * allocate memory with GFP flags @mask */ #define LIBCFS_ALLOC_GFP(ptr, size, mask) \ do { \ LIBCFS_ALLOC_PRE((size), (mask)); \ (ptr) = (size) <= LIBCFS_VMALLOC_SIZE ? \ kmalloc((size), (mask)) : vmalloc(size); \ LIBCFS_ALLOC_POST((ptr), (size)); \ } while (0) /** * default allocator */ #define LIBCFS_ALLOC(ptr, size) \ LIBCFS_ALLOC_GFP(ptr, size, GFP_NOFS) /** * non-sleeping allocator */ #define LIBCFS_ALLOC_ATOMIC(ptr, size) \ LIBCFS_ALLOC_GFP(ptr, size, GFP_ATOMIC) /** * allocate memory for specified CPU partition * \a cptab != NULL, \a cpt is CPU partition id of \a cptab * \a cptab == NULL, \a cpt is HW NUMA node id */ #define LIBCFS_CPT_ALLOC_GFP(ptr, cptab, cpt, size, mask) \ do { \ LIBCFS_ALLOC_PRE((size), (mask)); \ (ptr) = (size) <= LIBCFS_VMALLOC_SIZE ? \ kmalloc_node((size), (mask), cfs_cpt_spread_node(cptab, cpt)) :\ vmalloc_node(size, cfs_cpt_spread_node(cptab, cpt)); \ LIBCFS_ALLOC_POST((ptr), (size)); \ } while (0) /** default numa allocator */ #define LIBCFS_CPT_ALLOC(ptr, cptab, cpt, size) \ LIBCFS_CPT_ALLOC_GFP(ptr, cptab, cpt, size, GFP_NOFS) #define LIBCFS_FREE(ptr, size) \ do { \ if (unlikely((ptr) == NULL)) { \ CERROR("LIBCFS: free NULL '" #ptr "' (%d bytes) at " \ "%s:%d\n", (int)(size), __FILE__, __LINE__); \ break; \ } \ kvfree(ptr); \ } while (0) /******************************************************************************/ /* htonl hack - either this, or compile with -O2. Stupid byteorder/generic.h */ #if defined(__GNUC__) && (__GNUC__ >= 2) && !defined(__OPTIMIZE__) #define ___htonl(x) __cpu_to_be32(x) #define ___htons(x) __cpu_to_be16(x) #define ___ntohl(x) __be32_to_cpu(x) #define ___ntohs(x) __be16_to_cpu(x) #define htonl(x) ___htonl(x) #define ntohl(x) ___ntohl(x) #define htons(x) ___htons(x) #define ntohs(x) ___ntohs(x) #endif void libcfs_run_upcall(char **argv); void libcfs_run_lbug_upcall(struct libcfs_debug_msg_data *); void libcfs_debug_dumplog(void); int libcfs_debug_init(unsigned long bufsize); int libcfs_debug_cleanup(void); int libcfs_debug_clear_buffer(void); int libcfs_debug_mark_buffer(const char *text); /* * allocate per-cpu-partition data, returned value is an array of pointers, * variable can be indexed by CPU ID. * cptable != NULL: size of array is number of CPU partitions * cptable == NULL: size of array is number of HW cores */ void *cfs_percpt_alloc(struct cfs_cpt_table *cptab, unsigned int size); /* * destroy per-cpu-partition variable */ void cfs_percpt_free(void *vars); int cfs_percpt_number(void *vars); void *cfs_percpt_current(void *vars); void *cfs_percpt_index(void *vars, int idx); #define cfs_percpt_for_each(var, i, vars) \ for (i = 0; i < cfs_percpt_number(vars) && \ ((var) = (vars)[i]) != NULL; i++) /* * allocate a variable array, returned value is an array of pointers. * Caller can specify length of array by count. */ void *cfs_array_alloc(int count, unsigned int size); void cfs_array_free(void *vars); #define LASSERT_ATOMIC_ENABLED (1) #if LASSERT_ATOMIC_ENABLED /** assert value of @a is equal to @v */ #define LASSERT_ATOMIC_EQ(a, v) \ do { \ LASSERTF(atomic_read(a) == v, \ "value: %d\n", atomic_read((a))); \ } while (0) /** assert value of @a is unequal to @v */ #define LASSERT_ATOMIC_NE(a, v) \ do { \ LASSERTF(atomic_read(a) != v, \ "value: %d\n", atomic_read((a))); \ } while (0) /** assert value of @a is little than @v */ #define LASSERT_ATOMIC_LT(a, v) \ do { \ LASSERTF(atomic_read(a) < v, \ "value: %d\n", atomic_read((a))); \ } while (0) /** assert value of @a is little/equal to @v */ #define LASSERT_ATOMIC_LE(a, v) \ do { \ LASSERTF(atomic_read(a) <= v, \ "value: %d\n", atomic_read((a))); \ } while (0) /** assert value of @a is great than @v */ #define LASSERT_ATOMIC_GT(a, v) \ do { \ LASSERTF(atomic_read(a) > v, \ "value: %d\n", atomic_read((a))); \ } while (0) /** assert value of @a is great/equal to @v */ #define LASSERT_ATOMIC_GE(a, v) \ do { \ LASSERTF(atomic_read(a) >= v, \ "value: %d\n", atomic_read((a))); \ } while (0) /** assert value of @a is great than @v1 and little than @v2 */ #define LASSERT_ATOMIC_GT_LT(a, v1, v2) \ do { \ int __v = atomic_read(a); \ LASSERTF(__v > v1 && __v < v2, "value: %d\n", __v); \ } while (0) /** assert value of @a is great than @v1 and little/equal to @v2 */ #define LASSERT_ATOMIC_GT_LE(a, v1, v2) \ do { \ int __v = atomic_read(a); \ LASSERTF(__v > v1 && __v <= v2, "value: %d\n", __v); \ } while (0) /** assert value of @a is great/equal to @v1 and little than @v2 */ #define LASSERT_ATOMIC_GE_LT(a, v1, v2) \ do { \ int __v = atomic_read(a); \ LASSERTF(__v >= v1 && __v < v2, "value: %d\n", __v); \ } while (0) /** assert value of @a is great/equal to @v1 and little/equal to @v2 */ #define LASSERT_ATOMIC_GE_LE(a, v1, v2) \ do { \ int __v = atomic_read(a); \ LASSERTF(__v >= v1 && __v <= v2, "value: %d\n", __v); \ } while (0) #else /* !LASSERT_ATOMIC_ENABLED */ #define LASSERT_ATOMIC_EQ(a, v) do {} while (0) #define LASSERT_ATOMIC_NE(a, v) do {} while (0) #define LASSERT_ATOMIC_LT(a, v) do {} while (0) #define LASSERT_ATOMIC_LE(a, v) do {} while (0) #define LASSERT_ATOMIC_GT(a, v) do {} while (0) #define LASSERT_ATOMIC_GE(a, v) do {} while (0) #define LASSERT_ATOMIC_GT_LT(a, v1, v2) do {} while (0) #define LASSERT_ATOMIC_GT_LE(a, v1, v2) do {} while (0) #define LASSERT_ATOMIC_GE_LT(a, v1, v2) do {} while (0) #define LASSERT_ATOMIC_GE_LE(a, v1, v2) do {} while (0) #endif /* LASSERT_ATOMIC_ENABLED */ #define LASSERT_ATOMIC_ZERO(a) LASSERT_ATOMIC_EQ(a, 0) #define LASSERT_ATOMIC_POS(a) LASSERT_ATOMIC_GT(a, 0) #define CFS_ALLOC_PTR(ptr) LIBCFS_ALLOC(ptr, sizeof(*(ptr))) #define CFS_FREE_PTR(ptr) LIBCFS_FREE(ptr, sizeof(*(ptr))) /* * percpu partition lock * * There are some use-cases like this in Lustre: * . each CPU partition has it's own private data which is frequently changed, * and mostly by the local CPU partition. * . all CPU partitions share some global data, these data are rarely changed. * * LNet is typical example. * CPU partition lock is designed for this kind of use-cases: * . each CPU partition has it's own private lock * . change on private data just needs to take the private lock * . read on shared data just needs to take _any_ of private locks * . change on shared data needs to take _all_ private locks, * which is slow and should be really rare. */ enum { CFS_PERCPT_LOCK_EX = -1, /* negative */ }; struct cfs_percpt_lock { /* cpu-partition-table for this lock */ struct cfs_cpt_table *pcl_cptab; /* exclusively locked */ unsigned int pcl_locked; /* private lock table */ spinlock_t **pcl_locks; }; /* return number of private locks */ static inline int cfs_percpt_lock_num(struct cfs_percpt_lock *pcl) { return cfs_cpt_number(pcl->pcl_cptab); } /* * create a cpu-partition lock based on CPU partition table \a cptab, * each private lock has extra \a psize bytes padding data */ struct cfs_percpt_lock *cfs_percpt_lock_alloc(struct cfs_cpt_table *cptab); /* destroy a cpu-partition lock */ void cfs_percpt_lock_free(struct cfs_percpt_lock *pcl); /* lock private lock \a index of \a pcl */ void cfs_percpt_lock(struct cfs_percpt_lock *pcl, int index); /* unlock private lock \a index of \a pcl */ void cfs_percpt_unlock(struct cfs_percpt_lock *pcl, int index); /* create percpt (atomic) refcount based on @cptab */ atomic_t **cfs_percpt_atomic_alloc(struct cfs_cpt_table *cptab, int val); /* destroy percpt refcount */ void cfs_percpt_atomic_free(atomic_t **refs); /* return sum of all percpu refs */ int cfs_percpt_atomic_summary(atomic_t **refs); /** Compile-time assertion. * Check an invariant described by a constant expression at compile time by * forcing a compiler error if it does not hold. \a cond must be a constant * expression as defined by the ISO C Standard: * * 6.8.4.2 The switch statement * .... * [#3] The expression of each case label shall be an integer * constant expression and no two of the case constant * expressions in the same switch statement shall have the same * value after conversion... * */ #define CLASSERT(cond) do {switch (42) {case (cond): case 0: break; } } while (0) /* max value for numeric network address */ #define MAX_NUMERIC_VALUE 0xffffffff /* implication */ #define ergo(a, b) (!(a) || (b)) /* logical equivalence */ #define equi(a, b) (!!(a) == !!(b)) /* -------------------------------------------------------------------- * Light-weight trace * Support for temporary event tracing with minimal Heisenberg effect. * -------------------------------------------------------------------- */ struct libcfs_device_userstate { int ldu_memhog_pages; struct page *ldu_memhog_root_page; }; #define MKSTR(ptr) ((ptr)) ? (ptr) : "" static inline int cfs_size_round4(int val) { return (val + 3) & (~0x3); } #ifndef HAVE_CFS_SIZE_ROUND static inline int cfs_size_round(int val) { return (val + 7) & (~0x7); } #define HAVE_CFS_SIZE_ROUND #endif static inline int cfs_size_round16(int val) { return (val + 0xf) & (~0xf); } static inline int cfs_size_round32(int val) { return (val + 0x1f) & (~0x1f); } static inline int cfs_size_round0(int val) { if (!val) return 0; return (val + 1 + 7) & (~0x7); } static inline size_t cfs_round_strlen(char *fset) { return (size_t)cfs_size_round((int)strlen(fset) + 1); } #define LOGL(var, len, ptr) \ do { \ if (var) \ memcpy((char *)ptr, (const char *)var, len); \ ptr += cfs_size_round(len); \ } while (0) #define LOGU(var, len, ptr) \ do { \ if (var) \ memcpy((char *)var, (const char *)ptr, len); \ ptr += cfs_size_round(len); \ } while (0) #define LOGL0(var, len, ptr) \ do { \ if (!len) \ break; \ memcpy((char *)ptr, (const char *)var, len); \ *((char *)(ptr) + len) = 0; \ ptr += cfs_size_round(len + 1); \ } while (0) #endif