// SPDX-License-Identifier: GPL-2.0 /* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2015, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. */ #define DEBUG_SUBSYSTEM S_MDC #include #include #include #include #include #include #include #include #include #include #include "mdc_internal.h" struct mdc_getattr_args { struct obd_export *ga_exp; struct md_enqueue_info *ga_minfo; }; int it_open_error(int phase, struct lookup_intent *it) { if (it_disposition(it, DISP_OPEN_LEASE)) { if (phase >= DISP_OPEN_LEASE) return it->it_status; else return 0; } if (it_disposition(it, DISP_OPEN_OPEN)) { if (phase >= DISP_OPEN_OPEN) return it->it_status; else return 0; } if (it_disposition(it, DISP_OPEN_CREATE)) { if (phase >= DISP_OPEN_CREATE) return it->it_status; else return 0; } if (it_disposition(it, DISP_LOOKUP_EXECD)) { if (phase >= DISP_LOOKUP_EXECD) return it->it_status; else return 0; } if (it_disposition(it, DISP_IT_EXECD)) { if (phase >= DISP_IT_EXECD) return it->it_status; else return 0; } CERROR("it disp: %X, status: %d\n", it->it_disposition, it->it_status); LBUG(); return 0; } EXPORT_SYMBOL(it_open_error); /* this must be called on a lockh that is known to have a referenced lock */ int mdc_set_lock_data(struct obd_export *exp, const struct lustre_handle *lockh, void *data, __u64 *bits) { struct ldlm_lock *lock; struct inode *new_inode = data; if (bits) *bits = 0; if (!lustre_handle_is_used(lockh)) return 0; lock = ldlm_handle2lock(lockh); LASSERT(lock); lock_res_and_lock(lock); if (lock->l_resource->lr_lvb_inode && lock->l_resource->lr_lvb_inode != data) { struct inode *old_inode = lock->l_resource->lr_lvb_inode; LASSERTF(old_inode->i_state & I_FREEING, "Found existing inode %p/%lu/%u state %lu in lock: setting data to %p/%lu/%u\n", old_inode, old_inode->i_ino, old_inode->i_generation, old_inode->i_state, new_inode, new_inode->i_ino, new_inode->i_generation); } lock->l_resource->lr_lvb_inode = new_inode; if (bits) *bits = lock->l_policy_data.l_inodebits.bits; unlock_res_and_lock(lock); LDLM_LOCK_PUT(lock); return 0; } enum ldlm_mode mdc_lock_match(struct obd_export *exp, __u64 flags, const struct lu_fid *fid, enum ldlm_type type, union ldlm_policy_data *policy, enum ldlm_mode mode, struct lustre_handle *lockh) { struct ldlm_res_id res_id; enum ldlm_mode rc; fid_build_reg_res_name(fid, &res_id); /* LU-4405: Clear bits not supported by server */ policy->l_inodebits.bits &= exp_connect_ibits(exp); rc = ldlm_lock_match(class_exp2obd(exp)->obd_namespace, flags, &res_id, type, policy, mode, lockh, 0); return rc; } int mdc_cancel_unused(struct obd_export *exp, const struct lu_fid *fid, union ldlm_policy_data *policy, enum ldlm_mode mode, enum ldlm_cancel_flags flags, void *opaque) { struct ldlm_res_id res_id; struct obd_device *obd = class_exp2obd(exp); int rc; fid_build_reg_res_name(fid, &res_id); rc = ldlm_cli_cancel_unused_resource(obd->obd_namespace, &res_id, policy, mode, flags, opaque); return rc; } int mdc_null_inode(struct obd_export *exp, const struct lu_fid *fid) { struct ldlm_res_id res_id; struct ldlm_resource *res; struct ldlm_namespace *ns = class_exp2obd(exp)->obd_namespace; LASSERTF(ns, "no namespace passed\n"); fid_build_reg_res_name(fid, &res_id); res = ldlm_resource_get(ns, NULL, &res_id, 0, 0); if (IS_ERR(res)) return 0; lock_res(res); res->lr_lvb_inode = NULL; unlock_res(res); ldlm_resource_putref(res); return 0; } static inline void mdc_clear_replay_flag(struct ptlrpc_request *req, int rc) { /* Don't hold error requests for replay. */ if (req->rq_replay) { spin_lock(&req->rq_lock); req->rq_replay = 0; spin_unlock(&req->rq_lock); } if (rc && req->rq_transno != 0) { DEBUG_REQ(D_ERROR, req, "transno returned on error rc %d", rc); LBUG(); } } /* Save a large LOV EA into the request buffer so that it is available * for replay. We don't do this in the initial request because the * original request doesn't need this buffer (at most it sends just the * lov_mds_md) and it is a waste of RAM/bandwidth to send the empty * buffer and may also be difficult to allocate and save a very large * request buffer for each open. (bug 5707) * * OOM here may cause recovery failure if lmm is needed (only for the * original open if the MDS crashed just when this client also OOM'd) * but this is incredibly unlikely, and questionable whether the client * could do MDS recovery under OOM anyways... */ static void mdc_realloc_openmsg(struct ptlrpc_request *req, struct mdt_body *body) { int rc; /* FIXME: remove this explicit offset. */ rc = sptlrpc_cli_enlarge_reqbuf(req, DLM_INTENT_REC_OFF + 4, body->mbo_eadatasize); if (rc) { CERROR("Can't enlarge segment %d size to %d\n", DLM_INTENT_REC_OFF + 4, body->mbo_eadatasize); body->mbo_valid &= ~OBD_MD_FLEASIZE; body->mbo_eadatasize = 0; } } static struct ptlrpc_request * mdc_intent_open_pack(struct obd_export *exp, struct lookup_intent *it, struct md_op_data *op_data) { struct ptlrpc_request *req; struct obd_device *obddev = class_exp2obd(exp); struct ldlm_intent *lit; const void *lmm = op_data->op_data; u32 lmmsize = op_data->op_data_size; LIST_HEAD(cancels); int count = 0; int mode; int rc; it->it_create_mode = (it->it_create_mode & ~S_IFMT) | S_IFREG; /* XXX: openlock is not cancelled for cross-refs. */ /* If inode is known, cancel conflicting OPEN locks. */ if (fid_is_sane(&op_data->op_fid2)) { if (it->it_flags & MDS_OPEN_LEASE) { /* try to get lease */ if (it->it_flags & FMODE_WRITE) mode = LCK_EX; else mode = LCK_PR; } else { if (it->it_flags & (FMODE_WRITE | MDS_OPEN_TRUNC)) mode = LCK_CW; else if (it->it_flags & __FMODE_EXEC) mode = LCK_PR; else mode = LCK_CR; } count = mdc_resource_get_unused(exp, &op_data->op_fid2, &cancels, mode, MDS_INODELOCK_OPEN); } /* If CREATE, cancel parent's UPDATE lock. */ if (it->it_op & IT_CREAT) mode = LCK_EX; else mode = LCK_CR; count += mdc_resource_get_unused(exp, &op_data->op_fid1, &cancels, mode, MDS_INODELOCK_UPDATE); req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_INTENT_OPEN); if (!req) { ldlm_lock_list_put(&cancels, l_bl_ast, count); return ERR_PTR(-ENOMEM); } req_capsule_set_size(&req->rq_pill, &RMF_NAME, RCL_CLIENT, op_data->op_namelen + 1); req_capsule_set_size(&req->rq_pill, &RMF_EADATA, RCL_CLIENT, max(lmmsize, obddev->u.cli.cl_default_mds_easize)); rc = ldlm_prep_enqueue_req(exp, req, &cancels, count); if (rc < 0) { ptlrpc_request_free(req); return ERR_PTR(rc); } spin_lock(&req->rq_lock); req->rq_replay = req->rq_import->imp_replayable; spin_unlock(&req->rq_lock); /* pack the intent */ lit = req_capsule_client_get(&req->rq_pill, &RMF_LDLM_INTENT); lit->opc = (__u64)it->it_op; /* pack the intended request */ mdc_open_pack(req, op_data, it->it_create_mode, 0, it->it_flags, lmm, lmmsize); req_capsule_set_size(&req->rq_pill, &RMF_MDT_MD, RCL_SERVER, obddev->u.cli.cl_max_mds_easize); ptlrpc_request_set_replen(req); return req; } static struct ptlrpc_request * mdc_intent_getxattr_pack(struct obd_export *exp, struct lookup_intent *it, struct md_op_data *op_data) { struct ptlrpc_request *req; struct ldlm_intent *lit; int rc, count = 0; u32 maxdata; LIST_HEAD(cancels); req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_INTENT_GETXATTR); if (!req) return ERR_PTR(-ENOMEM); rc = ldlm_prep_enqueue_req(exp, req, &cancels, count); if (rc) { ptlrpc_request_free(req); return ERR_PTR(rc); } /* pack the intent */ lit = req_capsule_client_get(&req->rq_pill, &RMF_LDLM_INTENT); lit->opc = IT_GETXATTR; maxdata = class_exp2cliimp(exp)->imp_connect_data.ocd_max_easize; /* pack the intended request */ mdc_pack_body(req, &op_data->op_fid1, op_data->op_valid, maxdata, -1, 0); req_capsule_set_size(&req->rq_pill, &RMF_EADATA, RCL_SERVER, maxdata); req_capsule_set_size(&req->rq_pill, &RMF_EAVALS, RCL_SERVER, maxdata); req_capsule_set_size(&req->rq_pill, &RMF_EAVALS_LENS, RCL_SERVER, maxdata); ptlrpc_request_set_replen(req); return req; } static struct ptlrpc_request *mdc_intent_unlink_pack(struct obd_export *exp, struct lookup_intent *it, struct md_op_data *op_data) { struct ptlrpc_request *req; struct obd_device *obddev = class_exp2obd(exp); struct ldlm_intent *lit; int rc; req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_INTENT_UNLINK); if (!req) return ERR_PTR(-ENOMEM); req_capsule_set_size(&req->rq_pill, &RMF_NAME, RCL_CLIENT, op_data->op_namelen + 1); rc = ldlm_prep_enqueue_req(exp, req, NULL, 0); if (rc) { ptlrpc_request_free(req); return ERR_PTR(rc); } /* pack the intent */ lit = req_capsule_client_get(&req->rq_pill, &RMF_LDLM_INTENT); lit->opc = (__u64)it->it_op; /* pack the intended request */ mdc_unlink_pack(req, op_data); req_capsule_set_size(&req->rq_pill, &RMF_MDT_MD, RCL_SERVER, obddev->u.cli.cl_default_mds_easize); ptlrpc_request_set_replen(req); return req; } static struct ptlrpc_request *mdc_intent_getattr_pack(struct obd_export *exp, struct lookup_intent *it, struct md_op_data *op_data) { struct ptlrpc_request *req; struct obd_device *obddev = class_exp2obd(exp); u64 valid = OBD_MD_FLGETATTR | OBD_MD_FLEASIZE | OBD_MD_FLMODEASIZE | OBD_MD_FLDIREA | OBD_MD_MEA | OBD_MD_FLACL; struct ldlm_intent *lit; int rc; u32 easize; req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_INTENT_GETATTR); if (!req) return ERR_PTR(-ENOMEM); req_capsule_set_size(&req->rq_pill, &RMF_NAME, RCL_CLIENT, op_data->op_namelen + 1); rc = ldlm_prep_enqueue_req(exp, req, NULL, 0); if (rc) { ptlrpc_request_free(req); return ERR_PTR(rc); } /* pack the intent */ lit = req_capsule_client_get(&req->rq_pill, &RMF_LDLM_INTENT); lit->opc = (__u64)it->it_op; if (obddev->u.cli.cl_default_mds_easize > 0) easize = obddev->u.cli.cl_default_mds_easize; else easize = obddev->u.cli.cl_max_mds_easize; /* pack the intended request */ mdc_getattr_pack(req, valid, it->it_flags, op_data, easize); req_capsule_set_size(&req->rq_pill, &RMF_MDT_MD, RCL_SERVER, easize); ptlrpc_request_set_replen(req); return req; } static struct ptlrpc_request *mdc_intent_layout_pack(struct obd_export *exp, struct lookup_intent *it, struct md_op_data *unused) { struct obd_device *obd = class_exp2obd(exp); struct ptlrpc_request *req; struct ldlm_intent *lit; struct layout_intent *layout; int rc; req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_INTENT_LAYOUT); if (!req) return ERR_PTR(-ENOMEM); req_capsule_set_size(&req->rq_pill, &RMF_EADATA, RCL_CLIENT, 0); rc = ldlm_prep_enqueue_req(exp, req, NULL, 0); if (rc) { ptlrpc_request_free(req); return ERR_PTR(rc); } /* pack the intent */ lit = req_capsule_client_get(&req->rq_pill, &RMF_LDLM_INTENT); lit->opc = (__u64)it->it_op; /* pack the layout intent request */ layout = req_capsule_client_get(&req->rq_pill, &RMF_LAYOUT_INTENT); /* LAYOUT_INTENT_ACCESS is generic, specific operation will be * set for replication */ layout->li_opc = LAYOUT_INTENT_ACCESS; req_capsule_set_size(&req->rq_pill, &RMF_DLM_LVB, RCL_SERVER, obd->u.cli.cl_default_mds_easize); ptlrpc_request_set_replen(req); return req; } static struct ptlrpc_request * mdc_enqueue_pack(struct obd_export *exp, int lvb_len) { struct ptlrpc_request *req; int rc; req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_ENQUEUE); if (!req) return ERR_PTR(-ENOMEM); rc = ldlm_prep_enqueue_req(exp, req, NULL, 0); if (rc) { ptlrpc_request_free(req); return ERR_PTR(rc); } req_capsule_set_size(&req->rq_pill, &RMF_DLM_LVB, RCL_SERVER, lvb_len); ptlrpc_request_set_replen(req); return req; } static int mdc_finish_enqueue(struct obd_export *exp, struct ptlrpc_request *req, struct ldlm_enqueue_info *einfo, struct lookup_intent *it, struct lustre_handle *lockh, int rc) { struct req_capsule *pill = &req->rq_pill; struct ldlm_request *lockreq; struct ldlm_reply *lockrep; struct ldlm_lock *lock; void *lvb_data = NULL; u32 lvb_len = 0; LASSERT(rc >= 0); /* Similarly, if we're going to replay this request, we don't want to * actually get a lock, just perform the intent. */ if (req->rq_transno || req->rq_replay) { lockreq = req_capsule_client_get(pill, &RMF_DLM_REQ); lockreq->lock_flags |= ldlm_flags_to_wire(LDLM_FL_INTENT_ONLY); } if (rc == ELDLM_LOCK_ABORTED) { einfo->ei_mode = 0; memset(lockh, 0, sizeof(*lockh)); rc = 0; } else { /* rc = 0 */ lock = ldlm_handle2lock(lockh); /* If the server gave us back a different lock mode, we should * fix up our variables. */ if (lock->l_req_mode != einfo->ei_mode) { ldlm_lock_addref(lockh, lock->l_req_mode); ldlm_lock_decref(lockh, einfo->ei_mode); einfo->ei_mode = lock->l_req_mode; } LDLM_LOCK_PUT(lock); } lockrep = req_capsule_server_get(pill, &RMF_DLM_REP); it->it_disposition = (int)lockrep->lock_policy_res1; it->it_status = (int)lockrep->lock_policy_res2; it->it_lock_mode = einfo->ei_mode; it->it_lock_handle = lockh->cookie; it->it_request = req; /* Technically speaking rq_transno must already be zero if * it_status is in error, so the check is a bit redundant */ if ((!req->rq_transno || it->it_status < 0) && req->rq_replay) mdc_clear_replay_flag(req, it->it_status); /* If we're doing an IT_OPEN which did not result in an actual * successful open, then we need to remove the bit which saves * this request for unconditional replay. * * It's important that we do this first! Otherwise we might exit the * function without doing so, and try to replay a failed create * (bug 3440) */ if (it->it_op & IT_OPEN && req->rq_replay && (!it_disposition(it, DISP_OPEN_OPEN) || it->it_status != 0)) mdc_clear_replay_flag(req, it->it_status); DEBUG_REQ(D_RPCTRACE, req, "op: %d disposition: %x, status: %d", it->it_op, it->it_disposition, it->it_status); /* We know what to expect, so we do any byte flipping required here */ if (it->it_op & (IT_OPEN | IT_UNLINK | IT_LOOKUP | IT_GETATTR)) { struct mdt_body *body; body = req_capsule_server_get(pill, &RMF_MDT_BODY); if (!body) { CERROR("Can't swab mdt_body\n"); return -EPROTO; } if (it_disposition(it, DISP_OPEN_OPEN) && !it_open_error(DISP_OPEN_OPEN, it)) { /* * If this is a successful OPEN request, we need to set * replay handler and data early, so that if replay * happens immediately after swabbing below, new reply * is swabbed by that handler correctly. */ mdc_set_open_replay_data(NULL, NULL, it); } if ((body->mbo_valid & (OBD_MD_FLDIREA | OBD_MD_FLEASIZE)) != 0) { void *eadata; mdc_update_max_ea_from_body(exp, body); /* * The eadata is opaque; just check that it is there. * Eventually, obd_unpackmd() will check the contents. */ eadata = req_capsule_server_sized_get(pill, &RMF_MDT_MD, body->mbo_eadatasize); if (!eadata) return -EPROTO; /* save lvb data and length in case this is for layout * lock */ lvb_data = eadata; lvb_len = body->mbo_eadatasize; /* * We save the reply LOV EA in case we have to replay a * create for recovery. If we didn't allocate a large * enough request buffer above we need to reallocate it * here to hold the actual LOV EA. * * To not save LOV EA if request is not going to replay * (for example error one). */ if ((it->it_op & IT_OPEN) && req->rq_replay) { void *lmm; if (req_capsule_get_size(pill, &RMF_EADATA, RCL_CLIENT) < body->mbo_eadatasize) mdc_realloc_openmsg(req, body); else req_capsule_shrink(pill, &RMF_EADATA, body->mbo_eadatasize, RCL_CLIENT); req_capsule_set_size(pill, &RMF_EADATA, RCL_CLIENT, body->mbo_eadatasize); lmm = req_capsule_client_get(pill, &RMF_EADATA); if (lmm) memcpy(lmm, eadata, body->mbo_eadatasize); } } } else if (it->it_op & IT_LAYOUT) { /* maybe the lock was granted right away and layout * is packed into RMF_DLM_LVB of req */ lvb_len = req_capsule_get_size(pill, &RMF_DLM_LVB, RCL_SERVER); if (lvb_len > 0) { lvb_data = req_capsule_server_sized_get(pill, &RMF_DLM_LVB, lvb_len); if (!lvb_data) return -EPROTO; } } /* fill in stripe data for layout lock */ lock = ldlm_handle2lock(lockh); if (lock && ldlm_has_layout(lock) && lvb_data) { void *lmm; LDLM_DEBUG(lock, "layout lock returned by: %s, lvb_len: %d", ldlm_it2str(it->it_op), lvb_len); lmm = kvzalloc(lvb_len, GFP_NOFS); if (!lmm) { LDLM_LOCK_PUT(lock); return -ENOMEM; } memcpy(lmm, lvb_data, lvb_len); /* install lvb_data */ lock_res_and_lock(lock); if (!lock->l_lvb_data) { lock->l_lvb_type = LVB_T_LAYOUT; lock->l_lvb_data = lmm; lock->l_lvb_len = lvb_len; lmm = NULL; } unlock_res_and_lock(lock); if (lmm) kvfree(lmm); } if (lock) LDLM_LOCK_PUT(lock); return rc; } /* We always reserve enough space in the reply packet for a stripe MD, because * we don't know in advance the file type. */ int mdc_enqueue(struct obd_export *exp, struct ldlm_enqueue_info *einfo, const union ldlm_policy_data *policy, struct lookup_intent *it, struct md_op_data *op_data, struct lustre_handle *lockh, u64 extra_lock_flags) { static const union ldlm_policy_data lookup_policy = { .l_inodebits = { MDS_INODELOCK_LOOKUP } }; static const union ldlm_policy_data update_policy = { .l_inodebits = { MDS_INODELOCK_UPDATE } }; static const union ldlm_policy_data layout_policy = { .l_inodebits = { MDS_INODELOCK_LAYOUT } }; static const union ldlm_policy_data getxattr_policy = { .l_inodebits = { MDS_INODELOCK_XATTR } }; struct obd_device *obddev = class_exp2obd(exp); struct ptlrpc_request *req = NULL; u64 flags, saved_flags = extra_lock_flags; struct ldlm_res_id res_id; int generation, resends = 0; struct ldlm_reply *lockrep; enum lvb_type lvb_type = LVB_T_NONE; int rc; LASSERTF(!it || einfo->ei_type == LDLM_IBITS, "lock type %d\n", einfo->ei_type); fid_build_reg_res_name(&op_data->op_fid1, &res_id); if (it) { LASSERT(!policy); saved_flags |= LDLM_FL_HAS_INTENT; if (it->it_op & (IT_UNLINK | IT_GETATTR | IT_READDIR)) policy = &update_policy; else if (it->it_op & IT_LAYOUT) policy = &layout_policy; else if (it->it_op & (IT_GETXATTR | IT_SETXATTR)) policy = &getxattr_policy; else policy = &lookup_policy; } generation = obddev->u.cli.cl_import->imp_generation; resend: flags = saved_flags; if (!it) { /* The only way right now is FLOCK. */ LASSERTF(einfo->ei_type == LDLM_FLOCK, "lock type %d\n", einfo->ei_type); res_id.name[3] = LDLM_FLOCK; } else if (it->it_op & IT_OPEN) { req = mdc_intent_open_pack(exp, it, op_data); } else if (it->it_op & IT_UNLINK) { req = mdc_intent_unlink_pack(exp, it, op_data); } else if (it->it_op & (IT_GETATTR | IT_LOOKUP)) { req = mdc_intent_getattr_pack(exp, it, op_data); } else if (it->it_op & IT_READDIR) { req = mdc_enqueue_pack(exp, 0); } else if (it->it_op & IT_LAYOUT) { if (!imp_connect_lvb_type(class_exp2cliimp(exp))) return -EOPNOTSUPP; req = mdc_intent_layout_pack(exp, it, op_data); lvb_type = LVB_T_LAYOUT; } else if (it->it_op & IT_GETXATTR) { req = mdc_intent_getxattr_pack(exp, it, op_data); } else { LBUG(); return -EINVAL; } if (IS_ERR(req)) return PTR_ERR(req); if (resends) { req->rq_generation_set = 1; req->rq_import_generation = generation; req->rq_sent = ktime_get_real_seconds() + resends; } /* It is important to obtain modify RPC slot first (if applicable), so * that threads that are waiting for a modify RPC slot are not polluting * our rpcs in flight counter. * We do not do flock request limiting, though */ if (it) { mdc_get_mod_rpc_slot(req, it); rc = obd_get_request_slot(&obddev->u.cli); if (rc != 0) { mdc_put_mod_rpc_slot(req, it); mdc_clear_replay_flag(req, 0); ptlrpc_req_finished(req); return rc; } } rc = ldlm_cli_enqueue(exp, &req, einfo, &res_id, policy, &flags, NULL, 0, lvb_type, lockh, 0); if (!it) { /* For flock requests we immediately return without further * delay and let caller deal with the rest, since rest of * this function metadata processing makes no sense for flock * requests anyway. But in case of problem during comms with * Server (ETIMEDOUT) or any signal/kill attempt (EINTR), we * can not rely on caller and this mainly for F_UNLCKs * (explicits or automatically generated by Kernel to clean * current FLocks upon exit) that can't be trashed */ if (((rc == -EINTR) || (rc == -ETIMEDOUT)) && (einfo->ei_type == LDLM_FLOCK) && (einfo->ei_mode == LCK_NL)) goto resend; return rc; } obd_put_request_slot(&obddev->u.cli); mdc_put_mod_rpc_slot(req, it); if (rc < 0) { CDEBUG(D_INFO, "%s: ldlm_cli_enqueue failed: rc = %d\n", obddev->obd_name, rc); mdc_clear_replay_flag(req, rc); ptlrpc_req_finished(req); return rc; } lockrep = req_capsule_server_get(&req->rq_pill, &RMF_DLM_REP); lockrep->lock_policy_res2 = ptlrpc_status_ntoh(lockrep->lock_policy_res2); /* * Retry infinitely when the server returns -EINPROGRESS for the * intent operation, when server returns -EINPROGRESS for acquiring * intent lock, we'll retry in after_reply(). */ if (it->it_op && (int)lockrep->lock_policy_res2 == -EINPROGRESS) { mdc_clear_replay_flag(req, rc); ptlrpc_req_finished(req); resends++; CDEBUG(D_HA, "%s: resend:%d op:%d " DFID "/" DFID "\n", obddev->obd_name, resends, it->it_op, PFID(&op_data->op_fid1), PFID(&op_data->op_fid2)); if (generation == obddev->u.cli.cl_import->imp_generation) { goto resend; } else { CDEBUG(D_HA, "resend cross eviction\n"); return -EIO; } } rc = mdc_finish_enqueue(exp, req, einfo, it, lockh, rc); if (rc < 0) { if (lustre_handle_is_used(lockh)) { ldlm_lock_decref(lockh, einfo->ei_mode); memset(lockh, 0, sizeof(*lockh)); } ptlrpc_req_finished(req); it->it_lock_handle = 0; it->it_lock_mode = 0; it->it_request = NULL; } return rc; } static int mdc_finish_intent_lock(struct obd_export *exp, struct ptlrpc_request *request, struct md_op_data *op_data, struct lookup_intent *it, struct lustre_handle *lockh) { struct lustre_handle old_lock; struct mdt_body *mdt_body; struct ldlm_lock *lock; int rc; LASSERT(request != LP_POISON); LASSERT(request->rq_repmsg != LP_POISON); if (it->it_op & IT_READDIR) return 0; if (!it_disposition(it, DISP_IT_EXECD)) { /* The server failed before it even started executing the * intent, i.e. because it couldn't unpack the request. */ LASSERT(it->it_status != 0); return it->it_status; } rc = it_open_error(DISP_IT_EXECD, it); if (rc) return rc; mdt_body = req_capsule_server_get(&request->rq_pill, &RMF_MDT_BODY); LASSERT(mdt_body); /* mdc_enqueue checked */ rc = it_open_error(DISP_LOOKUP_EXECD, it); if (rc) return rc; /* keep requests around for the multiple phases of the call * this shows the DISP_XX must guarantee we make it into the call */ if (!it_disposition(it, DISP_ENQ_CREATE_REF) && it_disposition(it, DISP_OPEN_CREATE) && !it_open_error(DISP_OPEN_CREATE, it)) { it_set_disposition(it, DISP_ENQ_CREATE_REF); ptlrpc_request_addref(request); /* balanced in ll_create_node */ } if (!it_disposition(it, DISP_ENQ_OPEN_REF) && it_disposition(it, DISP_OPEN_OPEN) && !it_open_error(DISP_OPEN_OPEN, it)) { it_set_disposition(it, DISP_ENQ_OPEN_REF); ptlrpc_request_addref(request); /* balanced in ll_file_open */ /* BUG 11546 - eviction in the middle of open rpc processing */ OBD_FAIL_TIMEOUT(OBD_FAIL_MDC_ENQUEUE_PAUSE, obd_timeout); } if (it->it_op & IT_CREAT) /* XXX this belongs in ll_create_it */ ; else if (it->it_op == IT_OPEN) LASSERT(!it_disposition(it, DISP_OPEN_CREATE)); else LASSERT(it->it_op & (IT_GETATTR | IT_LOOKUP | IT_LAYOUT)); /* If we already have a matching lock, then cancel the new * one. We have to set the data here instead of in * mdc_enqueue, because we need to use the child's inode as * the l_ast_data to match, and that's not available until * intent_finish has performed the iget().) */ lock = ldlm_handle2lock(lockh); if (lock) { union ldlm_policy_data policy = lock->l_policy_data; LDLM_DEBUG(lock, "matching against this"); LASSERTF(fid_res_name_eq(&mdt_body->mbo_fid1, &lock->l_resource->lr_name), "Lock res_id: " DLDLMRES ", fid: " DFID "\n", PLDLMRES(lock->l_resource), PFID(&mdt_body->mbo_fid1)); LDLM_LOCK_PUT(lock); memcpy(&old_lock, lockh, sizeof(*lockh)); if (ldlm_lock_match(NULL, LDLM_FL_BLOCK_GRANTED, NULL, LDLM_IBITS, &policy, LCK_NL, &old_lock, 0)) { ldlm_lock_decref_and_cancel(lockh, it->it_lock_mode); memcpy(lockh, &old_lock, sizeof(old_lock)); it->it_lock_handle = lockh->cookie; } } CDEBUG(D_DENTRY, "D_IT dentry %.*s intent: %s status %d disp %x rc %d\n", (int)op_data->op_namelen, op_data->op_name, ldlm_it2str(it->it_op), it->it_status, it->it_disposition, rc); return rc; } int mdc_revalidate_lock(struct obd_export *exp, struct lookup_intent *it, struct lu_fid *fid, __u64 *bits) { /* We could just return 1 immediately, but since we should only * be called in revalidate_it if we already have a lock, let's * verify that. */ struct ldlm_res_id res_id; struct lustre_handle lockh; union ldlm_policy_data policy; enum ldlm_mode mode; if (it->it_lock_handle) { lockh.cookie = it->it_lock_handle; mode = ldlm_revalidate_lock_handle(&lockh, bits); } else { fid_build_reg_res_name(fid, &res_id); switch (it->it_op) { case IT_GETATTR: /* File attributes are held under multiple bits: * nlink is under lookup lock, size and times are * under UPDATE lock and recently we've also got * a separate permissions lock for owner/group/acl that * were protected by lookup lock before. * Getattr must provide all of that information, * so we need to ensure we have all of those locks. * Unfortunately, if the bits are split across multiple * locks, there's no easy way to match all of them here, * so an extra RPC would be performed to fetch all * of those bits at once for now. */ /* For new MDTs(> 2.4), UPDATE|PERM should be enough, * but for old MDTs (< 2.4), permission is covered * by LOOKUP lock, so it needs to match all bits here. */ policy.l_inodebits.bits = MDS_INODELOCK_UPDATE | MDS_INODELOCK_LOOKUP | MDS_INODELOCK_PERM; break; case IT_READDIR: policy.l_inodebits.bits = MDS_INODELOCK_UPDATE; break; case IT_LAYOUT: policy.l_inodebits.bits = MDS_INODELOCK_LAYOUT; break; default: policy.l_inodebits.bits = MDS_INODELOCK_LOOKUP; break; } mode = mdc_lock_match(exp, LDLM_FL_BLOCK_GRANTED, fid, LDLM_IBITS, &policy, LCK_CR | LCK_CW | LCK_PR | LCK_PW, &lockh); } if (mode) { it->it_lock_handle = lockh.cookie; it->it_lock_mode = mode; } else { it->it_lock_handle = 0; it->it_lock_mode = 0; } return !!mode; } /* * This long block is all about fixing up the lock and request state * so that it is correct as of the moment _before_ the operation was * applied; that way, the VFS will think that everything is normal and * call Lustre's regular VFS methods. * * If we're performing a creation, that means that unless the creation * failed with EEXIST, we should fake up a negative dentry. * * For everything else, we want the lookup to succeed. * * One additional note: if CREATE or OPEN succeeded, we add an extra * reference to the request because we need to keep it around until * ll_create/ll_open gets called. * * The server will return to us, in it_disposition, an indication of * exactly what it_status refers to. * * If DISP_OPEN_OPEN is set, then it_status refers to the open() call, * otherwise if DISP_OPEN_CREATE is set, then it_status is the * creation failure mode. In either case, one of DISP_LOOKUP_NEG or * DISP_LOOKUP_POS will be set, indicating whether the child lookup * was successful. * * Else, if DISP_LOOKUP_EXECD then it_status is the rc of the * child lookup. */ int mdc_intent_lock(struct obd_export *exp, struct md_op_data *op_data, struct lookup_intent *it, struct ptlrpc_request **reqp, ldlm_blocking_callback cb_blocking, __u64 extra_lock_flags) { struct ldlm_enqueue_info einfo = { .ei_type = LDLM_IBITS, .ei_mode = it_to_lock_mode(it), .ei_cb_bl = cb_blocking, .ei_cb_cp = ldlm_completion_ast, }; struct lustre_handle lockh; int rc = 0; LASSERT(it); CDEBUG(D_DLMTRACE, "(name: %.*s," DFID ") in obj " DFID ", intent: %s flags %#Lo\n", (int)op_data->op_namelen, op_data->op_name, PFID(&op_data->op_fid2), PFID(&op_data->op_fid1), ldlm_it2str(it->it_op), it->it_flags); lockh.cookie = 0; if (fid_is_sane(&op_data->op_fid2) && (it->it_op & (IT_LOOKUP | IT_GETATTR | IT_READDIR))) { /* We could just return 1 immediately, but since we should only * be called in revalidate_it if we already have a lock, let's * verify that. */ it->it_lock_handle = 0; rc = mdc_revalidate_lock(exp, it, &op_data->op_fid2, NULL); /* Only return failure if it was not GETATTR by cfid * (from inode_revalidate) */ if (rc || op_data->op_namelen != 0) return rc; } /* For case if upper layer did not alloc fid, do it now. */ if (!fid_is_sane(&op_data->op_fid2) && it->it_op & IT_CREAT) { rc = mdc_fid_alloc(NULL, exp, &op_data->op_fid2, op_data); if (rc < 0) { CERROR("Can't alloc new fid, rc %d\n", rc); return rc; } } rc = mdc_enqueue(exp, &einfo, NULL, it, op_data, &lockh, extra_lock_flags); if (rc < 0) return rc; *reqp = it->it_request; rc = mdc_finish_intent_lock(exp, *reqp, op_data, it, &lockh); return rc; } static int mdc_intent_getattr_async_interpret(const struct lu_env *env, struct ptlrpc_request *req, void *args, int rc) { struct mdc_getattr_args *ga = args; struct obd_export *exp = ga->ga_exp; struct md_enqueue_info *minfo = ga->ga_minfo; struct ldlm_enqueue_info *einfo = &minfo->mi_einfo; struct lookup_intent *it; struct lustre_handle *lockh; struct obd_device *obddev; struct ldlm_reply *lockrep; __u64 flags = LDLM_FL_HAS_INTENT; it = &minfo->mi_it; lockh = &minfo->mi_lockh; obddev = class_exp2obd(exp); obd_put_request_slot(&obddev->u.cli); if (OBD_FAIL_CHECK(OBD_FAIL_MDC_GETATTR_ENQUEUE)) rc = -ETIMEDOUT; rc = ldlm_cli_enqueue_fini(exp, req, einfo->ei_type, 1, einfo->ei_mode, &flags, NULL, 0, lockh, rc); if (rc < 0) { CERROR("ldlm_cli_enqueue_fini: %d\n", rc); mdc_clear_replay_flag(req, rc); goto out; } lockrep = req_capsule_server_get(&req->rq_pill, &RMF_DLM_REP); lockrep->lock_policy_res2 = ptlrpc_status_ntoh(lockrep->lock_policy_res2); rc = mdc_finish_enqueue(exp, req, einfo, it, lockh, rc); if (rc) goto out; rc = mdc_finish_intent_lock(exp, req, &minfo->mi_data, it, lockh); out: minfo->mi_cb(req, minfo, rc); return 0; } int mdc_intent_getattr_async(struct obd_export *exp, struct md_enqueue_info *minfo) { struct md_op_data *op_data = &minfo->mi_data; struct lookup_intent *it = &minfo->mi_it; struct ptlrpc_request *req; struct mdc_getattr_args *ga; struct obd_device *obddev = class_exp2obd(exp); struct ldlm_res_id res_id; union ldlm_policy_data policy = { .l_inodebits = { MDS_INODELOCK_LOOKUP | MDS_INODELOCK_UPDATE } }; int rc = 0; __u64 flags = LDLM_FL_HAS_INTENT; CDEBUG(D_DLMTRACE, "name: %.*s in inode " DFID ", intent: %s flags %#Lo\n", (int)op_data->op_namelen, op_data->op_name, PFID(&op_data->op_fid1), ldlm_it2str(it->it_op), it->it_flags); fid_build_reg_res_name(&op_data->op_fid1, &res_id); req = mdc_intent_getattr_pack(exp, it, op_data); if (IS_ERR(req)) return PTR_ERR(req); rc = obd_get_request_slot(&obddev->u.cli); if (rc != 0) { ptlrpc_req_finished(req); return rc; } rc = ldlm_cli_enqueue(exp, &req, &minfo->mi_einfo, &res_id, &policy, &flags, NULL, 0, LVB_T_NONE, &minfo->mi_lockh, 1); if (rc < 0) { obd_put_request_slot(&obddev->u.cli); ptlrpc_req_finished(req); return rc; } BUILD_BUG_ON(sizeof(*ga) > sizeof(req->rq_async_args)); ga = ptlrpc_req_async_args(req); ga->ga_exp = exp; ga->ga_minfo = minfo; req->rq_interpret_reply = mdc_intent_getattr_async_interpret; ptlrpcd_add_req(req); return 0; }