// SPDX-License-Identifier: GPL-2.0 /* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Cavium Networks * * Some parts of the code were originally released under BSD license: * * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * This Software, including technical data, may be subject to U.S. export * control laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. */ #include #include #include #include #include #include #include #include #include "octeon-hcd.h" /** * enum cvmx_usb_speed - the possible USB device speeds * * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps */ enum cvmx_usb_speed { CVMX_USB_SPEED_HIGH = 0, CVMX_USB_SPEED_FULL = 1, CVMX_USB_SPEED_LOW = 2, }; /** * enum cvmx_usb_transfer - the possible USB transfer types * * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status * transfers * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low * priority periodic transfers * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority * transfers * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority * periodic transfers */ enum cvmx_usb_transfer { CVMX_USB_TRANSFER_CONTROL = 0, CVMX_USB_TRANSFER_ISOCHRONOUS = 1, CVMX_USB_TRANSFER_BULK = 2, CVMX_USB_TRANSFER_INTERRUPT = 3, }; /** * enum cvmx_usb_direction - the transfer directions * * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon */ enum cvmx_usb_direction { CVMX_USB_DIRECTION_OUT, CVMX_USB_DIRECTION_IN, }; /** * enum cvmx_usb_status - possible callback function status codes * * @CVMX_USB_STATUS_OK: The transaction / operation finished without * any errors * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight * by a user call to cvmx_usb_cancel * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected * error status * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response * from the device * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the * device even after a number of retries * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle * error even after a number of retries * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error * even after a number of retries */ enum cvmx_usb_status { CVMX_USB_STATUS_OK, CVMX_USB_STATUS_SHORT, CVMX_USB_STATUS_CANCEL, CVMX_USB_STATUS_ERROR, CVMX_USB_STATUS_STALL, CVMX_USB_STATUS_XACTERR, CVMX_USB_STATUS_DATATGLERR, CVMX_USB_STATUS_BABBLEERR, CVMX_USB_STATUS_FRAMEERR, }; /** * struct cvmx_usb_port_status - the USB port status information * * @port_enabled: 1 = Usb port is enabled, 0 = disabled * @port_over_current: 1 = Over current detected, 0 = Over current not * detected. Octeon doesn't support over current detection. * @port_powered: 1 = Port power is being supplied to the device, 0 = * power is off. Octeon doesn't support turning port power * off. * @port_speed: Current port speed. * @connected: 1 = A device is connected to the port, 0 = No device is * connected. * @connect_change: 1 = Device connected state changed since the last set * status call. */ struct cvmx_usb_port_status { u32 reserved : 25; u32 port_enabled : 1; u32 port_over_current : 1; u32 port_powered : 1; enum cvmx_usb_speed port_speed : 2; u32 connected : 1; u32 connect_change : 1; }; /** * struct cvmx_usb_iso_packet - descriptor for Isochronous packets * * @offset: This is the offset in bytes into the main buffer where this data * is stored. * @length: This is the length in bytes of the data. * @status: This is the status of this individual packet transfer. */ struct cvmx_usb_iso_packet { int offset; int length; enum cvmx_usb_status status; }; /** * enum cvmx_usb_initialize_flags - flags used by the initialization function * * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal * as clock source at USB_XO and * USB_XI. * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V * board clock source at USB_XO. * USB_XI should be tied to GND. * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or * crystal * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for * data transfer use for the USB */ enum cvmx_usb_initialize_flags { CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0, CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1, CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3, CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3, CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3, CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3, /* Bits 3-4 used to encode the clock frequency */ CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5, }; /** * enum cvmx_usb_pipe_flags - internal flags for a pipe. * * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is * actively using hardware. * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed * pipe is in the ping state. */ enum cvmx_usb_pipe_flags { CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17, CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18, }; /* Maximum number of times to retry failed transactions */ #define MAX_RETRIES 3 /* Maximum number of hardware channels supported by the USB block */ #define MAX_CHANNELS 8 /* * The low level hardware can transfer a maximum of this number of bytes in each * transfer. The field is 19 bits wide */ #define MAX_TRANSFER_BYTES ((1 << 19) - 1) /* * The low level hardware can transfer a maximum of this number of packets in * each transfer. The field is 10 bits wide */ #define MAX_TRANSFER_PACKETS ((1 << 10) - 1) /** * Logical transactions may take numerous low level * transactions, especially when splits are concerned. This * enum represents all of the possible stages a transaction can * be in. Note that split completes are always even. This is so * the NAK handler can backup to the previous low level * transaction with a simple clearing of bit 0. */ enum cvmx_usb_stage { CVMX_USB_STAGE_NON_CONTROL, CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE, CVMX_USB_STAGE_SETUP, CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE, CVMX_USB_STAGE_DATA, CVMX_USB_STAGE_DATA_SPLIT_COMPLETE, CVMX_USB_STAGE_STATUS, CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE, }; /** * struct cvmx_usb_transaction - describes each pending USB transaction * regardless of type. These are linked together * to form a list of pending requests for a pipe. * * @node: List node for transactions in the pipe. * @type: Type of transaction, duplicated of the pipe. * @flags: State flags for this transaction. * @buffer: User's physical buffer address to read/write. * @buffer_length: Size of the user's buffer in bytes. * @control_header: For control transactions, physical address of the 8 * byte standard header. * @iso_start_frame: For ISO transactions, the starting frame number. * @iso_number_packets: For ISO transactions, the number of packets in the * request. * @iso_packets: For ISO transactions, the sub packets in the request. * @actual_bytes: Actual bytes transfer for this transaction. * @stage: For control transactions, the current stage. * @urb: URB. */ struct cvmx_usb_transaction { struct list_head node; enum cvmx_usb_transfer type; u64 buffer; int buffer_length; u64 control_header; int iso_start_frame; int iso_number_packets; struct cvmx_usb_iso_packet *iso_packets; int xfersize; int pktcnt; int retries; int actual_bytes; enum cvmx_usb_stage stage; struct urb *urb; }; /** * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon * and some USB device. It contains a list of pending * request to the device. * * @node: List node for pipe list * @next: Pipe after this one in the list * @transactions: List of pending transactions * @interval: For periodic pipes, the interval between packets in * frames * @next_tx_frame: The next frame this pipe is allowed to transmit on * @flags: State flags for this pipe * @device_speed: Speed of device connected to this pipe * @transfer_type: Type of transaction supported by this pipe * @transfer_dir: IN or OUT. Ignored for Control * @multi_count: Max packet in a row for the device * @max_packet: The device's maximum packet size in bytes * @device_addr: USB device address at other end of pipe * @endpoint_num: USB endpoint number at other end of pipe * @hub_device_addr: Hub address this device is connected to * @hub_port: Hub port this device is connected to * @pid_toggle: This toggles between 0/1 on every packet send to track * the data pid needed * @channel: Hardware DMA channel for this pipe * @split_sc_frame: The low order bits of the frame number the split * complete should be sent on */ struct cvmx_usb_pipe { struct list_head node; struct list_head transactions; u64 interval; u64 next_tx_frame; enum cvmx_usb_pipe_flags flags; enum cvmx_usb_speed device_speed; enum cvmx_usb_transfer transfer_type; enum cvmx_usb_direction transfer_dir; int multi_count; u16 max_packet; u8 device_addr; u8 endpoint_num; u8 hub_device_addr; u8 hub_port; u8 pid_toggle; u8 channel; s8 split_sc_frame; }; struct cvmx_usb_tx_fifo { struct { int channel; int size; u64 address; } entry[MAX_CHANNELS + 1]; int head; int tail; }; /** * struct octeon_hcd - the state of the USB block * * lock: Serialization lock. * init_flags: Flags passed to initialize. * index: Which USB block this is for. * idle_hardware_channels: Bit set for every idle hardware channel. * usbcx_hprt: Stored port status so we don't need to read a CSR to * determine splits. * pipe_for_channel: Map channels to pipes. * pipe: Storage for pipes. * indent: Used by debug output to indent functions. * port_status: Last port status used for change notification. * idle_pipes: List of open pipes that have no transactions. * active_pipes: Active pipes indexed by transfer type. * frame_number: Increments every SOF interrupt for time keeping. * active_split: Points to the current active split, or NULL. */ struct octeon_hcd { spinlock_t lock; /* serialization lock */ int init_flags; int index; int idle_hardware_channels; union cvmx_usbcx_hprt usbcx_hprt; struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS]; int indent; struct cvmx_usb_port_status port_status; struct list_head idle_pipes; struct list_head active_pipes[4]; u64 frame_number; struct cvmx_usb_transaction *active_split; struct cvmx_usb_tx_fifo periodic; struct cvmx_usb_tx_fifo nonperiodic; }; /* * This macro logically sets a single field in a CSR. It does the sequence * read, modify, and write */ #define USB_SET_FIELD32(address, _union, field, value) \ do { \ union _union c; \ \ c.u32 = cvmx_usb_read_csr32(usb, address); \ c.s.field = value; \ cvmx_usb_write_csr32(usb, address, c.u32); \ } while (0) /* Returns the IO address to push/pop stuff data from the FIFOs */ #define USB_FIFO_ADDRESS(channel, usb_index) \ (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000) /** * struct octeon_temp_buffer - a bounce buffer for USB transfers * @orig_buffer: the original buffer passed by the USB stack * @data: the newly allocated temporary buffer (excluding meta-data) * * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If * the buffer is too short, we need to allocate a temporary one, and this struct * represents it. */ struct octeon_temp_buffer { void *orig_buffer; u8 data[0]; }; static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p) { return container_of((void *)p, struct usb_hcd, hcd_priv); } /** * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer * (if needed) * @urb: URB. * @mem_flags: Memory allocation flags. * * This function allocates a temporary bounce buffer whenever it's needed * due to HW limitations. */ static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags) { struct octeon_temp_buffer *temp; if (urb->num_sgs || urb->sg || (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) || !(urb->transfer_buffer_length % sizeof(u32))) return 0; temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) + sizeof(*temp), mem_flags); if (!temp) return -ENOMEM; temp->orig_buffer = urb->transfer_buffer; if (usb_urb_dir_out(urb)) memcpy(temp->data, urb->transfer_buffer, urb->transfer_buffer_length); urb->transfer_buffer = temp->data; urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; return 0; } /** * octeon_free_temp_buffer - free a temporary buffer used by USB transfers. * @urb: URB. * * Frees a buffer allocated by octeon_alloc_temp_buffer(). */ static void octeon_free_temp_buffer(struct urb *urb) { struct octeon_temp_buffer *temp; size_t length; if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) return; temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer, data); if (usb_urb_dir_in(urb)) { if (usb_pipeisoc(urb->pipe)) length = urb->transfer_buffer_length; else length = urb->actual_length; memcpy(temp->orig_buffer, urb->transfer_buffer, length); } urb->transfer_buffer = temp->orig_buffer; urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; kfree(temp); } /** * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma(). * @hcd: USB HCD structure. * @urb: URB. * @mem_flags: Memory allocation flags. */ static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { int ret; ret = octeon_alloc_temp_buffer(urb, mem_flags); if (ret) return ret; ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); if (ret) octeon_free_temp_buffer(urb); return ret; } /** * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma() * @hcd: USB HCD structure. * @urb: URB. */ static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) { usb_hcd_unmap_urb_for_dma(hcd, urb); octeon_free_temp_buffer(urb); } /** * Read a USB 32bit CSR. It performs the necessary address swizzle * for 32bit CSRs and logs the value in a readable format if * debugging is on. * * @usb: USB block this access is for * @address: 64bit address to read * * Returns: Result of the read */ static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address) { u32 result = cvmx_read64_uint32(address ^ 4); return result; } /** * Write a USB 32bit CSR. It performs the necessary address * swizzle for 32bit CSRs and logs the value in a readable format * if debugging is on. * * @usb: USB block this access is for * @address: 64bit address to write * @value: Value to write */ static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb, u64 address, u32 value) { cvmx_write64_uint32(address ^ 4, value); cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); } /** * Return non zero if this pipe connects to a non HIGH speed * device through a high speed hub. * * @usb: USB block this access is for * @pipe: Pipe to check * * Returns: Non zero if we need to do split transactions */ static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe) { return pipe->device_speed != CVMX_USB_SPEED_HIGH && usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH; } /** * Trivial utility function to return the correct PID for a pipe * * @pipe: pipe to check * * Returns: PID for pipe */ static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe) { if (pipe->pid_toggle) return 2; /* Data1 */ return 0; /* Data0 */ } /* Loops through register until txfflsh or rxfflsh become zero.*/ static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type) { int result; u64 address = CVMX_USBCX_GRSTCTL(usb->index); u64 done = cvmx_get_cycle() + 100 * (u64)octeon_get_clock_rate / 1000000; union cvmx_usbcx_grstctl c; while (1) { c.u32 = cvmx_usb_read_csr32(usb, address); if (fflsh_type == 0 && c.s.txfflsh == 0) { result = 0; break; } else if (fflsh_type == 1 && c.s.rxfflsh == 0) { result = 0; break; } else if (cvmx_get_cycle() > done) { result = -1; break; } __delay(100); } return result; } static void cvmx_fifo_setup(struct octeon_hcd *usb) { union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3; union cvmx_usbcx_gnptxfsiz npsiz; union cvmx_usbcx_hptxfsiz psiz; usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GHWCFG3(usb->index)); /* * Program the USBC_GRXFSIZ register to select the size of the receive * FIFO (25%). */ USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz, rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4); /* * Program the USBC_GNPTXFSIZ register to select the size and the start * address of the non-periodic transmit FIFO for nonperiodic * transactions (50%). */ npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index)); npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2; npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4; cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32); /* * Program the USBC_HPTXFSIZ register to select the size and start * address of the periodic transmit FIFO for periodic transactions * (25%). */ psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index)); psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4; psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4; cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32); /* Flush all FIFOs */ USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl, txfnum, 0x10); USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl, txfflsh, 1); cvmx_wait_tx_rx(usb, 0); USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl, rxfflsh, 1); cvmx_wait_tx_rx(usb, 1); } /** * Shutdown a USB port after a call to cvmx_usb_initialize(). * The port should be disabled with all pipes closed when this * function is called. * * @usb: USB device state populated by cvmx_usb_initialize(). * * Returns: 0 or a negative error code. */ static int cvmx_usb_shutdown(struct octeon_hcd *usb) { union cvmx_usbnx_clk_ctl usbn_clk_ctl; /* Make sure all pipes are closed */ if (!list_empty(&usb->idle_pipes) || !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) || !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) || !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) || !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK])) return -EBUSY; /* Disable the clocks and put them in power on reset */ usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index)); usbn_clk_ctl.s.enable = 1; usbn_clk_ctl.s.por = 1; usbn_clk_ctl.s.hclk_rst = 1; usbn_clk_ctl.s.prst = 0; usbn_clk_ctl.s.hrst = 0; cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); return 0; } /** * Initialize a USB port for use. This must be called before any * other access to the Octeon USB port is made. The port starts * off in the disabled state. * * @dev: Pointer to struct device for logging purposes. * @usb: Pointer to struct octeon_hcd. * * Returns: 0 or a negative error code. */ static int cvmx_usb_initialize(struct device *dev, struct octeon_hcd *usb) { int channel; int divisor; int retries = 0; union cvmx_usbcx_hcfg usbcx_hcfg; union cvmx_usbnx_clk_ctl usbn_clk_ctl; union cvmx_usbcx_gintsts usbc_gintsts; union cvmx_usbcx_gahbcfg usbcx_gahbcfg; union cvmx_usbcx_gintmsk usbcx_gintmsk; union cvmx_usbcx_gusbcfg usbcx_gusbcfg; union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status; retry: /* * Power On Reset and PHY Initialization * * 1. Wait for DCOK to assert (nothing to do) * * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0 */ usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index)); usbn_clk_ctl.s.por = 1; usbn_clk_ctl.s.hrst = 0; usbn_clk_ctl.s.prst = 0; usbn_clk_ctl.s.hclk_rst = 0; usbn_clk_ctl.s.enable = 0; /* * 2b. Select the USB reference clock/crystal parameters by writing * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON] */ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) { /* * The USB port uses 12/24/48MHz 2.5V board clock * source at USB_XO. USB_XI should be tied to GND. * Most Octeon evaluation boards require this setting */ if (OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */ usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */ else /* From CN52XX manual */ usbn_clk_ctl.s.p_rtype = 1; switch (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) { case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: usbn_clk_ctl.s.p_c_sel = 0; break; case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: usbn_clk_ctl.s.p_c_sel = 1; break; case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: usbn_clk_ctl.s.p_c_sel = 2; break; } } else { /* * The USB port uses a 12MHz crystal as clock source * at USB_XO and USB_XI */ if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) /* From CN31XX,CN30XX manual */ usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */ else /* From CN56XX,CN52XX,CN50XX manuals. */ usbn_clk_ctl.s.p_rtype = 0; usbn_clk_ctl.s.p_c_sel = 0; } /* * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down * such that USB is as close as possible to 125Mhz */ divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000); /* Lower than 4 doesn't seem to work properly */ if (divisor < 4) divisor = 4; usbn_clk_ctl.s.divide = divisor; usbn_clk_ctl.s.divide2 = 0; cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */ usbn_clk_ctl.s.hclk_rst = 1; cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */ __delay(64); /* * 3. Program the power-on reset field in the USBN clock-control * register: * USBN_CLK_CTL[POR] = 0 */ usbn_clk_ctl.s.por = 0; cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* 4. Wait 1 ms for PHY clock to start */ mdelay(1); /* * 5. Program the Reset input from automatic test equipment field in the * USBP control and status register: * USBN_USBP_CTL_STATUS[ATE_RESET] = 1 */ usbn_usbp_ctl_status.u64 = cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index)); usbn_usbp_ctl_status.s.ate_reset = 1; cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), usbn_usbp_ctl_status.u64); /* 6. Wait 10 cycles */ __delay(10); /* * 7. Clear ATE_RESET field in the USBN clock-control register: * USBN_USBP_CTL_STATUS[ATE_RESET] = 0 */ usbn_usbp_ctl_status.s.ate_reset = 0; cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), usbn_usbp_ctl_status.u64); /* * 8. Program the PHY reset field in the USBN clock-control register: * USBN_CLK_CTL[PRST] = 1 */ usbn_clk_ctl.s.prst = 1; cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* * 9. Program the USBP control and status register to select host or * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for * device */ usbn_usbp_ctl_status.s.hst_mode = 0; cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), usbn_usbp_ctl_status.u64); /* 10. Wait 1 us */ udelay(1); /* * 11. Program the hreset_n field in the USBN clock-control register: * USBN_CLK_CTL[HRST] = 1 */ usbn_clk_ctl.s.hrst = 1; cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* 12. Proceed to USB core initialization */ usbn_clk_ctl.s.enable = 1; cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); udelay(1); /* * USB Core Initialization * * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to * determine USB core configuration parameters. * * Nothing needed * * 2. Program the following fields in the global AHB configuration * register (USBC_GAHBCFG) * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode * Burst length, USBC_GAHBCFG[HBSTLEN] = 0 * Nonperiodic TxFIFO empty level (slave mode only), * USBC_GAHBCFG[NPTXFEMPLVL] * Periodic TxFIFO empty level (slave mode only), * USBC_GAHBCFG[PTXFEMPLVL] * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1 */ usbcx_gahbcfg.u32 = 0; usbcx_gahbcfg.s.dmaen = !(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA); usbcx_gahbcfg.s.hbstlen = 0; usbcx_gahbcfg.s.nptxfemplvl = 1; usbcx_gahbcfg.s.ptxfemplvl = 1; usbcx_gahbcfg.s.glblintrmsk = 1; cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index), usbcx_gahbcfg.u32); /* * 3. Program the following fields in USBC_GUSBCFG register. * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0 * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0 * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5 * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0 */ usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index)); usbcx_gusbcfg.s.toutcal = 0; usbcx_gusbcfg.s.ddrsel = 0; usbcx_gusbcfg.s.usbtrdtim = 0x5; usbcx_gusbcfg.s.phylpwrclksel = 0; cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index), usbcx_gusbcfg.u32); /* * 4. The software must unmask the following bits in the USBC_GINTMSK * register. * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1 * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1 */ usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GINTMSK(usb->index)); usbcx_gintmsk.s.otgintmsk = 1; usbcx_gintmsk.s.modemismsk = 1; usbcx_gintmsk.s.hchintmsk = 1; usbcx_gintmsk.s.sofmsk = 0; /* We need RX FIFO interrupts if we don't have DMA */ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) usbcx_gintmsk.s.rxflvlmsk = 1; cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index), usbcx_gintmsk.u32); /* * Disable all channel interrupts. We'll enable them per channel later. */ for (channel = 0; channel < 8; channel++) cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0); /* * Host Port Initialization * * 1. Program the host-port interrupt-mask field to unmask, * USBC_GINTMSK[PRTINT] = 1 */ USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk, prtintmsk, 1); USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk, disconnintmsk, 1); /* * 2. Program the USBC_HCFG register to select full-speed host * or high-speed host. */ usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index)); usbcx_hcfg.s.fslssupp = 0; usbcx_hcfg.s.fslspclksel = 0; cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32); cvmx_fifo_setup(usb); /* * If the controller is getting port events right after the reset, it * means the initialization failed. Try resetting the controller again * in such case. This is seen to happen after cold boot on DSR-1000N. */ usbc_gintsts.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GINTSTS(usb->index)); cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), usbc_gintsts.u32); dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32); if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint) return 0; if (retries++ >= 5) return -EAGAIN; dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n", (int)usbc_gintsts.u32); msleep(50); cvmx_usb_shutdown(usb); msleep(50); goto retry; } /** * Reset a USB port. After this call succeeds, the USB port is * online and servicing requests. * * @usb: USB device state populated by cvmx_usb_initialize(). */ static void cvmx_usb_reset_port(struct octeon_hcd *usb) { usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); /* Program the port reset bit to start the reset process */ USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, prtrst, 1); /* * Wait at least 50ms (high speed), or 10ms (full speed) for the reset * process to complete. */ mdelay(50); /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */ USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, prtrst, 0); /* * Read the port speed field to get the enumerated speed, * USBC_HPRT[PRTSPD]. */ usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); } /** * Disable a USB port. After this call the USB port will not * generate data transfers and will not generate events. * Transactions in process will fail and call their * associated callbacks. * * @usb: USB device state populated by cvmx_usb_initialize(). * * Returns: 0 or a negative error code. */ static int cvmx_usb_disable(struct octeon_hcd *usb) { /* Disable the port */ USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, prtena, 1); return 0; } /** * Get the current state of the USB port. Use this call to * determine if the usb port has anything connected, is enabled, * or has some sort of error condition. The return value of this * call has "changed" bits to signal of the value of some fields * have changed between calls. * * @usb: USB device state populated by cvmx_usb_initialize(). * * Returns: Port status information */ static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb) { union cvmx_usbcx_hprt usbc_hprt; struct cvmx_usb_port_status result; memset(&result, 0, sizeof(result)); usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); result.port_enabled = usbc_hprt.s.prtena; result.port_over_current = usbc_hprt.s.prtovrcurract; result.port_powered = usbc_hprt.s.prtpwr; result.port_speed = usbc_hprt.s.prtspd; result.connected = usbc_hprt.s.prtconnsts; result.connect_change = result.connected != usb->port_status.connected; return result; } /** * Open a virtual pipe between the host and a USB device. A pipe * must be opened before data can be transferred between a device * and Octeon. * * @usb: USB device state populated by cvmx_usb_initialize(). * @device_addr: * USB device address to open the pipe to * (0-127). * @endpoint_num: * USB endpoint number to open the pipe to * (0-15). * @device_speed: * The speed of the device the pipe is going * to. This must match the device's speed, * which may be different than the port speed. * @max_packet: The maximum packet length the device can * transmit/receive (low speed=0-8, full * speed=0-1023, high speed=0-1024). This value * comes from the standard endpoint descriptor * field wMaxPacketSize bits <10:0>. * @transfer_type: * The type of transfer this pipe is for. * @transfer_dir: * The direction the pipe is in. This is not * used for control pipes. * @interval: For ISOCHRONOUS and INTERRUPT transfers, * this is how often the transfer is scheduled * for. All other transfers should specify * zero. The units are in frames (8000/sec at * high speed, 1000/sec for full speed). * @multi_count: * For high speed devices, this is the maximum * allowed number of packet per microframe. * Specify zero for non high speed devices. This * value comes from the standard endpoint descriptor * field wMaxPacketSize bits <12:11>. * @hub_device_addr: * Hub device address this device is connected * to. Devices connected directly to Octeon * use zero. This is only used when the device * is full/low speed behind a high speed hub. * The address will be of the high speed hub, * not and full speed hubs after it. * @hub_port: Which port on the hub the device is * connected. Use zero for devices connected * directly to Octeon. Like hub_device_addr, * this is only used for full/low speed * devices behind a high speed hub. * * Returns: A non-NULL value is a pipe. NULL means an error. */ static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb, int device_addr, int endpoint_num, enum cvmx_usb_speed device_speed, int max_packet, enum cvmx_usb_transfer transfer_type, enum cvmx_usb_direction transfer_dir, int interval, int multi_count, int hub_device_addr, int hub_port) { struct cvmx_usb_pipe *pipe; pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC); if (!pipe) return NULL; if ((device_speed == CVMX_USB_SPEED_HIGH) && (transfer_dir == CVMX_USB_DIRECTION_OUT) && (transfer_type == CVMX_USB_TRANSFER_BULK)) pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; pipe->device_addr = device_addr; pipe->endpoint_num = endpoint_num; pipe->device_speed = device_speed; pipe->max_packet = max_packet; pipe->transfer_type = transfer_type; pipe->transfer_dir = transfer_dir; INIT_LIST_HEAD(&pipe->transactions); /* * All pipes use interval to rate limit NAK processing. Force an * interval if one wasn't supplied */ if (!interval) interval = 1; if (cvmx_usb_pipe_needs_split(usb, pipe)) { pipe->interval = interval * 8; /* Force start splits to be schedule on uFrame 0 */ pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) + pipe->interval; } else { pipe->interval = interval; pipe->next_tx_frame = usb->frame_number + pipe->interval; } pipe->multi_count = multi_count; pipe->hub_device_addr = hub_device_addr; pipe->hub_port = hub_port; pipe->pid_toggle = 0; pipe->split_sc_frame = -1; list_add_tail(&pipe->node, &usb->idle_pipes); /* * We don't need to tell the hardware about this pipe yet since * it doesn't have any submitted requests */ return pipe; } /** * Poll the RX FIFOs and remove data as needed. This function is only used * in non DMA mode. It is very important that this function be called quickly * enough to prevent FIFO overflow. * * @usb: USB device state populated by cvmx_usb_initialize(). */ static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb) { union cvmx_usbcx_grxstsph rx_status; int channel; int bytes; u64 address; u32 *ptr; rx_status.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GRXSTSPH(usb->index)); /* Only read data if IN data is there */ if (rx_status.s.pktsts != 2) return; /* Check if no data is available */ if (!rx_status.s.bcnt) return; channel = rx_status.s.chnum; bytes = rx_status.s.bcnt; if (!bytes) return; /* Get where the DMA engine would have written this data */ address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8); ptr = cvmx_phys_to_ptr(address); cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8, address + bytes); /* Loop writing the FIFO data for this packet into memory */ while (bytes > 0) { *ptr++ = cvmx_usb_read_csr32(usb, USB_FIFO_ADDRESS(channel, usb->index)); bytes -= 4; } CVMX_SYNCW; } /** * Fill the TX hardware fifo with data out of the software * fifos * * @usb: USB device state populated by cvmx_usb_initialize(). * @fifo: Software fifo to use * @available: Amount of space in the hardware fifo * * Returns: Non zero if the hardware fifo was too small and needs * to be serviced again. */ static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb, struct cvmx_usb_tx_fifo *fifo, int available) { /* * We're done either when there isn't anymore space or the software FIFO * is empty */ while (available && (fifo->head != fifo->tail)) { int i = fifo->tail; const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address); u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel, usb->index) ^ 4; int words = available; /* Limit the amount of data to what the SW fifo has */ if (fifo->entry[i].size <= available) { words = fifo->entry[i].size; fifo->tail++; if (fifo->tail > MAX_CHANNELS) fifo->tail = 0; } /* Update the next locations and counts */ available -= words; fifo->entry[i].address += words * 4; fifo->entry[i].size -= words; /* * Write the HW fifo data. The read every three writes is due * to an errata on CN3XXX chips */ while (words > 3) { cvmx_write64_uint32(csr_address, *ptr++); cvmx_write64_uint32(csr_address, *ptr++); cvmx_write64_uint32(csr_address, *ptr++); cvmx_read64_uint64( CVMX_USBNX_DMA0_INB_CHN0(usb->index)); words -= 3; } cvmx_write64_uint32(csr_address, *ptr++); if (--words) { cvmx_write64_uint32(csr_address, *ptr++); if (--words) cvmx_write64_uint32(csr_address, *ptr++); } cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); } return fifo->head != fifo->tail; } /** * Check the hardware FIFOs and fill them as needed * * @usb: USB device state populated by cvmx_usb_initialize(). */ static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb) { if (usb->periodic.head != usb->periodic.tail) { union cvmx_usbcx_hptxsts tx_status; tx_status.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXSTS(usb->index)); if (cvmx_usb_fill_tx_hw(usb, &usb->periodic, tx_status.s.ptxfspcavail)) USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk, ptxfempmsk, 1); else USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk, ptxfempmsk, 0); } if (usb->nonperiodic.head != usb->nonperiodic.tail) { union cvmx_usbcx_gnptxsts tx_status; tx_status.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXSTS(usb->index)); if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic, tx_status.s.nptxfspcavail)) USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk, nptxfempmsk, 1); else USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk, nptxfempmsk, 0); } } /** * Fill the TX FIFO with an outgoing packet * * @usb: USB device state populated by cvmx_usb_initialize(). * @channel: Channel number to get packet from */ static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel) { union cvmx_usbcx_hccharx hcchar; union cvmx_usbcx_hcspltx usbc_hcsplt; union cvmx_usbcx_hctsizx usbc_hctsiz; struct cvmx_usb_tx_fifo *fifo; /* We only need to fill data on outbound channels */ hcchar.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index)); if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT) return; /* OUT Splits only have data on the start and not the complete */ usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCSPLTX(channel, usb->index)); if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt) return; /* * Find out how many bytes we need to fill and convert it into 32bit * words. */ usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index)); if (!usbc_hctsiz.s.xfersize) return; if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) || (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS)) fifo = &usb->periodic; else fifo = &usb->nonperiodic; fifo->entry[fifo->head].channel = channel; fifo->entry[fifo->head].address = cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + channel * 8); fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2; fifo->head++; if (fifo->head > MAX_CHANNELS) fifo->head = 0; cvmx_usb_poll_tx_fifo(usb); } /** * Perform channel specific setup for Control transactions. All * the generic stuff will already have been done in cvmx_usb_start_channel(). * * @usb: USB device state populated by cvmx_usb_initialize(). * @channel: Channel to setup * @pipe: Pipe for control transaction */ static void cvmx_usb_start_channel_control(struct octeon_hcd *usb, int channel, struct cvmx_usb_pipe *pipe) { struct usb_hcd *hcd = octeon_to_hcd(usb); struct device *dev = hcd->self.controller; struct cvmx_usb_transaction *transaction = list_first_entry(&pipe->transactions, typeof(*transaction), node); struct usb_ctrlrequest *header = cvmx_phys_to_ptr(transaction->control_header); int bytes_to_transfer = transaction->buffer_length - transaction->actual_bytes; int packets_to_transfer; union cvmx_usbcx_hctsizx usbc_hctsiz; usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index)); switch (transaction->stage) { case CVMX_USB_STAGE_NON_CONTROL: case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE: dev_err(dev, "%s: ERROR - Non control stage\n", __func__); break; case CVMX_USB_STAGE_SETUP: usbc_hctsiz.s.pid = 3; /* Setup */ bytes_to_transfer = sizeof(*header); /* All Control operations start with a setup going OUT */ USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx, epdir, CVMX_USB_DIRECTION_OUT); /* * Setup send the control header instead of the buffer data. The * buffer data will be used in the next stage */ cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + channel * 8, transaction->control_header); break; case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE: usbc_hctsiz.s.pid = 3; /* Setup */ bytes_to_transfer = 0; /* All Control operations start with a setup going OUT */ USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx, epdir, CVMX_USB_DIRECTION_OUT); USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), cvmx_usbcx_hcspltx, compsplt, 1); break; case CVMX_USB_STAGE_DATA: usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); if (cvmx_usb_pipe_needs_split(usb, pipe)) { if (header->bRequestType & USB_DIR_IN) bytes_to_transfer = 0; else if (bytes_to_transfer > pipe->max_packet) bytes_to_transfer = pipe->max_packet; } USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx, epdir, ((header->bRequestType & USB_DIR_IN) ? CVMX_USB_DIRECTION_IN : CVMX_USB_DIRECTION_OUT)); break; case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE: usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); if (!(header->bRequestType & USB_DIR_IN)) bytes_to_transfer = 0; USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx, epdir, ((header->bRequestType & USB_DIR_IN) ? CVMX_USB_DIRECTION_IN : CVMX_USB_DIRECTION_OUT)); USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), cvmx_usbcx_hcspltx, compsplt, 1); break; case CVMX_USB_STAGE_STATUS: usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); bytes_to_transfer = 0; USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx, epdir, ((header->bRequestType & USB_DIR_IN) ? CVMX_USB_DIRECTION_OUT : CVMX_USB_DIRECTION_IN)); break; case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE: usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); bytes_to_transfer = 0; USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx, epdir, ((header->bRequestType & USB_DIR_IN) ? CVMX_USB_DIRECTION_OUT : CVMX_USB_DIRECTION_IN)); USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), cvmx_usbcx_hcspltx, compsplt, 1); break; } /* * Make sure the transfer never exceeds the byte limit of the hardware. * Further bytes will be sent as continued transactions */ if (bytes_to_transfer > MAX_TRANSFER_BYTES) { /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */ bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet; bytes_to_transfer *= pipe->max_packet; } /* * Calculate the number of packets to transfer. If the length is zero * we still need to transfer one packet */ packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet); if (packets_to_transfer == 0) { packets_to_transfer = 1; } else if ((packets_to_transfer > 1) && (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) { /* * Limit to one packet when not using DMA. Channels must be * restarted between every packet for IN transactions, so there * is no reason to do multiple packets in a row */ packets_to_transfer = 1; bytes_to_transfer = packets_to_transfer * pipe->max_packet; } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) { /* * Limit the number of packet and data transferred to what the * hardware can handle */ packets_to_transfer = MAX_TRANSFER_PACKETS; bytes_to_transfer = packets_to_transfer * pipe->max_packet; } usbc_hctsiz.s.xfersize = bytes_to_transfer; usbc_hctsiz.s.pktcnt = packets_to_transfer; cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), usbc_hctsiz.u32); } /** * Start a channel to perform the pipe's head transaction * * @usb: USB device state populated by cvmx_usb_initialize(). * @channel: Channel to setup * @pipe: Pipe to start */ static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel, struct cvmx_usb_pipe *pipe) { struct cvmx_usb_transaction *transaction = list_first_entry(&pipe->transactions, typeof(*transaction), node); /* Make sure all writes to the DMA region get flushed */ CVMX_SYNCW; /* Attach the channel to the pipe */ usb->pipe_for_channel[channel] = pipe; pipe->channel = channel; pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED; /* Mark this channel as in use */ usb->idle_hardware_channels &= ~(1 << channel); /* Enable the channel interrupt bits */ { union cvmx_usbcx_hcintx usbc_hcint; union cvmx_usbcx_hcintmskx usbc_hcintmsk; union cvmx_usbcx_haintmsk usbc_haintmsk; /* Clear all channel status bits */ usbc_hcint.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index)); cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index), usbc_hcint.u32); usbc_hcintmsk.u32 = 0; usbc_hcintmsk.s.chhltdmsk = 1; if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { /* * Channels need these extra interrupts when we aren't * in DMA mode. */ usbc_hcintmsk.s.datatglerrmsk = 1; usbc_hcintmsk.s.frmovrunmsk = 1; usbc_hcintmsk.s.bblerrmsk = 1; usbc_hcintmsk.s.xacterrmsk = 1; if (cvmx_usb_pipe_needs_split(usb, pipe)) { /* * Splits don't generate xfercompl, so we need * ACK and NYET. */ usbc_hcintmsk.s.nyetmsk = 1; usbc_hcintmsk.s.ackmsk = 1; } usbc_hcintmsk.s.nakmsk = 1; usbc_hcintmsk.s.stallmsk = 1; usbc_hcintmsk.s.xfercomplmsk = 1; } cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), usbc_hcintmsk.u32); /* Enable the channel interrupt to propagate */ usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index)); usbc_haintmsk.s.haintmsk |= 1 << channel; cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index), usbc_haintmsk.u32); } /* Setup the location the DMA engine uses. */ { u64 reg; u64 dma_address = transaction->buffer + transaction->actual_bytes; if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) dma_address = transaction->buffer + transaction->iso_packets[0].offset + transaction->actual_bytes; if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index); else reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index); cvmx_write64_uint64(reg + channel * 8, dma_address); } /* Setup both the size of the transfer and the SPLIT characteristics */ { union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0}; union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0}; int packets_to_transfer; int bytes_to_transfer = transaction->buffer_length - transaction->actual_bytes; /* * ISOCHRONOUS transactions store each individual transfer size * in the packet structure, not the global buffer_length */ if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) bytes_to_transfer = transaction->iso_packets[0].length - transaction->actual_bytes; /* * We need to do split transactions when we are talking to non * high speed devices that are behind a high speed hub */ if (cvmx_usb_pipe_needs_split(usb, pipe)) { /* * On the start split phase (stage is even) record the * frame number we will need to send the split complete. * We only store the lower two bits since the time ahead * can only be two frames */ if ((transaction->stage & 1) == 0) { if (transaction->type == CVMX_USB_TRANSFER_BULK) pipe->split_sc_frame = (usb->frame_number + 1) & 0x7f; else pipe->split_sc_frame = (usb->frame_number + 2) & 0x7f; } else { pipe->split_sc_frame = -1; } usbc_hcsplt.s.spltena = 1; usbc_hcsplt.s.hubaddr = pipe->hub_device_addr; usbc_hcsplt.s.prtaddr = pipe->hub_port; usbc_hcsplt.s.compsplt = (transaction->stage == CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE); /* * SPLIT transactions can only ever transmit one data * packet so limit the transfer size to the max packet * size */ if (bytes_to_transfer > pipe->max_packet) bytes_to_transfer = pipe->max_packet; /* * ISOCHRONOUS OUT splits are unique in that they limit * data transfers to 188 byte chunks representing the * begin/middle/end of the data or all */ if (!usbc_hcsplt.s.compsplt && (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) && (pipe->transfer_type == CVMX_USB_TRANSFER_ISOCHRONOUS)) { /* * Clear the split complete frame number as * there isn't going to be a split complete */ pipe->split_sc_frame = -1; /* * See if we've started this transfer and sent * data */ if (transaction->actual_bytes == 0) { /* * Nothing sent yet, this is either a * begin or the entire payload */ if (bytes_to_transfer <= 188) /* Entire payload in one go */ usbc_hcsplt.s.xactpos = 3; else /* First part of payload */ usbc_hcsplt.s.xactpos = 2; } else { /* * Continuing the previous data, we must * either be in the middle or at the end */ if (bytes_to_transfer <= 188) /* End of payload */ usbc_hcsplt.s.xactpos = 1; else /* Middle of payload */ usbc_hcsplt.s.xactpos = 0; } /* * Again, the transfer size is limited to 188 * bytes */ if (bytes_to_transfer > 188) bytes_to_transfer = 188; } } /* * Make sure the transfer never exceeds the byte limit of the * hardware. Further bytes will be sent as continued * transactions */ if (bytes_to_transfer > MAX_TRANSFER_BYTES) { /* * Round MAX_TRANSFER_BYTES to a multiple of out packet * size */ bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet; bytes_to_transfer *= pipe->max_packet; } /* * Calculate the number of packets to transfer. If the length is * zero we still need to transfer one packet */ packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet); if (packets_to_transfer == 0) { packets_to_transfer = 1; } else if ((packets_to_transfer > 1) && (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) { /* * Limit to one packet when not using DMA. Channels must * be restarted between every packet for IN * transactions, so there is no reason to do multiple * packets in a row */ packets_to_transfer = 1; bytes_to_transfer = packets_to_transfer * pipe->max_packet; } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) { /* * Limit the number of packet and data transferred to * what the hardware can handle */ packets_to_transfer = MAX_TRANSFER_PACKETS; bytes_to_transfer = packets_to_transfer * pipe->max_packet; } usbc_hctsiz.s.xfersize = bytes_to_transfer; usbc_hctsiz.s.pktcnt = packets_to_transfer; /* Update the DATA0/DATA1 toggle */ usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); /* * High speed pipes may need a hardware ping before they start */ if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING) usbc_hctsiz.s.dopng = 1; cvmx_usb_write_csr32(usb, CVMX_USBCX_HCSPLTX(channel, usb->index), usbc_hcsplt.u32); cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), usbc_hctsiz.u32); } /* Setup the Host Channel Characteristics Register */ { union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0}; /* * Set the startframe odd/even properly. This is only used for * periodic */ usbc_hcchar.s.oddfrm = usb->frame_number & 1; /* * Set the number of back to back packets allowed by this * endpoint. Split transactions interpret "ec" as the number of * immediate retries of failure. These retries happen too * quickly, so we disable these entirely for splits */ if (cvmx_usb_pipe_needs_split(usb, pipe)) usbc_hcchar.s.ec = 1; else if (pipe->multi_count < 1) usbc_hcchar.s.ec = 1; else if (pipe->multi_count > 3) usbc_hcchar.s.ec = 3; else usbc_hcchar.s.ec = pipe->multi_count; /* Set the rest of the endpoint specific settings */ usbc_hcchar.s.devaddr = pipe->device_addr; usbc_hcchar.s.eptype = transaction->type; usbc_hcchar.s.lspddev = (pipe->device_speed == CVMX_USB_SPEED_LOW); usbc_hcchar.s.epdir = pipe->transfer_dir; usbc_hcchar.s.epnum = pipe->endpoint_num; usbc_hcchar.s.mps = pipe->max_packet; cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index), usbc_hcchar.u32); } /* Do transaction type specific fixups as needed */ switch (transaction->type) { case CVMX_USB_TRANSFER_CONTROL: cvmx_usb_start_channel_control(usb, channel, pipe); break; case CVMX_USB_TRANSFER_BULK: case CVMX_USB_TRANSFER_INTERRUPT: break; case CVMX_USB_TRANSFER_ISOCHRONOUS: if (!cvmx_usb_pipe_needs_split(usb, pipe)) { /* * ISO transactions require different PIDs depending on * direction and how many packets are needed */ if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) { if (pipe->multi_count < 2) /* Need DATA0 */ USB_SET_FIELD32( CVMX_USBCX_HCTSIZX(channel, usb->index), cvmx_usbcx_hctsizx, pid, 0); else /* Need MDATA */ USB_SET_FIELD32( CVMX_USBCX_HCTSIZX(channel, usb->index), cvmx_usbcx_hctsizx, pid, 3); } } break; } { union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index)) }; transaction->xfersize = usbc_hctsiz.s.xfersize; transaction->pktcnt = usbc_hctsiz.s.pktcnt; } /* Remember when we start a split transaction */ if (cvmx_usb_pipe_needs_split(usb, pipe)) usb->active_split = transaction; USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx, chena, 1); if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) cvmx_usb_fill_tx_fifo(usb, channel); } /** * Find a pipe that is ready to be scheduled to hardware. * @usb: USB device state populated by cvmx_usb_initialize(). * @xfer_type: Transfer type * * Returns: Pipe or NULL if none are ready */ static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe( struct octeon_hcd *usb, enum cvmx_usb_transfer xfer_type) { struct list_head *list = usb->active_pipes + xfer_type; u64 current_frame = usb->frame_number; struct cvmx_usb_pipe *pipe; list_for_each_entry(pipe, list, node) { struct cvmx_usb_transaction *t = list_first_entry(&pipe->transactions, typeof(*t), node); if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t && (pipe->next_tx_frame <= current_frame) && ((pipe->split_sc_frame == -1) || ((((int)current_frame - pipe->split_sc_frame) & 0x7f) < 0x40)) && (!usb->active_split || (usb->active_split == t))) { prefetch(t); return pipe; } } return NULL; } static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb, int is_sof) { struct cvmx_usb_pipe *pipe; /* Find a pipe needing service. */ if (is_sof) { /* * Only process periodic pipes on SOF interrupts. This way we * are sure that the periodic data is sent in the beginning of * the frame. */ pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_ISOCHRONOUS); if (pipe) return pipe; pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_INTERRUPT); if (pipe) return pipe; } pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL); if (pipe) return pipe; return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK); } /** * Called whenever a pipe might need to be scheduled to the * hardware. * * @usb: USB device state populated by cvmx_usb_initialize(). * @is_sof: True if this schedule was called on a SOF interrupt. */ static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof) { int channel; struct cvmx_usb_pipe *pipe; int need_sof; enum cvmx_usb_transfer ttype; if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { /* * Without DMA we need to be careful to not schedule something * at the end of a frame and cause an overrun. */ union cvmx_usbcx_hfnum hfnum = { .u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index)) }; union cvmx_usbcx_hfir hfir = { .u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFIR(usb->index)) }; if (hfnum.s.frrem < hfir.s.frint / 4) goto done; } while (usb->idle_hardware_channels) { /* Find an idle channel */ channel = __fls(usb->idle_hardware_channels); if (unlikely(channel > 7)) break; pipe = cvmx_usb_next_pipe(usb, is_sof); if (!pipe) break; cvmx_usb_start_channel(usb, channel, pipe); } done: /* * Only enable SOF interrupts when we have transactions pending in the * future that might need to be scheduled */ need_sof = 0; for (ttype = CVMX_USB_TRANSFER_CONTROL; ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) { list_for_each_entry(pipe, &usb->active_pipes[ttype], node) { if (pipe->next_tx_frame > usb->frame_number) { need_sof = 1; break; } } } USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk, sofmsk, need_sof); } static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb, enum cvmx_usb_status status, struct cvmx_usb_pipe *pipe, struct cvmx_usb_transaction *transaction, int bytes_transferred, struct urb *urb) { struct usb_hcd *hcd = octeon_to_hcd(usb); struct device *dev = hcd->self.controller; if (likely(status == CVMX_USB_STATUS_OK)) urb->actual_length = bytes_transferred; else urb->actual_length = 0; urb->hcpriv = NULL; /* For Isochronous transactions we need to update the URB packet status * list from data in our private copy */ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { int i; /* * The pointer to the private list is stored in the setup_packet * field. */ struct cvmx_usb_iso_packet *iso_packet = (struct cvmx_usb_iso_packet *)urb->setup_packet; /* Recalculate the transfer size by adding up each packet */ urb->actual_length = 0; for (i = 0; i < urb->number_of_packets; i++) { if (iso_packet[i].status == CVMX_USB_STATUS_OK) { urb->iso_frame_desc[i].status = 0; urb->iso_frame_desc[i].actual_length = iso_packet[i].length; urb->actual_length += urb->iso_frame_desc[i].actual_length; } else { dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n", i, urb->number_of_packets, iso_packet[i].status, pipe, transaction, iso_packet[i].length); urb->iso_frame_desc[i].status = -EREMOTEIO; } } /* Free the private list now that we don't need it anymore */ kfree(iso_packet); urb->setup_packet = NULL; } switch (status) { case CVMX_USB_STATUS_OK: urb->status = 0; break; case CVMX_USB_STATUS_CANCEL: if (urb->status == 0) urb->status = -ENOENT; break; case CVMX_USB_STATUS_STALL: dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n", pipe, transaction, bytes_transferred); urb->status = -EPIPE; break; case CVMX_USB_STATUS_BABBLEERR: dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n", pipe, transaction, bytes_transferred); urb->status = -EPIPE; break; case CVMX_USB_STATUS_SHORT: dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n", pipe, transaction, bytes_transferred); urb->status = -EREMOTEIO; break; case CVMX_USB_STATUS_ERROR: case CVMX_USB_STATUS_XACTERR: case CVMX_USB_STATUS_DATATGLERR: case CVMX_USB_STATUS_FRAMEERR: dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n", status, pipe, transaction, bytes_transferred); urb->status = -EPROTO; break; } usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb); spin_unlock(&usb->lock); usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status); spin_lock(&usb->lock); } /** * Signal the completion of a transaction and free it. The * transaction will be removed from the pipe transaction list. * * @usb: USB device state populated by cvmx_usb_initialize(). * @pipe: Pipe the transaction is on * @transaction: * Transaction that completed * @complete_code: * Completion code */ static void cvmx_usb_complete(struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct cvmx_usb_transaction *transaction, enum cvmx_usb_status complete_code) { /* If this was a split then clear our split in progress marker */ if (usb->active_split == transaction) usb->active_split = NULL; /* * Isochronous transactions need extra processing as they might not be * done after a single data transfer */ if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) { /* Update the number of bytes transferred in this ISO packet */ transaction->iso_packets[0].length = transaction->actual_bytes; transaction->iso_packets[0].status = complete_code; /* * If there are more ISOs pending and we succeeded, schedule the * next one */ if ((transaction->iso_number_packets > 1) && (complete_code == CVMX_USB_STATUS_OK)) { /* No bytes transferred for this packet as of yet */ transaction->actual_bytes = 0; /* One less ISO waiting to transfer */ transaction->iso_number_packets--; /* Increment to the next location in our packet array */ transaction->iso_packets++; transaction->stage = CVMX_USB_STAGE_NON_CONTROL; return; } } /* Remove the transaction from the pipe list */ list_del(&transaction->node); if (list_empty(&pipe->transactions)) list_move_tail(&pipe->node, &usb->idle_pipes); octeon_usb_urb_complete_callback(usb, complete_code, pipe, transaction, transaction->actual_bytes, transaction->urb); kfree(transaction); } /** * Submit a usb transaction to a pipe. Called for all types * of transactions. * * @usb: * @pipe: Which pipe to submit to. * @type: Transaction type * @buffer: User buffer for the transaction * @buffer_length: * User buffer's length in bytes * @control_header: * For control transactions, the 8 byte standard header * @iso_start_frame: * For ISO transactions, the start frame * @iso_number_packets: * For ISO, the number of packet in the transaction. * @iso_packets: * A description of each ISO packet * @urb: URB for the callback * * Returns: Transaction or NULL on failure. */ static struct cvmx_usb_transaction *cvmx_usb_submit_transaction( struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, enum cvmx_usb_transfer type, u64 buffer, int buffer_length, u64 control_header, int iso_start_frame, int iso_number_packets, struct cvmx_usb_iso_packet *iso_packets, struct urb *urb) { struct cvmx_usb_transaction *transaction; if (unlikely(pipe->transfer_type != type)) return NULL; transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC); if (unlikely(!transaction)) return NULL; transaction->type = type; transaction->buffer = buffer; transaction->buffer_length = buffer_length; transaction->control_header = control_header; /* FIXME: This is not used, implement it. */ transaction->iso_start_frame = iso_start_frame; transaction->iso_number_packets = iso_number_packets; transaction->iso_packets = iso_packets; transaction->urb = urb; if (transaction->type == CVMX_USB_TRANSFER_CONTROL) transaction->stage = CVMX_USB_STAGE_SETUP; else transaction->stage = CVMX_USB_STAGE_NON_CONTROL; if (!list_empty(&pipe->transactions)) { list_add_tail(&transaction->node, &pipe->transactions); } else { list_add_tail(&transaction->node, &pipe->transactions); list_move_tail(&pipe->node, &usb->active_pipes[pipe->transfer_type]); /* * We may need to schedule the pipe if this was the head of the * pipe. */ cvmx_usb_schedule(usb, 0); } return transaction; } /** * Call to submit a USB Bulk transfer to a pipe. * * @usb: USB device state populated by cvmx_usb_initialize(). * @pipe: Handle to the pipe for the transfer. * @urb: URB. * * Returns: A submitted transaction or NULL on failure. */ static struct cvmx_usb_transaction *cvmx_usb_submit_bulk( struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct urb *urb) { return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK, urb->transfer_dma, urb->transfer_buffer_length, 0, /* control_header */ 0, /* iso_start_frame */ 0, /* iso_number_packets */ NULL, /* iso_packets */ urb); } /** * Call to submit a USB Interrupt transfer to a pipe. * * @usb: USB device state populated by cvmx_usb_initialize(). * @pipe: Handle to the pipe for the transfer. * @urb: URB returned when the callback is called. * * Returns: A submitted transaction or NULL on failure. */ static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt( struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct urb *urb) { return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_INTERRUPT, urb->transfer_dma, urb->transfer_buffer_length, 0, /* control_header */ 0, /* iso_start_frame */ 0, /* iso_number_packets */ NULL, /* iso_packets */ urb); } /** * Call to submit a USB Control transfer to a pipe. * * @usb: USB device state populated by cvmx_usb_initialize(). * @pipe: Handle to the pipe for the transfer. * @urb: URB. * * Returns: A submitted transaction or NULL on failure. */ static struct cvmx_usb_transaction *cvmx_usb_submit_control( struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct urb *urb) { int buffer_length = urb->transfer_buffer_length; u64 control_header = urb->setup_dma; struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header); if ((header->bRequestType & USB_DIR_IN) == 0) buffer_length = le16_to_cpu(header->wLength); return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_CONTROL, urb->transfer_dma, buffer_length, control_header, 0, /* iso_start_frame */ 0, /* iso_number_packets */ NULL, /* iso_packets */ urb); } /** * Call to submit a USB Isochronous transfer to a pipe. * * @usb: USB device state populated by cvmx_usb_initialize(). * @pipe: Handle to the pipe for the transfer. * @urb: URB returned when the callback is called. * * Returns: A submitted transaction or NULL on failure. */ static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous( struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct urb *urb) { struct cvmx_usb_iso_packet *packets; packets = (struct cvmx_usb_iso_packet *)urb->setup_packet; return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_ISOCHRONOUS, urb->transfer_dma, urb->transfer_buffer_length, 0, /* control_header */ urb->start_frame, urb->number_of_packets, packets, urb); } /** * Cancel one outstanding request in a pipe. Canceling a request * can fail if the transaction has already completed before cancel * is called. Even after a successful cancel call, it may take * a frame or two for the cvmx_usb_poll() function to call the * associated callback. * * @usb: USB device state populated by cvmx_usb_initialize(). * @pipe: Pipe to cancel requests in. * @transaction: Transaction to cancel, returned by the submit function. * * Returns: 0 or a negative error code. */ static int cvmx_usb_cancel(struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct cvmx_usb_transaction *transaction) { /* * If the transaction is the HEAD of the queue and scheduled. We need to * treat it special */ if (list_first_entry(&pipe->transactions, typeof(*transaction), node) == transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) { union cvmx_usbcx_hccharx usbc_hcchar; usb->pipe_for_channel[pipe->channel] = NULL; pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED; CVMX_SYNCW; usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(pipe->channel, usb->index)); /* * If the channel isn't enabled then the transaction already * completed. */ if (usbc_hcchar.s.chena) { usbc_hcchar.s.chdis = 1; cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(pipe->channel, usb->index), usbc_hcchar.u32); } } cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL); return 0; } /** * Cancel all outstanding requests in a pipe. Logically all this * does is call cvmx_usb_cancel() in a loop. * * @usb: USB device state populated by cvmx_usb_initialize(). * @pipe: Pipe to cancel requests in. * * Returns: 0 or a negative error code. */ static int cvmx_usb_cancel_all(struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe) { struct cvmx_usb_transaction *transaction, *next; /* Simply loop through and attempt to cancel each transaction */ list_for_each_entry_safe(transaction, next, &pipe->transactions, node) { int result = cvmx_usb_cancel(usb, pipe, transaction); if (unlikely(result != 0)) return result; } return 0; } /** * Close a pipe created with cvmx_usb_open_pipe(). * * @usb: USB device state populated by cvmx_usb_initialize(). * @pipe: Pipe to close. * * Returns: 0 or a negative error code. EBUSY is returned if the pipe has * outstanding transfers. */ static int cvmx_usb_close_pipe(struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe) { /* Fail if the pipe has pending transactions */ if (!list_empty(&pipe->transactions)) return -EBUSY; list_del(&pipe->node); kfree(pipe); return 0; } /** * Get the current USB protocol level frame number. The frame * number is always in the range of 0-0x7ff. * * @usb: USB device state populated by cvmx_usb_initialize(). * * Returns: USB frame number */ static int cvmx_usb_get_frame_number(struct octeon_hcd *usb) { union cvmx_usbcx_hfnum usbc_hfnum; usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index)); return usbc_hfnum.s.frnum; } static void cvmx_usb_transfer_control(struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct cvmx_usb_transaction *transaction, union cvmx_usbcx_hccharx usbc_hcchar, int buffer_space_left, int bytes_in_last_packet) { switch (transaction->stage) { case CVMX_USB_STAGE_NON_CONTROL: case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE: /* This should be impossible */ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_ERROR); break; case CVMX_USB_STAGE_SETUP: pipe->pid_toggle = 1; if (cvmx_usb_pipe_needs_split(usb, pipe)) { transaction->stage = CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE; } else { struct usb_ctrlrequest *header = cvmx_phys_to_ptr(transaction->control_header); if (header->wLength) transaction->stage = CVMX_USB_STAGE_DATA; else transaction->stage = CVMX_USB_STAGE_STATUS; } break; case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE: { struct usb_ctrlrequest *header = cvmx_phys_to_ptr(transaction->control_header); if (header->wLength) transaction->stage = CVMX_USB_STAGE_DATA; else transaction->stage = CVMX_USB_STAGE_STATUS; } break; case CVMX_USB_STAGE_DATA: if (cvmx_usb_pipe_needs_split(usb, pipe)) { transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE; /* * For setup OUT data that are splits, * the hardware doesn't appear to count * transferred data. Here we manually * update the data transferred */ if (!usbc_hcchar.s.epdir) { if (buffer_space_left < pipe->max_packet) transaction->actual_bytes += buffer_space_left; else transaction->actual_bytes += pipe->max_packet; } } else if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet)) { pipe->pid_toggle = 1; transaction->stage = CVMX_USB_STAGE_STATUS; } break; case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE: if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet)) { pipe->pid_toggle = 1; transaction->stage = CVMX_USB_STAGE_STATUS; } else { transaction->stage = CVMX_USB_STAGE_DATA; } break; case CVMX_USB_STAGE_STATUS: if (cvmx_usb_pipe_needs_split(usb, pipe)) transaction->stage = CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE; else cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); break; case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE: cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); break; } } static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct cvmx_usb_transaction *transaction, union cvmx_usbcx_hcintx usbc_hcint, int buffer_space_left, int bytes_in_last_packet) { /* * The only time a bulk transfer isn't complete when it finishes with * an ACK is during a split transaction. For splits we need to continue * the transfer if more data is needed. */ if (cvmx_usb_pipe_needs_split(usb, pipe)) { if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) transaction->stage = CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; else if (buffer_space_left && (bytes_in_last_packet == pipe->max_packet)) transaction->stage = CVMX_USB_STAGE_NON_CONTROL; else cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); } else { if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) && (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) && (usbc_hcint.s.nak)) pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; if (!buffer_space_left || (bytes_in_last_packet < pipe->max_packet)) cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); } } static void cvmx_usb_transfer_intr(struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct cvmx_usb_transaction *transaction, int buffer_space_left, int bytes_in_last_packet) { if (cvmx_usb_pipe_needs_split(usb, pipe)) { if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) { transaction->stage = CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; } else if (buffer_space_left && (bytes_in_last_packet == pipe->max_packet)) { transaction->stage = CVMX_USB_STAGE_NON_CONTROL; } else { pipe->next_tx_frame += pipe->interval; cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); } } else if (!buffer_space_left || (bytes_in_last_packet < pipe->max_packet)) { pipe->next_tx_frame += pipe->interval; cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); } } static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb, struct cvmx_usb_pipe *pipe, struct cvmx_usb_transaction *transaction, int buffer_space_left, int bytes_in_last_packet, int bytes_this_transfer) { if (cvmx_usb_pipe_needs_split(usb, pipe)) { /* * ISOCHRONOUS OUT splits don't require a complete split stage. * Instead they use a sequence of begin OUT splits to transfer * the data 188 bytes at a time. Once the transfer is complete, * the pipe sleeps until the next schedule interval. */ if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) { /* * If no space left or this wasn't a max size packet * then this transfer is complete. Otherwise start it * again to send the next 188 bytes */ if (!buffer_space_left || (bytes_this_transfer < 188)) { pipe->next_tx_frame += pipe->interval; cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); } return; } if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) { /* * We are in the incoming data phase. Keep getting data * until we run out of space or get a small packet */ if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet)) { pipe->next_tx_frame += pipe->interval; cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); } } else { transaction->stage = CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; } } else { pipe->next_tx_frame += pipe->interval; cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); } } /** * Poll a channel for status * * @usb: USB device * @channel: Channel to poll * * Returns: Zero on success */ static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel) { struct usb_hcd *hcd = octeon_to_hcd(usb); struct device *dev = hcd->self.controller; union cvmx_usbcx_hcintx usbc_hcint; union cvmx_usbcx_hctsizx usbc_hctsiz; union cvmx_usbcx_hccharx usbc_hcchar; struct cvmx_usb_pipe *pipe; struct cvmx_usb_transaction *transaction; int bytes_this_transfer; int bytes_in_last_packet; int packets_processed; int buffer_space_left; /* Read the interrupt status bits for the channel */ usbc_hcint.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index)); if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index)); if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) { /* * There seems to be a bug in CN31XX which can cause * interrupt IN transfers to get stuck until we do a * write of HCCHARX without changing things */ cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index), usbc_hcchar.u32); return 0; } /* * In non DMA mode the channels don't halt themselves. We need * to manually disable channels that are left running */ if (!usbc_hcint.s.chhltd) { if (usbc_hcchar.s.chena) { union cvmx_usbcx_hcintmskx hcintmsk; /* Disable all interrupts except CHHLTD */ hcintmsk.u32 = 0; hcintmsk.s.chhltdmsk = 1; cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), hcintmsk.u32); usbc_hcchar.s.chdis = 1; cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index), usbc_hcchar.u32); return 0; } else if (usbc_hcint.s.xfercompl) { /* * Successful IN/OUT with transfer complete. * Channel halt isn't needed. */ } else { dev_err(dev, "USB%d: Channel %d interrupt without halt\n", usb->index, channel); return 0; } } } else { /* * There is are no interrupts that we need to process when the * channel is still running */ if (!usbc_hcint.s.chhltd) return 0; } /* Disable the channel interrupts now that it is done */ cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0); usb->idle_hardware_channels |= (1 << channel); /* Make sure this channel is tied to a valid pipe */ pipe = usb->pipe_for_channel[channel]; prefetch(pipe); if (!pipe) return 0; transaction = list_first_entry(&pipe->transactions, typeof(*transaction), node); prefetch(transaction); /* * Disconnect this pipe from the HW channel. Later the schedule * function will figure out which pipe needs to go */ usb->pipe_for_channel[channel] = NULL; pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED; /* * Read the channel config info so we can figure out how much data * transferred */ usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index)); usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index)); /* * Calculating the number of bytes successfully transferred is dependent * on the transfer direction */ packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt; if (usbc_hcchar.s.epdir) { /* * IN transactions are easy. For every byte received the * hardware decrements xfersize. All we need to do is subtract * the current value of xfersize from its starting value and we * know how many bytes were written to the buffer */ bytes_this_transfer = transaction->xfersize - usbc_hctsiz.s.xfersize; } else { /* * OUT transaction don't decrement xfersize. Instead pktcnt is * decremented on every successful packet send. The hardware * does this when it receives an ACK, or NYET. If it doesn't * receive one of these responses pktcnt doesn't change */ bytes_this_transfer = packets_processed * usbc_hcchar.s.mps; /* * The last packet may not be a full transfer if we didn't have * enough data */ if (bytes_this_transfer > transaction->xfersize) bytes_this_transfer = transaction->xfersize; } /* Figure out how many bytes were in the last packet of the transfer */ if (packets_processed) bytes_in_last_packet = bytes_this_transfer - (packets_processed - 1) * usbc_hcchar.s.mps; else bytes_in_last_packet = bytes_this_transfer; /* * As a special case, setup transactions output the setup header, not * the user's data. For this reason we don't count setup data as bytes * transferred */ if ((transaction->stage == CVMX_USB_STAGE_SETUP) || (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE)) bytes_this_transfer = 0; /* * Add the bytes transferred to the running total. It is important that * bytes_this_transfer doesn't count any data that needs to be * retransmitted */ transaction->actual_bytes += bytes_this_transfer; if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) buffer_space_left = transaction->iso_packets[0].length - transaction->actual_bytes; else buffer_space_left = transaction->buffer_length - transaction->actual_bytes; /* * We need to remember the PID toggle state for the next transaction. * The hardware already updated it for the next transaction */ pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0); /* * For high speed bulk out, assume the next transaction will need to do * a ping before proceeding. If this isn't true the ACK processing below * will clear this flag */ if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) && (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) && (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)) pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; if (WARN_ON_ONCE(bytes_this_transfer < 0)) { /* * In some rare cases the DMA engine seems to get stuck and * keeps substracting same byte count over and over again. In * such case we just need to fail every transaction. */ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_ERROR); return 0; } if (usbc_hcint.s.stall) { /* * STALL as a response means this transaction cannot be * completed because the device can't process transactions. Tell * the user. Any data that was transferred will be counted on * the actual bytes transferred */ pipe->pid_toggle = 0; cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_STALL); } else if (usbc_hcint.s.xacterr) { /* * XactErr as a response means the device signaled * something wrong with the transfer. For example, PID * toggle errors cause these. */ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_XACTERR); } else if (usbc_hcint.s.bblerr) { /* Babble Error (BblErr) */ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_BABBLEERR); } else if (usbc_hcint.s.datatglerr) { /* Data toggle error */ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_DATATGLERR); } else if (usbc_hcint.s.nyet) { /* * NYET as a response is only allowed in three cases: as a * response to a ping, as a response to a split transaction, and * as a response to a bulk out. The ping case is handled by * hardware, so we only have splits and bulk out */ if (!cvmx_usb_pipe_needs_split(usb, pipe)) { transaction->retries = 0; /* * If there is more data to go then we need to try * again. Otherwise this transaction is complete */ if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet)) cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); } else { /* * Split transactions retry the split complete 4 times * then rewind to the start split and do the entire * transactions again */ transaction->retries++; if ((transaction->retries & 0x3) == 0) { /* * Rewind to the beginning of the transaction by * anding off the split complete bit */ transaction->stage &= ~1; pipe->split_sc_frame = -1; } } } else if (usbc_hcint.s.ack) { transaction->retries = 0; /* * The ACK bit can only be checked after the other error bits. * This is because a multi packet transfer may succeed in a * number of packets and then get a different response on the * last packet. In this case both ACK and the last response bit * will be set. If none of the other response bits is set, then * the last packet must have been an ACK * * Since we got an ACK, we know we don't need to do a ping on * this pipe */ pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING; switch (transaction->type) { case CVMX_USB_TRANSFER_CONTROL: cvmx_usb_transfer_control(usb, pipe, transaction, usbc_hcchar, buffer_space_left, bytes_in_last_packet); break; case CVMX_USB_TRANSFER_BULK: cvmx_usb_transfer_bulk(usb, pipe, transaction, usbc_hcint, buffer_space_left, bytes_in_last_packet); break; case CVMX_USB_TRANSFER_INTERRUPT: cvmx_usb_transfer_intr(usb, pipe, transaction, buffer_space_left, bytes_in_last_packet); break; case CVMX_USB_TRANSFER_ISOCHRONOUS: cvmx_usb_transfer_isoc(usb, pipe, transaction, buffer_space_left, bytes_in_last_packet, bytes_this_transfer); break; } } else if (usbc_hcint.s.nak) { /* * If this was a split then clear our split in progress marker. */ if (usb->active_split == transaction) usb->active_split = NULL; /* * NAK as a response means the device couldn't accept the * transaction, but it should be retried in the future. Rewind * to the beginning of the transaction by anding off the split * complete bit. Retry in the next interval */ transaction->retries = 0; transaction->stage &= ~1; pipe->next_tx_frame += pipe->interval; if (pipe->next_tx_frame < usb->frame_number) pipe->next_tx_frame = usb->frame_number + pipe->interval - (usb->frame_number - pipe->next_tx_frame) % pipe->interval; } else { struct cvmx_usb_port_status port; port = cvmx_usb_get_status(usb); if (port.port_enabled) { /* We'll retry the exact same transaction again */ transaction->retries++; } else { /* * We get channel halted interrupts with no result bits * sets when the cable is unplugged */ cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_ERROR); } } return 0; } static void octeon_usb_port_callback(struct octeon_hcd *usb) { spin_unlock(&usb->lock); usb_hcd_poll_rh_status(octeon_to_hcd(usb)); spin_lock(&usb->lock); } /** * Poll the USB block for status and call all needed callback * handlers. This function is meant to be called in the interrupt * handler for the USB controller. It can also be called * periodically in a loop for non-interrupt based operation. * * @usb: USB device state populated by cvmx_usb_initialize(). * * Returns: 0 or a negative error code. */ static int cvmx_usb_poll(struct octeon_hcd *usb) { union cvmx_usbcx_hfnum usbc_hfnum; union cvmx_usbcx_gintsts usbc_gintsts; prefetch_range(usb, sizeof(*usb)); /* Update the frame counter */ usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index)); if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum) usb->frame_number += 0x4000; usb->frame_number &= ~0x3fffull; usb->frame_number |= usbc_hfnum.s.frnum; /* Read the pending interrupts */ usbc_gintsts.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GINTSTS(usb->index)); /* Clear the interrupts now that we know about them */ cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), usbc_gintsts.u32); if (usbc_gintsts.s.rxflvl) { /* * RxFIFO Non-Empty (RxFLvl) * Indicates that there is at least one packet pending to be * read from the RxFIFO. * * In DMA mode this is handled by hardware */ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) cvmx_usb_poll_rx_fifo(usb); } if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) { /* Fill the Tx FIFOs when not in DMA mode */ if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) cvmx_usb_poll_tx_fifo(usb); } if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) { union cvmx_usbcx_hprt usbc_hprt; /* * Disconnect Detected Interrupt (DisconnInt) * Asserted when a device disconnect is detected. * * Host Port Interrupt (PrtInt) * The core sets this bit to indicate a change in port status of * one of the O2P USB core ports in Host mode. The application * must read the Host Port Control and Status (HPRT) register to * determine the exact event that caused this interrupt. The * application must clear the appropriate status bit in the Host * Port Control and Status register to clear this bit. * * Call the user's port callback */ octeon_usb_port_callback(usb); /* Clear the port change bits */ usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); usbc_hprt.s.prtena = 0; cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index), usbc_hprt.u32); } if (usbc_gintsts.s.hchint) { /* * Host Channels Interrupt (HChInt) * The core sets this bit to indicate that an interrupt is * pending on one of the channels of the core (in Host mode). * The application must read the Host All Channels Interrupt * (HAINT) register to determine the exact number of the channel * on which the interrupt occurred, and then read the * corresponding Host Channel-n Interrupt (HCINTn) register to * determine the exact cause of the interrupt. The application * must clear the appropriate status bit in the HCINTn register * to clear this bit. */ union cvmx_usbcx_haint usbc_haint; usbc_haint.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HAINT(usb->index)); while (usbc_haint.u32) { int channel; channel = __fls(usbc_haint.u32); cvmx_usb_poll_channel(usb, channel); usbc_haint.u32 ^= 1 << channel; } } cvmx_usb_schedule(usb, usbc_gintsts.s.sof); return 0; } /* convert between an HCD pointer and the corresponding struct octeon_hcd */ static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd) { return (struct octeon_hcd *)(hcd->hcd_priv); } static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd) { struct octeon_hcd *usb = hcd_to_octeon(hcd); unsigned long flags; spin_lock_irqsave(&usb->lock, flags); cvmx_usb_poll(usb); spin_unlock_irqrestore(&usb->lock, flags); return IRQ_HANDLED; } static int octeon_usb_start(struct usb_hcd *hcd) { hcd->state = HC_STATE_RUNNING; return 0; } static void octeon_usb_stop(struct usb_hcd *hcd) { hcd->state = HC_STATE_HALT; } static int octeon_usb_get_frame_number(struct usb_hcd *hcd) { struct octeon_hcd *usb = hcd_to_octeon(hcd); return cvmx_usb_get_frame_number(usb); } static int octeon_usb_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct octeon_hcd *usb = hcd_to_octeon(hcd); struct device *dev = hcd->self.controller; struct cvmx_usb_transaction *transaction = NULL; struct cvmx_usb_pipe *pipe; unsigned long flags; struct cvmx_usb_iso_packet *iso_packet; struct usb_host_endpoint *ep = urb->ep; int rc; urb->status = 0; spin_lock_irqsave(&usb->lock, flags); rc = usb_hcd_link_urb_to_ep(hcd, urb); if (rc) { spin_unlock_irqrestore(&usb->lock, flags); return rc; } if (!ep->hcpriv) { enum cvmx_usb_transfer transfer_type; enum cvmx_usb_speed speed; int split_device = 0; int split_port = 0; switch (usb_pipetype(urb->pipe)) { case PIPE_ISOCHRONOUS: transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS; break; case PIPE_INTERRUPT: transfer_type = CVMX_USB_TRANSFER_INTERRUPT; break; case PIPE_CONTROL: transfer_type = CVMX_USB_TRANSFER_CONTROL; break; default: transfer_type = CVMX_USB_TRANSFER_BULK; break; } switch (urb->dev->speed) { case USB_SPEED_LOW: speed = CVMX_USB_SPEED_LOW; break; case USB_SPEED_FULL: speed = CVMX_USB_SPEED_FULL; break; default: speed = CVMX_USB_SPEED_HIGH; break; } /* * For slow devices on high speed ports we need to find the hub * that does the speed translation so we know where to send the * split transactions. */ if (speed != CVMX_USB_SPEED_HIGH) { /* * Start at this device and work our way up the usb * tree. */ struct usb_device *dev = urb->dev; while (dev->parent) { /* * If our parent is high speed then he'll * receive the splits. */ if (dev->parent->speed == USB_SPEED_HIGH) { split_device = dev->parent->devnum; split_port = dev->portnum; break; } /* * Move up the tree one level. If we make it all * the way up the tree, then the port must not * be in high speed mode and we don't need a * split. */ dev = dev->parent; } } pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), speed, le16_to_cpu(ep->desc.wMaxPacketSize) & 0x7ff, transfer_type, usb_pipein(urb->pipe) ? CVMX_USB_DIRECTION_IN : CVMX_USB_DIRECTION_OUT, urb->interval, (le16_to_cpu(ep->desc.wMaxPacketSize) >> 11) & 0x3, split_device, split_port); if (!pipe) { usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock_irqrestore(&usb->lock, flags); dev_dbg(dev, "Failed to create pipe\n"); return -ENOMEM; } ep->hcpriv = pipe; } else { pipe = ep->hcpriv; } switch (usb_pipetype(urb->pipe)) { case PIPE_ISOCHRONOUS: dev_dbg(dev, "Submit isochronous to %d.%d\n", usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe)); /* * Allocate a structure to use for our private list of * isochronous packets. */ iso_packet = kmalloc_array(urb->number_of_packets, sizeof(struct cvmx_usb_iso_packet), GFP_ATOMIC); if (iso_packet) { int i; /* Fill the list with the data from the URB */ for (i = 0; i < urb->number_of_packets; i++) { iso_packet[i].offset = urb->iso_frame_desc[i].offset; iso_packet[i].length = urb->iso_frame_desc[i].length; iso_packet[i].status = CVMX_USB_STATUS_ERROR; } /* * Store a pointer to the list in the URB setup_packet * field. We know this currently isn't being used and * this saves us a bunch of logic. */ urb->setup_packet = (char *)iso_packet; transaction = cvmx_usb_submit_isochronous(usb, pipe, urb); /* * If submit failed we need to free our private packet * list. */ if (!transaction) { urb->setup_packet = NULL; kfree(iso_packet); } } break; case PIPE_INTERRUPT: dev_dbg(dev, "Submit interrupt to %d.%d\n", usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe)); transaction = cvmx_usb_submit_interrupt(usb, pipe, urb); break; case PIPE_CONTROL: dev_dbg(dev, "Submit control to %d.%d\n", usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe)); transaction = cvmx_usb_submit_control(usb, pipe, urb); break; case PIPE_BULK: dev_dbg(dev, "Submit bulk to %d.%d\n", usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe)); transaction = cvmx_usb_submit_bulk(usb, pipe, urb); break; } if (!transaction) { usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock_irqrestore(&usb->lock, flags); dev_dbg(dev, "Failed to submit\n"); return -ENOMEM; } urb->hcpriv = transaction; spin_unlock_irqrestore(&usb->lock, flags); return 0; } static int octeon_usb_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct octeon_hcd *usb = hcd_to_octeon(hcd); unsigned long flags; int rc; if (!urb->dev) return -EINVAL; spin_lock_irqsave(&usb->lock, flags); rc = usb_hcd_check_unlink_urb(hcd, urb, status); if (rc) goto out; urb->status = status; cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv); out: spin_unlock_irqrestore(&usb->lock, flags); return rc; } static void octeon_usb_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct device *dev = hcd->self.controller; if (ep->hcpriv) { struct octeon_hcd *usb = hcd_to_octeon(hcd); struct cvmx_usb_pipe *pipe = ep->hcpriv; unsigned long flags; spin_lock_irqsave(&usb->lock, flags); cvmx_usb_cancel_all(usb, pipe); if (cvmx_usb_close_pipe(usb, pipe)) dev_dbg(dev, "Closing pipe %p failed\n", pipe); spin_unlock_irqrestore(&usb->lock, flags); ep->hcpriv = NULL; } } static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf) { struct octeon_hcd *usb = hcd_to_octeon(hcd); struct cvmx_usb_port_status port_status; unsigned long flags; spin_lock_irqsave(&usb->lock, flags); port_status = cvmx_usb_get_status(usb); spin_unlock_irqrestore(&usb->lock, flags); buf[0] = port_status.connect_change << 1; return buf[0] != 0; } static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct octeon_hcd *usb = hcd_to_octeon(hcd); struct device *dev = hcd->self.controller; struct cvmx_usb_port_status usb_port_status; int port_status; struct usb_hub_descriptor *desc; unsigned long flags; switch (typeReq) { case ClearHubFeature: dev_dbg(dev, "ClearHubFeature\n"); switch (wValue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* Nothing required here */ break; default: return -EINVAL; } break; case ClearPortFeature: dev_dbg(dev, "ClearPortFeature\n"); if (wIndex != 1) { dev_dbg(dev, " INVALID\n"); return -EINVAL; } switch (wValue) { case USB_PORT_FEAT_ENABLE: dev_dbg(dev, " ENABLE\n"); spin_lock_irqsave(&usb->lock, flags); cvmx_usb_disable(usb); spin_unlock_irqrestore(&usb->lock, flags); break; case USB_PORT_FEAT_SUSPEND: dev_dbg(dev, " SUSPEND\n"); /* Not supported on Octeon */ break; case USB_PORT_FEAT_POWER: dev_dbg(dev, " POWER\n"); /* Not supported on Octeon */ break; case USB_PORT_FEAT_INDICATOR: dev_dbg(dev, " INDICATOR\n"); /* Port inidicator not supported */ break; case USB_PORT_FEAT_C_CONNECTION: dev_dbg(dev, " C_CONNECTION\n"); /* Clears drivers internal connect status change flag */ spin_lock_irqsave(&usb->lock, flags); usb->port_status = cvmx_usb_get_status(usb); spin_unlock_irqrestore(&usb->lock, flags); break; case USB_PORT_FEAT_C_RESET: dev_dbg(dev, " C_RESET\n"); /* * Clears the driver's internal Port Reset Change flag. */ spin_lock_irqsave(&usb->lock, flags); usb->port_status = cvmx_usb_get_status(usb); spin_unlock_irqrestore(&usb->lock, flags); break; case USB_PORT_FEAT_C_ENABLE: dev_dbg(dev, " C_ENABLE\n"); /* * Clears the driver's internal Port Enable/Disable * Change flag. */ spin_lock_irqsave(&usb->lock, flags); usb->port_status = cvmx_usb_get_status(usb); spin_unlock_irqrestore(&usb->lock, flags); break; case USB_PORT_FEAT_C_SUSPEND: dev_dbg(dev, " C_SUSPEND\n"); /* * Clears the driver's internal Port Suspend Change * flag, which is set when resume signaling on the host * port is complete. */ break; case USB_PORT_FEAT_C_OVER_CURRENT: dev_dbg(dev, " C_OVER_CURRENT\n"); /* Clears the driver's overcurrent Change flag */ spin_lock_irqsave(&usb->lock, flags); usb->port_status = cvmx_usb_get_status(usb); spin_unlock_irqrestore(&usb->lock, flags); break; default: dev_dbg(dev, " UNKNOWN\n"); return -EINVAL; } break; case GetHubDescriptor: dev_dbg(dev, "GetHubDescriptor\n"); desc = (struct usb_hub_descriptor *)buf; desc->bDescLength = 9; desc->bDescriptorType = 0x29; desc->bNbrPorts = 1; desc->wHubCharacteristics = cpu_to_le16(0x08); desc->bPwrOn2PwrGood = 1; desc->bHubContrCurrent = 0; desc->u.hs.DeviceRemovable[0] = 0; desc->u.hs.DeviceRemovable[1] = 0xff; break; case GetHubStatus: dev_dbg(dev, "GetHubStatus\n"); *(__le32 *)buf = 0; break; case GetPortStatus: dev_dbg(dev, "GetPortStatus\n"); if (wIndex != 1) { dev_dbg(dev, " INVALID\n"); return -EINVAL; } spin_lock_irqsave(&usb->lock, flags); usb_port_status = cvmx_usb_get_status(usb); spin_unlock_irqrestore(&usb->lock, flags); port_status = 0; if (usb_port_status.connect_change) { port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); dev_dbg(dev, " C_CONNECTION\n"); } if (usb_port_status.port_enabled) { port_status |= (1 << USB_PORT_FEAT_C_ENABLE); dev_dbg(dev, " C_ENABLE\n"); } if (usb_port_status.connected) { port_status |= (1 << USB_PORT_FEAT_CONNECTION); dev_dbg(dev, " CONNECTION\n"); } if (usb_port_status.port_enabled) { port_status |= (1 << USB_PORT_FEAT_ENABLE); dev_dbg(dev, " ENABLE\n"); } if (usb_port_status.port_over_current) { port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); dev_dbg(dev, " OVER_CURRENT\n"); } if (usb_port_status.port_powered) { port_status |= (1 << USB_PORT_FEAT_POWER); dev_dbg(dev, " POWER\n"); } if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) { port_status |= USB_PORT_STAT_HIGH_SPEED; dev_dbg(dev, " HIGHSPEED\n"); } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) { port_status |= (1 << USB_PORT_FEAT_LOWSPEED); dev_dbg(dev, " LOWSPEED\n"); } *((__le32 *)buf) = cpu_to_le32(port_status); break; case SetHubFeature: dev_dbg(dev, "SetHubFeature\n"); /* No HUB features supported */ break; case SetPortFeature: dev_dbg(dev, "SetPortFeature\n"); if (wIndex != 1) { dev_dbg(dev, " INVALID\n"); return -EINVAL; } switch (wValue) { case USB_PORT_FEAT_SUSPEND: dev_dbg(dev, " SUSPEND\n"); return -EINVAL; case USB_PORT_FEAT_POWER: dev_dbg(dev, " POWER\n"); /* * Program the port power bit to drive VBUS on the USB. */ spin_lock_irqsave(&usb->lock, flags); USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, prtpwr, 1); spin_unlock_irqrestore(&usb->lock, flags); return 0; case USB_PORT_FEAT_RESET: dev_dbg(dev, " RESET\n"); spin_lock_irqsave(&usb->lock, flags); cvmx_usb_reset_port(usb); spin_unlock_irqrestore(&usb->lock, flags); return 0; case USB_PORT_FEAT_INDICATOR: dev_dbg(dev, " INDICATOR\n"); /* Not supported */ break; default: dev_dbg(dev, " UNKNOWN\n"); return -EINVAL; } break; default: dev_dbg(dev, "Unknown root hub request\n"); return -EINVAL; } return 0; } static const struct hc_driver octeon_hc_driver = { .description = "Octeon USB", .product_desc = "Octeon Host Controller", .hcd_priv_size = sizeof(struct octeon_hcd), .irq = octeon_usb_irq, .flags = HCD_MEMORY | HCD_USB2, .start = octeon_usb_start, .stop = octeon_usb_stop, .urb_enqueue = octeon_usb_urb_enqueue, .urb_dequeue = octeon_usb_urb_dequeue, .endpoint_disable = octeon_usb_endpoint_disable, .get_frame_number = octeon_usb_get_frame_number, .hub_status_data = octeon_usb_hub_status_data, .hub_control = octeon_usb_hub_control, .map_urb_for_dma = octeon_map_urb_for_dma, .unmap_urb_for_dma = octeon_unmap_urb_for_dma, }; static int octeon_usb_probe(struct platform_device *pdev) { int status; int initialize_flags; int usb_num; struct resource *res_mem; struct device_node *usbn_node; int irq = platform_get_irq(pdev, 0); struct device *dev = &pdev->dev; struct octeon_hcd *usb; struct usb_hcd *hcd; u32 clock_rate = 48000000; bool is_crystal_clock = false; const char *clock_type; int i; if (!dev->of_node) { dev_err(dev, "Error: empty of_node\n"); return -ENXIO; } usbn_node = dev->of_node->parent; i = of_property_read_u32(usbn_node, "clock-frequency", &clock_rate); if (i) i = of_property_read_u32(usbn_node, "refclk-frequency", &clock_rate); if (i) { dev_err(dev, "No USBN \"clock-frequency\"\n"); return -ENXIO; } switch (clock_rate) { case 12000000: initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ; break; case 24000000: initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ; break; case 48000000: initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ; break; default: dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n", clock_rate); return -ENXIO; } i = of_property_read_string(usbn_node, "cavium,refclk-type", &clock_type); if (i) i = of_property_read_string(usbn_node, "refclk-type", &clock_type); if (!i && strcmp("crystal", clock_type) == 0) is_crystal_clock = true; if (is_crystal_clock) initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI; else initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND; res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res_mem) { dev_err(dev, "found no memory resource\n"); return -ENXIO; } usb_num = (res_mem->start >> 44) & 1; if (irq < 0) { /* Defective device tree, but we know how to fix it. */ irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56; irq = irq_create_mapping(NULL, hwirq); } /* * Set the DMA mask to 64bits so we get buffers already translated for * DMA. */ i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (i) return i; /* * Only cn52XX and cn56XX have DWC_OTG USB hardware and the * IOB priority registers. Under heavy network load USB * hardware can be starved by the IOB causing a crash. Give * it a priority boost if it has been waiting more than 400 * cycles to avoid this situation. * * Testing indicates that a cnt_val of 8192 is not sufficient, * but no failures are seen with 4096. We choose a value of * 400 to give a safety factor of 10. */ if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) { union cvmx_iob_n2c_l2c_pri_cnt pri_cnt; pri_cnt.u64 = 0; pri_cnt.s.cnt_enb = 1; pri_cnt.s.cnt_val = 400; cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64); } hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev)); if (!hcd) { dev_dbg(dev, "Failed to allocate memory for HCD\n"); return -1; } hcd->uses_new_polling = 1; usb = (struct octeon_hcd *)hcd->hcd_priv; spin_lock_init(&usb->lock); usb->init_flags = initialize_flags; /* Initialize the USB state structure */ usb->index = usb_num; INIT_LIST_HEAD(&usb->idle_pipes); for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++) INIT_LIST_HEAD(&usb->active_pipes[i]); /* Due to an errata, CN31XX doesn't support DMA */ if (OCTEON_IS_MODEL(OCTEON_CN31XX)) { usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA; /* Only use one channel with non DMA */ usb->idle_hardware_channels = 0x1; } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { /* CN5XXX have an errata with channel 3 */ usb->idle_hardware_channels = 0xf7; } else { usb->idle_hardware_channels = 0xff; } status = cvmx_usb_initialize(dev, usb); if (status) { dev_dbg(dev, "USB initialization failed with %d\n", status); usb_put_hcd(hcd); return -1; } status = usb_add_hcd(hcd, irq, 0); if (status) { dev_dbg(dev, "USB add HCD failed with %d\n", status); usb_put_hcd(hcd); return -1; } device_wakeup_enable(hcd->self.controller); dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq); return 0; } static int octeon_usb_remove(struct platform_device *pdev) { int status; struct device *dev = &pdev->dev; struct usb_hcd *hcd = dev_get_drvdata(dev); struct octeon_hcd *usb = hcd_to_octeon(hcd); unsigned long flags; usb_remove_hcd(hcd); spin_lock_irqsave(&usb->lock, flags); status = cvmx_usb_shutdown(usb); spin_unlock_irqrestore(&usb->lock, flags); if (status) dev_dbg(dev, "USB shutdown failed with %d\n", status); usb_put_hcd(hcd); return 0; } static const struct of_device_id octeon_usb_match[] = { { .compatible = "cavium,octeon-5750-usbc", }, {}, }; MODULE_DEVICE_TABLE(of, octeon_usb_match); static struct platform_driver octeon_usb_driver = { .driver = { .name = "octeon-hcd", .of_match_table = octeon_usb_match, }, .probe = octeon_usb_probe, .remove = octeon_usb_remove, }; static int __init octeon_usb_driver_init(void) { if (usb_disabled()) return 0; return platform_driver_register(&octeon_usb_driver); } module_init(octeon_usb_driver_init); static void __exit octeon_usb_driver_exit(void) { if (usb_disabled()) return; platform_driver_unregister(&octeon_usb_driver); } module_exit(octeon_usb_driver_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Cavium, Inc. "); MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");