// SPDX-License-Identifier: GPL-2.0-only /* * QLogic qlge NIC HBA Driver * Copyright (c) 2003-2008 QLogic Corporation * Author: Linux qlge network device driver by * Ron Mercer */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qlge.h" #include "qlge_devlink.h" char qlge_driver_name[] = DRV_NAME; const char qlge_driver_version[] = DRV_VERSION; MODULE_AUTHOR("Ron Mercer "); MODULE_DESCRIPTION(DRV_STRING " "); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_WOL | 0; static int debug = -1; /* defaults above */ module_param(debug, int, 0664); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); #define MSIX_IRQ 0 #define MSI_IRQ 1 #define LEG_IRQ 2 static int qlge_irq_type = MSIX_IRQ; module_param(qlge_irq_type, int, 0664); MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy."); static int qlge_mpi_coredump; module_param(qlge_mpi_coredump, int, 0); MODULE_PARM_DESC(qlge_mpi_coredump, "Option to enable MPI firmware dump. Default is OFF - Do Not allocate memory. "); static int qlge_force_coredump; module_param(qlge_force_coredump, int, 0); MODULE_PARM_DESC(qlge_force_coredump, "Option to allow force of firmware core dump. Default is OFF - Do not allow."); static const struct pci_device_id qlge_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)}, {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)}, /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, qlge_pci_tbl); static int qlge_wol(struct qlge_adapter *); static void qlge_set_multicast_list(struct net_device *); static int qlge_adapter_down(struct qlge_adapter *); static int qlge_adapter_up(struct qlge_adapter *); /* This hardware semaphore causes exclusive access to * resources shared between the NIC driver, MPI firmware, * FCOE firmware and the FC driver. */ static int qlge_sem_trylock(struct qlge_adapter *qdev, u32 sem_mask) { u32 sem_bits = 0; switch (sem_mask) { case SEM_XGMAC0_MASK: sem_bits = SEM_SET << SEM_XGMAC0_SHIFT; break; case SEM_XGMAC1_MASK: sem_bits = SEM_SET << SEM_XGMAC1_SHIFT; break; case SEM_ICB_MASK: sem_bits = SEM_SET << SEM_ICB_SHIFT; break; case SEM_MAC_ADDR_MASK: sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT; break; case SEM_FLASH_MASK: sem_bits = SEM_SET << SEM_FLASH_SHIFT; break; case SEM_PROBE_MASK: sem_bits = SEM_SET << SEM_PROBE_SHIFT; break; case SEM_RT_IDX_MASK: sem_bits = SEM_SET << SEM_RT_IDX_SHIFT; break; case SEM_PROC_REG_MASK: sem_bits = SEM_SET << SEM_PROC_REG_SHIFT; break; default: netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n"); return -EINVAL; } qlge_write32(qdev, SEM, sem_bits | sem_mask); return !(qlge_read32(qdev, SEM) & sem_bits); } int qlge_sem_spinlock(struct qlge_adapter *qdev, u32 sem_mask) { unsigned int wait_count = 30; do { if (!qlge_sem_trylock(qdev, sem_mask)) return 0; udelay(100); } while (--wait_count); return -ETIMEDOUT; } void qlge_sem_unlock(struct qlge_adapter *qdev, u32 sem_mask) { qlge_write32(qdev, SEM, sem_mask); qlge_read32(qdev, SEM); /* flush */ } /* This function waits for a specific bit to come ready * in a given register. It is used mostly by the initialize * process, but is also used in kernel thread API such as * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid. */ int qlge_wait_reg_rdy(struct qlge_adapter *qdev, u32 reg, u32 bit, u32 err_bit) { u32 temp; int count; for (count = 0; count < UDELAY_COUNT; count++) { temp = qlge_read32(qdev, reg); /* check for errors */ if (temp & err_bit) { netif_alert(qdev, probe, qdev->ndev, "register 0x%.08x access error, value = 0x%.08x!.\n", reg, temp); return -EIO; } else if (temp & bit) { return 0; } udelay(UDELAY_DELAY); } netif_alert(qdev, probe, qdev->ndev, "Timed out waiting for reg %x to come ready.\n", reg); return -ETIMEDOUT; } /* The CFG register is used to download TX and RX control blocks * to the chip. This function waits for an operation to complete. */ static int qlge_wait_cfg(struct qlge_adapter *qdev, u32 bit) { int count; u32 temp; for (count = 0; count < UDELAY_COUNT; count++) { temp = qlge_read32(qdev, CFG); if (temp & CFG_LE) return -EIO; if (!(temp & bit)) return 0; udelay(UDELAY_DELAY); } return -ETIMEDOUT; } /* Used to issue init control blocks to hw. Maps control block, * sets address, triggers download, waits for completion. */ int qlge_write_cfg(struct qlge_adapter *qdev, void *ptr, int size, u32 bit, u16 q_id) { u64 map; int status = 0; int direction; u32 mask; u32 value; if (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) direction = DMA_TO_DEVICE; else direction = DMA_FROM_DEVICE; map = dma_map_single(&qdev->pdev->dev, ptr, size, direction); if (dma_mapping_error(&qdev->pdev->dev, map)) { netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n"); return -ENOMEM; } status = qlge_sem_spinlock(qdev, SEM_ICB_MASK); if (status) goto lock_failed; status = qlge_wait_cfg(qdev, bit); if (status) { netif_err(qdev, ifup, qdev->ndev, "Timed out waiting for CFG to come ready.\n"); goto exit; } qlge_write32(qdev, ICB_L, (u32)map); qlge_write32(qdev, ICB_H, (u32)(map >> 32)); mask = CFG_Q_MASK | (bit << 16); value = bit | (q_id << CFG_Q_SHIFT); qlge_write32(qdev, CFG, (mask | value)); /* * Wait for the bit to clear after signaling hw. */ status = qlge_wait_cfg(qdev, bit); exit: qlge_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */ lock_failed: dma_unmap_single(&qdev->pdev->dev, map, size, direction); return status; } /* Get a specific MAC address from the CAM. Used for debug and reg dump. */ int qlge_get_mac_addr_reg(struct qlge_adapter *qdev, u32 type, u16 index, u32 *value) { u32 offset = 0; int status; switch (type) { case MAC_ADDR_TYPE_MULTI_MAC: case MAC_ADDR_TYPE_CAM_MAC: { status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) break; qlge_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MR, 0); if (status) break; *value++ = qlge_read32(qdev, MAC_ADDR_DATA); status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) break; qlge_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MR, 0); if (status) break; *value++ = qlge_read32(qdev, MAC_ADDR_DATA); if (type == MAC_ADDR_TYPE_CAM_MAC) { status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) break; qlge_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MR, 0); if (status) break; *value++ = qlge_read32(qdev, MAC_ADDR_DATA); } break; } case MAC_ADDR_TYPE_VLAN: case MAC_ADDR_TYPE_MULTI_FLTR: default: netif_crit(qdev, ifup, qdev->ndev, "Address type %d not yet supported.\n", type); status = -EPERM; } return status; } /* Set up a MAC, multicast or VLAN address for the * inbound frame matching. */ static int qlge_set_mac_addr_reg(struct qlge_adapter *qdev, u8 *addr, u32 type, u16 index) { u32 offset = 0; int status = 0; switch (type) { case MAC_ADDR_TYPE_MULTI_MAC: { u32 upper = (addr[0] << 8) | addr[1]; u32 lower = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | (addr[5]); status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) break; qlge_write32(qdev, MAC_ADDR_IDX, (offset++) | (index << MAC_ADDR_IDX_SHIFT) | type | MAC_ADDR_E); qlge_write32(qdev, MAC_ADDR_DATA, lower); status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) break; qlge_write32(qdev, MAC_ADDR_IDX, (offset++) | (index << MAC_ADDR_IDX_SHIFT) | type | MAC_ADDR_E); qlge_write32(qdev, MAC_ADDR_DATA, upper); status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); break; } case MAC_ADDR_TYPE_CAM_MAC: { u32 cam_output; u32 upper = (addr[0] << 8) | addr[1]; u32 lower = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | (addr[5]); status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) break; qlge_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type); /* type */ qlge_write32(qdev, MAC_ADDR_DATA, lower); status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) break; qlge_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type); /* type */ qlge_write32(qdev, MAC_ADDR_DATA, upper); status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) break; qlge_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type); /* type */ /* This field should also include the queue id * and possibly the function id. Right now we hardcode * the route field to NIC core. */ cam_output = (CAM_OUT_ROUTE_NIC | (qdev->func << CAM_OUT_FUNC_SHIFT) | (0 << CAM_OUT_CQ_ID_SHIFT)); if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) cam_output |= CAM_OUT_RV; /* route to NIC core */ qlge_write32(qdev, MAC_ADDR_DATA, cam_output); break; } case MAC_ADDR_TYPE_VLAN: { u32 enable_bit = *((u32 *)&addr[0]); /* For VLAN, the addr actually holds a bit that * either enables or disables the vlan id we are * addressing. It's either MAC_ADDR_E on or off. * That's bit-27 we're talking about. */ status = qlge_wait_reg_rdy(qdev, MAC_ADDR_IDX, MAC_ADDR_MW, 0); if (status) break; qlge_write32(qdev, MAC_ADDR_IDX, offset | /* offset */ (index << MAC_ADDR_IDX_SHIFT) | /* index */ type | /* type */ enable_bit); /* enable/disable */ break; } case MAC_ADDR_TYPE_MULTI_FLTR: default: netif_crit(qdev, ifup, qdev->ndev, "Address type %d not yet supported.\n", type); status = -EPERM; } return status; } /* Set or clear MAC address in hardware. We sometimes * have to clear it to prevent wrong frame routing * especially in a bonding environment. */ static int qlge_set_mac_addr(struct qlge_adapter *qdev, int set) { int status; char zero_mac_addr[ETH_ALEN]; char *addr; if (set) { addr = &qdev->current_mac_addr[0]; netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Set Mac addr %pM\n", addr); } else { eth_zero_addr(zero_mac_addr); addr = &zero_mac_addr[0]; netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Clearing MAC address\n"); } status = qlge_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return status; status = qlge_set_mac_addr_reg(qdev, (u8 *)addr, MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ); qlge_sem_unlock(qdev, SEM_MAC_ADDR_MASK); if (status) netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n"); return status; } void qlge_link_on(struct qlge_adapter *qdev) { netif_err(qdev, link, qdev->ndev, "Link is up.\n"); netif_carrier_on(qdev->ndev); qlge_set_mac_addr(qdev, 1); } void qlge_link_off(struct qlge_adapter *qdev) { netif_err(qdev, link, qdev->ndev, "Link is down.\n"); netif_carrier_off(qdev->ndev); qlge_set_mac_addr(qdev, 0); } /* Get a specific frame routing value from the CAM. * Used for debug and reg dump. */ int qlge_get_routing_reg(struct qlge_adapter *qdev, u32 index, u32 *value) { int status = 0; status = qlge_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); if (status) goto exit; qlge_write32(qdev, RT_IDX, RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT)); status = qlge_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0); if (status) goto exit; *value = qlge_read32(qdev, RT_DATA); exit: return status; } /* The NIC function for this chip has 16 routing indexes. Each one can be used * to route different frame types to various inbound queues. We send broadcast/ * multicast/error frames to the default queue for slow handling, * and CAM hit/RSS frames to the fast handling queues. */ static int qlge_set_routing_reg(struct qlge_adapter *qdev, u32 index, u32 mask, int enable) { int status = -EINVAL; /* Return error if no mask match. */ u32 value = 0; switch (mask) { case RT_IDX_CAM_HIT: { value = RT_IDX_DST_CAM_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_VALID: /* Promiscuous Mode frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_IP_CSUM_ERR_SLOT << RT_IDX_IDX_SHIFT); /* index */ break; } case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_TCP_UDP_CSUM_ERR_SLOT << RT_IDX_IDX_SHIFT); /* index */ break; } case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_MCAST: /* Pass up All Multicast frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */ { value = RT_IDX_DST_RSS | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ break; } case 0: /* Clear the E-bit on an entry. */ { value = RT_IDX_DST_DFLT_Q | /* dest */ RT_IDX_TYPE_NICQ | /* type */ (index << RT_IDX_IDX_SHIFT);/* index */ break; } default: netif_err(qdev, ifup, qdev->ndev, "Mask type %d not yet supported.\n", mask); status = -EPERM; goto exit; } if (value) { status = qlge_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); if (status) goto exit; value |= (enable ? RT_IDX_E : 0); qlge_write32(qdev, RT_IDX, value); qlge_write32(qdev, RT_DATA, enable ? mask : 0); } exit: return status; } static void qlge_enable_interrupts(struct qlge_adapter *qdev) { qlge_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI); } static void qlge_disable_interrupts(struct qlge_adapter *qdev) { qlge_write32(qdev, INTR_EN, (INTR_EN_EI << 16)); } static void qlge_enable_completion_interrupt(struct qlge_adapter *qdev, u32 intr) { struct intr_context *ctx = &qdev->intr_context[intr]; qlge_write32(qdev, INTR_EN, ctx->intr_en_mask); } static void qlge_disable_completion_interrupt(struct qlge_adapter *qdev, u32 intr) { struct intr_context *ctx = &qdev->intr_context[intr]; qlge_write32(qdev, INTR_EN, ctx->intr_dis_mask); } static void qlge_enable_all_completion_interrupts(struct qlge_adapter *qdev) { int i; for (i = 0; i < qdev->intr_count; i++) qlge_enable_completion_interrupt(qdev, i); } static int qlge_validate_flash(struct qlge_adapter *qdev, u32 size, const char *str) { int status, i; u16 csum = 0; __le16 *flash = (__le16 *)&qdev->flash; status = strncmp((char *)&qdev->flash, str, 4); if (status) { netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n"); return status; } for (i = 0; i < size; i++) csum += le16_to_cpu(*flash++); if (csum) netif_err(qdev, ifup, qdev->ndev, "Invalid flash checksum, csum = 0x%.04x.\n", csum); return csum; } static int qlge_read_flash_word(struct qlge_adapter *qdev, int offset, __le32 *data) { int status = 0; /* wait for reg to come ready */ status = qlge_wait_reg_rdy(qdev, FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); if (status) goto exit; /* set up for reg read */ qlge_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset); /* wait for reg to come ready */ status = qlge_wait_reg_rdy(qdev, FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); if (status) goto exit; /* This data is stored on flash as an array of * __le32. Since qlge_read32() returns cpu endian * we need to swap it back. */ *data = cpu_to_le32(qlge_read32(qdev, FLASH_DATA)); exit: return status; } static int qlge_get_8000_flash_params(struct qlge_adapter *qdev) { u32 i, size; int status; __le32 *p = (__le32 *)&qdev->flash; u32 offset; u8 mac_addr[6]; /* Get flash offset for function and adjust * for dword access. */ if (!qdev->port) offset = FUNC0_FLASH_OFFSET / sizeof(u32); else offset = FUNC1_FLASH_OFFSET / sizeof(u32); if (qlge_sem_spinlock(qdev, SEM_FLASH_MASK)) return -ETIMEDOUT; size = sizeof(struct flash_params_8000) / sizeof(u32); for (i = 0; i < size; i++, p++) { status = qlge_read_flash_word(qdev, i + offset, p); if (status) { netif_err(qdev, ifup, qdev->ndev, "Error reading flash.\n"); goto exit; } } status = qlge_validate_flash(qdev, sizeof(struct flash_params_8000) / sizeof(u16), "8000"); if (status) { netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n"); status = -EINVAL; goto exit; } /* Extract either manufacturer or BOFM modified * MAC address. */ if (qdev->flash.flash_params_8000.data_type1 == 2) memcpy(mac_addr, qdev->flash.flash_params_8000.mac_addr1, qdev->ndev->addr_len); else memcpy(mac_addr, qdev->flash.flash_params_8000.mac_addr, qdev->ndev->addr_len); if (!is_valid_ether_addr(mac_addr)) { netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n"); status = -EINVAL; goto exit; } memcpy(qdev->ndev->dev_addr, mac_addr, qdev->ndev->addr_len); exit: qlge_sem_unlock(qdev, SEM_FLASH_MASK); return status; } static int qlge_get_8012_flash_params(struct qlge_adapter *qdev) { int i; int status; __le32 *p = (__le32 *)&qdev->flash; u32 offset = 0; u32 size = sizeof(struct flash_params_8012) / sizeof(u32); /* Second function's parameters follow the first * function's. */ if (qdev->port) offset = size; if (qlge_sem_spinlock(qdev, SEM_FLASH_MASK)) return -ETIMEDOUT; for (i = 0; i < size; i++, p++) { status = qlge_read_flash_word(qdev, i + offset, p); if (status) { netif_err(qdev, ifup, qdev->ndev, "Error reading flash.\n"); goto exit; } } status = qlge_validate_flash(qdev, sizeof(struct flash_params_8012) / sizeof(u16), "8012"); if (status) { netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n"); status = -EINVAL; goto exit; } if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) { status = -EINVAL; goto exit; } memcpy(qdev->ndev->dev_addr, qdev->flash.flash_params_8012.mac_addr, qdev->ndev->addr_len); exit: qlge_sem_unlock(qdev, SEM_FLASH_MASK); return status; } /* xgmac register are located behind the xgmac_addr and xgmac_data * register pair. Each read/write requires us to wait for the ready * bit before reading/writing the data. */ static int qlge_write_xgmac_reg(struct qlge_adapter *qdev, u32 reg, u32 data) { int status; /* wait for reg to come ready */ status = qlge_wait_reg_rdy(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) return status; /* write the data to the data reg */ qlge_write32(qdev, XGMAC_DATA, data); /* trigger the write */ qlge_write32(qdev, XGMAC_ADDR, reg); return status; } /* xgmac register are located behind the xgmac_addr and xgmac_data * register pair. Each read/write requires us to wait for the ready * bit before reading/writing the data. */ int qlge_read_xgmac_reg(struct qlge_adapter *qdev, u32 reg, u32 *data) { int status = 0; /* wait for reg to come ready */ status = qlge_wait_reg_rdy(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) goto exit; /* set up for reg read */ qlge_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R); /* wait for reg to come ready */ status = qlge_wait_reg_rdy(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) goto exit; /* get the data */ *data = qlge_read32(qdev, XGMAC_DATA); exit: return status; } /* This is used for reading the 64-bit statistics regs. */ int qlge_read_xgmac_reg64(struct qlge_adapter *qdev, u32 reg, u64 *data) { int status = 0; u32 hi = 0; u32 lo = 0; status = qlge_read_xgmac_reg(qdev, reg, &lo); if (status) goto exit; status = qlge_read_xgmac_reg(qdev, reg + 4, &hi); if (status) goto exit; *data = (u64)lo | ((u64)hi << 32); exit: return status; } static int qlge_8000_port_initialize(struct qlge_adapter *qdev) { int status; /* * Get MPI firmware version for driver banner * and ethool info. */ status = qlge_mb_about_fw(qdev); if (status) goto exit; status = qlge_mb_get_fw_state(qdev); if (status) goto exit; /* Wake up a worker to get/set the TX/RX frame sizes. */ queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0); exit: return status; } /* Take the MAC Core out of reset. * Enable statistics counting. * Take the transmitter/receiver out of reset. * This functionality may be done in the MPI firmware at a * later date. */ static int qlge_8012_port_initialize(struct qlge_adapter *qdev) { int status = 0; u32 data; if (qlge_sem_trylock(qdev, qdev->xg_sem_mask)) { /* Another function has the semaphore, so * wait for the port init bit to come ready. */ netif_info(qdev, link, qdev->ndev, "Another function has the semaphore, so wait for the port init bit to come ready.\n"); status = qlge_wait_reg_rdy(qdev, STS, qdev->port_init, 0); if (status) { netif_crit(qdev, link, qdev->ndev, "Port initialize timed out.\n"); } return status; } netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n"); /* Set the core reset. */ status = qlge_read_xgmac_reg(qdev, GLOBAL_CFG, &data); if (status) goto end; data |= GLOBAL_CFG_RESET; status = qlge_write_xgmac_reg(qdev, GLOBAL_CFG, data); if (status) goto end; /* Clear the core reset and turn on jumbo for receiver. */ data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */ data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */ data |= GLOBAL_CFG_TX_STAT_EN; data |= GLOBAL_CFG_RX_STAT_EN; status = qlge_write_xgmac_reg(qdev, GLOBAL_CFG, data); if (status) goto end; /* Enable transmitter, and clear it's reset. */ status = qlge_read_xgmac_reg(qdev, TX_CFG, &data); if (status) goto end; data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */ data |= TX_CFG_EN; /* Enable the transmitter. */ status = qlge_write_xgmac_reg(qdev, TX_CFG, data); if (status) goto end; /* Enable receiver and clear it's reset. */ status = qlge_read_xgmac_reg(qdev, RX_CFG, &data); if (status) goto end; data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */ data |= RX_CFG_EN; /* Enable the receiver. */ status = qlge_write_xgmac_reg(qdev, RX_CFG, data); if (status) goto end; /* Turn on jumbo. */ status = qlge_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16)); if (status) goto end; status = qlge_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580); if (status) goto end; /* Signal to the world that the port is enabled. */ qlge_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init)); end: qlge_sem_unlock(qdev, qdev->xg_sem_mask); return status; } static inline unsigned int qlge_lbq_block_size(struct qlge_adapter *qdev) { return PAGE_SIZE << qdev->lbq_buf_order; } static struct qlge_bq_desc *qlge_get_curr_buf(struct qlge_bq *bq) { struct qlge_bq_desc *bq_desc; bq_desc = &bq->queue[bq->next_to_clean]; bq->next_to_clean = QLGE_BQ_WRAP(bq->next_to_clean + 1); return bq_desc; } static struct qlge_bq_desc *qlge_get_curr_lchunk(struct qlge_adapter *qdev, struct rx_ring *rx_ring) { struct qlge_bq_desc *lbq_desc = qlge_get_curr_buf(&rx_ring->lbq); dma_sync_single_for_cpu(&qdev->pdev->dev, lbq_desc->dma_addr, qdev->lbq_buf_size, DMA_FROM_DEVICE); if ((lbq_desc->p.pg_chunk.offset + qdev->lbq_buf_size) == qlge_lbq_block_size(qdev)) { /* last chunk of the master page */ dma_unmap_page(&qdev->pdev->dev, lbq_desc->dma_addr, qlge_lbq_block_size(qdev), DMA_FROM_DEVICE); } return lbq_desc; } /* Update an rx ring index. */ static void qlge_update_cq(struct rx_ring *rx_ring) { rx_ring->cnsmr_idx++; rx_ring->curr_entry++; if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) { rx_ring->cnsmr_idx = 0; rx_ring->curr_entry = rx_ring->cq_base; } } static void qlge_write_cq_idx(struct rx_ring *rx_ring) { qlge_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg); } static const char * const bq_type_name[] = { [QLGE_SB] = "sbq", [QLGE_LB] = "lbq", }; /* return 0 or negative error */ static int qlge_refill_sb(struct rx_ring *rx_ring, struct qlge_bq_desc *sbq_desc, gfp_t gfp) { struct qlge_adapter *qdev = rx_ring->qdev; struct sk_buff *skb; if (sbq_desc->p.skb) return 0; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "ring %u sbq: getting new skb for index %d.\n", rx_ring->cq_id, sbq_desc->index); skb = __netdev_alloc_skb(qdev->ndev, SMALL_BUFFER_SIZE, gfp); if (!skb) return -ENOMEM; skb_reserve(skb, QLGE_SB_PAD); sbq_desc->dma_addr = dma_map_single(&qdev->pdev->dev, skb->data, SMALL_BUF_MAP_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&qdev->pdev->dev, sbq_desc->dma_addr)) { netif_err(qdev, ifup, qdev->ndev, "PCI mapping failed.\n"); dev_kfree_skb_any(skb); return -EIO; } *sbq_desc->buf_ptr = cpu_to_le64(sbq_desc->dma_addr); sbq_desc->p.skb = skb; return 0; } /* return 0 or negative error */ static int qlge_refill_lb(struct rx_ring *rx_ring, struct qlge_bq_desc *lbq_desc, gfp_t gfp) { struct qlge_adapter *qdev = rx_ring->qdev; struct qlge_page_chunk *master_chunk = &rx_ring->master_chunk; if (!master_chunk->page) { struct page *page; dma_addr_t dma_addr; page = alloc_pages(gfp | __GFP_COMP, qdev->lbq_buf_order); if (unlikely(!page)) return -ENOMEM; dma_addr = dma_map_page(&qdev->pdev->dev, page, 0, qlge_lbq_block_size(qdev), DMA_FROM_DEVICE); if (dma_mapping_error(&qdev->pdev->dev, dma_addr)) { __free_pages(page, qdev->lbq_buf_order); netif_err(qdev, drv, qdev->ndev, "PCI mapping failed.\n"); return -EIO; } master_chunk->page = page; master_chunk->va = page_address(page); master_chunk->offset = 0; rx_ring->chunk_dma_addr = dma_addr; } lbq_desc->p.pg_chunk = *master_chunk; lbq_desc->dma_addr = rx_ring->chunk_dma_addr; *lbq_desc->buf_ptr = cpu_to_le64(lbq_desc->dma_addr + lbq_desc->p.pg_chunk.offset); /* Adjust the master page chunk for next * buffer get. */ master_chunk->offset += qdev->lbq_buf_size; if (master_chunk->offset == qlge_lbq_block_size(qdev)) { master_chunk->page = NULL; } else { master_chunk->va += qdev->lbq_buf_size; get_page(master_chunk->page); } return 0; } /* return 0 or negative error */ static int qlge_refill_bq(struct qlge_bq *bq, gfp_t gfp) { struct rx_ring *rx_ring = QLGE_BQ_CONTAINER(bq); struct qlge_adapter *qdev = rx_ring->qdev; struct qlge_bq_desc *bq_desc; int refill_count; int retval; int i; refill_count = QLGE_BQ_WRAP(QLGE_BQ_ALIGN(bq->next_to_clean - 1) - bq->next_to_use); if (!refill_count) return 0; i = bq->next_to_use; bq_desc = &bq->queue[i]; i -= QLGE_BQ_LEN; do { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "ring %u %s: try cleaning idx %d\n", rx_ring->cq_id, bq_type_name[bq->type], i); if (bq->type == QLGE_SB) retval = qlge_refill_sb(rx_ring, bq_desc, gfp); else retval = qlge_refill_lb(rx_ring, bq_desc, gfp); if (retval < 0) { netif_err(qdev, ifup, qdev->ndev, "ring %u %s: Could not get a page chunk, idx %d\n", rx_ring->cq_id, bq_type_name[bq->type], i); break; } bq_desc++; i++; if (unlikely(!i)) { bq_desc = &bq->queue[0]; i -= QLGE_BQ_LEN; } refill_count--; } while (refill_count); i += QLGE_BQ_LEN; if (bq->next_to_use != i) { if (QLGE_BQ_ALIGN(bq->next_to_use) != QLGE_BQ_ALIGN(i)) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "ring %u %s: updating prod idx = %d.\n", rx_ring->cq_id, bq_type_name[bq->type], i); qlge_write_db_reg(i, bq->prod_idx_db_reg); } bq->next_to_use = i; } return retval; } static void qlge_update_buffer_queues(struct rx_ring *rx_ring, gfp_t gfp, unsigned long delay) { bool sbq_fail, lbq_fail; sbq_fail = !!qlge_refill_bq(&rx_ring->sbq, gfp); lbq_fail = !!qlge_refill_bq(&rx_ring->lbq, gfp); /* Minimum number of buffers needed to be able to receive at least one * frame of any format: * sbq: 1 for header + 1 for data * lbq: mtu 9000 / lb size * Below this, the queue might stall. */ if ((sbq_fail && QLGE_BQ_HW_OWNED(&rx_ring->sbq) < 2) || (lbq_fail && QLGE_BQ_HW_OWNED(&rx_ring->lbq) < DIV_ROUND_UP(9000, LARGE_BUFFER_MAX_SIZE))) /* Allocations can take a long time in certain cases (ex. * reclaim). Therefore, use a workqueue for long-running * work items. */ queue_delayed_work_on(smp_processor_id(), system_long_wq, &rx_ring->refill_work, delay); } static void qlge_slow_refill(struct work_struct *work) { struct rx_ring *rx_ring = container_of(work, struct rx_ring, refill_work.work); struct napi_struct *napi = &rx_ring->napi; napi_disable(napi); qlge_update_buffer_queues(rx_ring, GFP_KERNEL, HZ / 2); napi_enable(napi); local_bh_disable(); /* napi_disable() might have prevented incomplete napi work from being * rescheduled. */ napi_schedule(napi); /* trigger softirq processing */ local_bh_enable(); } /* Unmaps tx buffers. Can be called from send() if a pci mapping * fails at some stage, or from the interrupt when a tx completes. */ static void qlge_unmap_send(struct qlge_adapter *qdev, struct tx_ring_desc *tx_ring_desc, int mapped) { int i; for (i = 0; i < mapped; i++) { if (i == 0 || (i == 7 && mapped > 7)) { /* * Unmap the skb->data area, or the * external sglist (AKA the Outbound * Address List (OAL)). * If its the zeroeth element, then it's * the skb->data area. If it's the 7th * element and there is more than 6 frags, * then its an OAL. */ if (i == 7) { netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev, "unmapping OAL area.\n"); } dma_unmap_single(&qdev->pdev->dev, dma_unmap_addr(&tx_ring_desc->map[i], mapaddr), dma_unmap_len(&tx_ring_desc->map[i], maplen), DMA_TO_DEVICE); } else { netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev, "unmapping frag %d.\n", i); dma_unmap_page(&qdev->pdev->dev, dma_unmap_addr(&tx_ring_desc->map[i], mapaddr), dma_unmap_len(&tx_ring_desc->map[i], maplen), DMA_TO_DEVICE); } } } /* Map the buffers for this transmit. This will return * NETDEV_TX_BUSY or NETDEV_TX_OK based on success. */ static int qlge_map_send(struct qlge_adapter *qdev, struct qlge_ob_mac_iocb_req *mac_iocb_ptr, struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc) { int len = skb_headlen(skb); dma_addr_t map; int frag_idx, err, map_idx = 0; struct tx_buf_desc *tbd = mac_iocb_ptr->tbd; int frag_cnt = skb_shinfo(skb)->nr_frags; if (frag_cnt) { netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, "frag_cnt = %d.\n", frag_cnt); } /* * Map the skb buffer first. */ map = dma_map_single(&qdev->pdev->dev, skb->data, len, DMA_TO_DEVICE); err = dma_mapping_error(&qdev->pdev->dev, map); if (err) { netif_err(qdev, tx_queued, qdev->ndev, "PCI mapping failed with error: %d\n", err); return NETDEV_TX_BUSY; } tbd->len = cpu_to_le32(len); tbd->addr = cpu_to_le64(map); dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len); map_idx++; /* * This loop fills the remainder of the 8 address descriptors * in the IOCB. If there are more than 7 fragments, then the * eighth address desc will point to an external list (OAL). * When this happens, the remainder of the frags will be stored * in this list. */ for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx]; tbd++; if (frag_idx == 6 && frag_cnt > 7) { /* Let's tack on an sglist. * Our control block will now * look like this: * iocb->seg[0] = skb->data * iocb->seg[1] = frag[0] * iocb->seg[2] = frag[1] * iocb->seg[3] = frag[2] * iocb->seg[4] = frag[3] * iocb->seg[5] = frag[4] * iocb->seg[6] = frag[5] * iocb->seg[7] = ptr to OAL (external sglist) * oal->seg[0] = frag[6] * oal->seg[1] = frag[7] * oal->seg[2] = frag[8] * oal->seg[3] = frag[9] * oal->seg[4] = frag[10] * etc... */ /* Tack on the OAL in the eighth segment of IOCB. */ map = dma_map_single(&qdev->pdev->dev, &tx_ring_desc->oal, sizeof(struct qlge_oal), DMA_TO_DEVICE); err = dma_mapping_error(&qdev->pdev->dev, map); if (err) { netif_err(qdev, tx_queued, qdev->ndev, "PCI mapping outbound address list with error: %d\n", err); goto map_error; } tbd->addr = cpu_to_le64(map); /* * The length is the number of fragments * that remain to be mapped times the length * of our sglist (OAL). */ tbd->len = cpu_to_le32((sizeof(struct tx_buf_desc) * (frag_cnt - frag_idx)) | TX_DESC_C); dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, sizeof(struct qlge_oal)); tbd = (struct tx_buf_desc *)&tx_ring_desc->oal; map_idx++; } map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); err = dma_mapping_error(&qdev->pdev->dev, map); if (err) { netif_err(qdev, tx_queued, qdev->ndev, "PCI mapping frags failed with error: %d.\n", err); goto map_error; } tbd->addr = cpu_to_le64(map); tbd->len = cpu_to_le32(skb_frag_size(frag)); dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, skb_frag_size(frag)); } /* Save the number of segments we've mapped. */ tx_ring_desc->map_cnt = map_idx; /* Terminate the last segment. */ tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E); return NETDEV_TX_OK; map_error: /* * If the first frag mapping failed, then i will be zero. * This causes the unmap of the skb->data area. Otherwise * we pass in the number of frags that mapped successfully * so they can be umapped. */ qlge_unmap_send(qdev, tx_ring_desc, map_idx); return NETDEV_TX_BUSY; } /* Categorizing receive firmware frame errors */ static void qlge_categorize_rx_err(struct qlge_adapter *qdev, u8 rx_err, struct rx_ring *rx_ring) { struct nic_stats *stats = &qdev->nic_stats; stats->rx_err_count++; rx_ring->rx_errors++; switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) { case IB_MAC_IOCB_RSP_ERR_CODE_ERR: stats->rx_code_err++; break; case IB_MAC_IOCB_RSP_ERR_OVERSIZE: stats->rx_oversize_err++; break; case IB_MAC_IOCB_RSP_ERR_UNDERSIZE: stats->rx_undersize_err++; break; case IB_MAC_IOCB_RSP_ERR_PREAMBLE: stats->rx_preamble_err++; break; case IB_MAC_IOCB_RSP_ERR_FRAME_LEN: stats->rx_frame_len_err++; break; case IB_MAC_IOCB_RSP_ERR_CRC: stats->rx_crc_err++; break; default: break; } } /* * qlge_update_mac_hdr_len - helper routine to update the mac header length * based on vlan tags if present */ static void qlge_update_mac_hdr_len(struct qlge_adapter *qdev, struct qlge_ib_mac_iocb_rsp *ib_mac_rsp, void *page, size_t *len) { u16 *tags; if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) return; if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) { tags = (u16 *)page; /* Look for stacked vlan tags in ethertype field */ if (tags[6] == ETH_P_8021Q && tags[8] == ETH_P_8021Q) *len += 2 * VLAN_HLEN; else *len += VLAN_HLEN; } } /* Process an inbound completion from an rx ring. */ static void qlge_process_mac_rx_gro_page(struct qlge_adapter *qdev, struct rx_ring *rx_ring, struct qlge_ib_mac_iocb_rsp *ib_mac_rsp, u32 length, u16 vlan_id) { struct sk_buff *skb; struct qlge_bq_desc *lbq_desc = qlge_get_curr_lchunk(qdev, rx_ring); struct napi_struct *napi = &rx_ring->napi; /* Frame error, so drop the packet. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { qlge_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring); put_page(lbq_desc->p.pg_chunk.page); return; } napi->dev = qdev->ndev; skb = napi_get_frags(napi); if (!skb) { netif_err(qdev, drv, qdev->ndev, "Couldn't get an skb, exiting.\n"); rx_ring->rx_dropped++; put_page(lbq_desc->p.pg_chunk.page); return; } prefetch(lbq_desc->p.pg_chunk.va); __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, lbq_desc->p.pg_chunk.page, lbq_desc->p.pg_chunk.offset, length); skb->len += length; skb->data_len += length; skb->truesize += length; skb_shinfo(skb)->nr_frags++; rx_ring->rx_packets++; rx_ring->rx_bytes += length; skb->ip_summed = CHECKSUM_UNNECESSARY; skb_record_rx_queue(skb, rx_ring->cq_id); if (vlan_id != 0xffff) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id); napi_gro_frags(napi); } /* Process an inbound completion from an rx ring. */ static void qlge_process_mac_rx_page(struct qlge_adapter *qdev, struct rx_ring *rx_ring, struct qlge_ib_mac_iocb_rsp *ib_mac_rsp, u32 length, u16 vlan_id) { struct net_device *ndev = qdev->ndev; struct sk_buff *skb = NULL; void *addr; struct qlge_bq_desc *lbq_desc = qlge_get_curr_lchunk(qdev, rx_ring); struct napi_struct *napi = &rx_ring->napi; size_t hlen = ETH_HLEN; skb = netdev_alloc_skb(ndev, length); if (!skb) { rx_ring->rx_dropped++; put_page(lbq_desc->p.pg_chunk.page); return; } addr = lbq_desc->p.pg_chunk.va; prefetch(addr); /* Frame error, so drop the packet. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { qlge_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring); goto err_out; } /* Update the MAC header length*/ qlge_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen); /* The max framesize filter on this chip is set higher than * MTU since FCoE uses 2k frames. */ if (skb->len > ndev->mtu + hlen) { netif_err(qdev, drv, qdev->ndev, "Segment too small, dropping.\n"); rx_ring->rx_dropped++; goto err_out; } skb_put_data(skb, addr, hlen); netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length); skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, lbq_desc->p.pg_chunk.offset + hlen, length - hlen); skb->len += length - hlen; skb->data_len += length - hlen; skb->truesize += length - hlen; rx_ring->rx_packets++; rx_ring->rx_bytes += skb->len; skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert(skb); if ((ndev->features & NETIF_F_RXCSUM) && !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { /* TCP frame. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); skb->ip_summed = CHECKSUM_UNNECESSARY; } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { /* Unfragmented ipv4 UDP frame. */ struct iphdr *iph = (struct iphdr *)((u8 *)addr + hlen); if (!(iph->frag_off & htons(IP_MF | IP_OFFSET))) { skb->ip_summed = CHECKSUM_UNNECESSARY; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "UDP checksum done!\n"); } } } skb_record_rx_queue(skb, rx_ring->cq_id); if (vlan_id != 0xffff) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id); if (skb->ip_summed == CHECKSUM_UNNECESSARY) napi_gro_receive(napi, skb); else netif_receive_skb(skb); return; err_out: dev_kfree_skb_any(skb); put_page(lbq_desc->p.pg_chunk.page); } /* Process an inbound completion from an rx ring. */ static void qlge_process_mac_rx_skb(struct qlge_adapter *qdev, struct rx_ring *rx_ring, struct qlge_ib_mac_iocb_rsp *ib_mac_rsp, u32 length, u16 vlan_id) { struct qlge_bq_desc *sbq_desc = qlge_get_curr_buf(&rx_ring->sbq); struct net_device *ndev = qdev->ndev; struct sk_buff *skb, *new_skb; skb = sbq_desc->p.skb; /* Allocate new_skb and copy */ new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN); if (!new_skb) { rx_ring->rx_dropped++; return; } skb_reserve(new_skb, NET_IP_ALIGN); dma_sync_single_for_cpu(&qdev->pdev->dev, sbq_desc->dma_addr, SMALL_BUF_MAP_SIZE, DMA_FROM_DEVICE); skb_put_data(new_skb, skb->data, length); skb = new_skb; /* Frame error, so drop the packet. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { qlge_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring); dev_kfree_skb_any(skb); return; } /* loopback self test for ethtool */ if (test_bit(QL_SELFTEST, &qdev->flags)) { qlge_check_lb_frame(qdev, skb); dev_kfree_skb_any(skb); return; } /* The max framesize filter on this chip is set higher than * MTU since FCoE uses 2k frames. */ if (skb->len > ndev->mtu + ETH_HLEN) { dev_kfree_skb_any(skb); rx_ring->rx_dropped++; return; } prefetch(skb->data); if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_HASH ? "Hash" : (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_REG ? "Registered" : (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); } if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Promiscuous Packet.\n"); rx_ring->rx_packets++; rx_ring->rx_bytes += skb->len; skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert(skb); /* If rx checksum is on, and there are no * csum or frame errors. */ if ((ndev->features & NETIF_F_RXCSUM) && !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { /* TCP frame. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); skb->ip_summed = CHECKSUM_UNNECESSARY; } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { /* Unfragmented ipv4 UDP frame. */ struct iphdr *iph = (struct iphdr *)skb->data; if (!(iph->frag_off & htons(IP_MF | IP_OFFSET))) { skb->ip_summed = CHECKSUM_UNNECESSARY; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "UDP checksum done!\n"); } } } skb_record_rx_queue(skb, rx_ring->cq_id); if (vlan_id != 0xffff) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id); if (skb->ip_summed == CHECKSUM_UNNECESSARY) napi_gro_receive(&rx_ring->napi, skb); else netif_receive_skb(skb); } static void qlge_realign_skb(struct sk_buff *skb, int len) { void *temp_addr = skb->data; /* Undo the skb_reserve(skb,32) we did before * giving to hardware, and realign data on * a 2-byte boundary. */ skb->data -= QLGE_SB_PAD - NET_IP_ALIGN; skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN; memmove(skb->data, temp_addr, len); } /* * This function builds an skb for the given inbound * completion. It will be rewritten for readability in the near * future, but for not it works well. */ static struct sk_buff *qlge_build_rx_skb(struct qlge_adapter *qdev, struct rx_ring *rx_ring, struct qlge_ib_mac_iocb_rsp *ib_mac_rsp) { u32 length = le32_to_cpu(ib_mac_rsp->data_len); u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len); struct qlge_bq_desc *lbq_desc, *sbq_desc; struct sk_buff *skb = NULL; size_t hlen = ETH_HLEN; /* * Handle the header buffer if present. */ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV && ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Header of %d bytes in small buffer.\n", hdr_len); /* * Headers fit nicely into a small buffer. */ sbq_desc = qlge_get_curr_buf(&rx_ring->sbq); dma_unmap_single(&qdev->pdev->dev, sbq_desc->dma_addr, SMALL_BUF_MAP_SIZE, DMA_FROM_DEVICE); skb = sbq_desc->p.skb; qlge_realign_skb(skb, hdr_len); skb_put(skb, hdr_len); sbq_desc->p.skb = NULL; } /* * Handle the data buffer(s). */ if (unlikely(!length)) { /* Is there data too? */ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "No Data buffer in this packet.\n"); return skb; } if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Headers in small, data of %d bytes in small, combine them.\n", length); /* * Data is less than small buffer size so it's * stuffed in a small buffer. * For this case we append the data * from the "data" small buffer to the "header" small * buffer. */ sbq_desc = qlge_get_curr_buf(&rx_ring->sbq); dma_sync_single_for_cpu(&qdev->pdev->dev, sbq_desc->dma_addr, SMALL_BUF_MAP_SIZE, DMA_FROM_DEVICE); skb_put_data(skb, sbq_desc->p.skb->data, length); } else { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%d bytes in a single small buffer.\n", length); sbq_desc = qlge_get_curr_buf(&rx_ring->sbq); skb = sbq_desc->p.skb; qlge_realign_skb(skb, length); skb_put(skb, length); dma_unmap_single(&qdev->pdev->dev, sbq_desc->dma_addr, SMALL_BUF_MAP_SIZE, DMA_FROM_DEVICE); sbq_desc->p.skb = NULL; } } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Header in small, %d bytes in large. Chain large to small!\n", length); /* * The data is in a single large buffer. We * chain it to the header buffer's skb and let * it rip. */ lbq_desc = qlge_get_curr_lchunk(qdev, rx_ring); netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Chaining page at offset = %d, for %d bytes to skb.\n", lbq_desc->p.pg_chunk.offset, length); skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, lbq_desc->p.pg_chunk.offset, length); skb->len += length; skb->data_len += length; skb->truesize += length; } else { /* * The headers and data are in a single large buffer. We * copy it to a new skb and let it go. This can happen with * jumbo mtu on a non-TCP/UDP frame. */ lbq_desc = qlge_get_curr_lchunk(qdev, rx_ring); skb = netdev_alloc_skb(qdev->ndev, length); if (!skb) { netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev, "No skb available, drop the packet.\n"); return NULL; } dma_unmap_page(&qdev->pdev->dev, lbq_desc->dma_addr, qdev->lbq_buf_size, DMA_FROM_DEVICE); skb_reserve(skb, NET_IP_ALIGN); netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length); skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, lbq_desc->p.pg_chunk.offset, length); skb->len += length; skb->data_len += length; skb->truesize += length; qlge_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va, &hlen); __pskb_pull_tail(skb, hlen); } } else { /* * The data is in a chain of large buffers * pointed to by a small buffer. We loop * thru and chain them to the our small header * buffer's skb. * frags: There are 18 max frags and our small * buffer will hold 32 of them. The thing is, * we'll use 3 max for our 9000 byte jumbo * frames. If the MTU goes up we could * eventually be in trouble. */ int size, i = 0; sbq_desc = qlge_get_curr_buf(&rx_ring->sbq); dma_unmap_single(&qdev->pdev->dev, sbq_desc->dma_addr, SMALL_BUF_MAP_SIZE, DMA_FROM_DEVICE); if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) { /* * This is an non TCP/UDP IP frame, so * the headers aren't split into a small * buffer. We have to use the small buffer * that contains our sg list as our skb to * send upstairs. Copy the sg list here to * a local buffer and use it to find the * pages to chain. */ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%d bytes of headers & data in chain of large.\n", length); skb = sbq_desc->p.skb; sbq_desc->p.skb = NULL; skb_reserve(skb, NET_IP_ALIGN); } do { lbq_desc = qlge_get_curr_lchunk(qdev, rx_ring); size = min(length, qdev->lbq_buf_size); netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Adding page %d to skb for %d bytes.\n", i, size); skb_fill_page_desc(skb, i, lbq_desc->p.pg_chunk.page, lbq_desc->p.pg_chunk.offset, size); skb->len += size; skb->data_len += size; skb->truesize += size; length -= size; i++; } while (length > 0); qlge_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va, &hlen); __pskb_pull_tail(skb, hlen); } return skb; } /* Process an inbound completion from an rx ring. */ static void qlge_process_mac_split_rx_intr(struct qlge_adapter *qdev, struct rx_ring *rx_ring, struct qlge_ib_mac_iocb_rsp *ib_mac_rsp, u16 vlan_id) { struct net_device *ndev = qdev->ndev; struct sk_buff *skb = NULL; skb = qlge_build_rx_skb(qdev, rx_ring, ib_mac_rsp); if (unlikely(!skb)) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "No skb available, drop packet.\n"); rx_ring->rx_dropped++; return; } /* Frame error, so drop the packet. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { qlge_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring); dev_kfree_skb_any(skb); return; } /* The max framesize filter on this chip is set higher than * MTU since FCoE uses 2k frames. */ if (skb->len > ndev->mtu + ETH_HLEN) { dev_kfree_skb_any(skb); rx_ring->rx_dropped++; return; } /* loopback self test for ethtool */ if (test_bit(QL_SELFTEST, &qdev->flags)) { qlge_check_lb_frame(qdev, skb); dev_kfree_skb_any(skb); return; } prefetch(skb->data); if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_HASH ? "Hash" : (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_REG ? "Registered" : (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); rx_ring->rx_multicast++; } if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Promiscuous Packet.\n"); } skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert(skb); /* If rx checksum is on, and there are no * csum or frame errors. */ if ((ndev->features & NETIF_F_RXCSUM) && !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { /* TCP frame. */ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); skb->ip_summed = CHECKSUM_UNNECESSARY; } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { /* Unfragmented ipv4 UDP frame. */ struct iphdr *iph = (struct iphdr *)skb->data; if (!(iph->frag_off & htons(IP_MF | IP_OFFSET))) { skb->ip_summed = CHECKSUM_UNNECESSARY; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "TCP checksum done!\n"); } } } rx_ring->rx_packets++; rx_ring->rx_bytes += skb->len; skb_record_rx_queue(skb, rx_ring->cq_id); if (vlan_id != 0xffff) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id); if (skb->ip_summed == CHECKSUM_UNNECESSARY) napi_gro_receive(&rx_ring->napi, skb); else netif_receive_skb(skb); } /* Process an inbound completion from an rx ring. */ static unsigned long qlge_process_mac_rx_intr(struct qlge_adapter *qdev, struct rx_ring *rx_ring, struct qlge_ib_mac_iocb_rsp *ib_mac_rsp) { u32 length = le32_to_cpu(ib_mac_rsp->data_len); u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ? ((le16_to_cpu(ib_mac_rsp->vlan_id) & IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff; if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) { /* The data and headers are split into * separate buffers. */ qlge_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, vlan_id); } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { /* The data fit in a single small buffer. * Allocate a new skb, copy the data and * return the buffer to the free pool. */ qlge_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp, length, vlan_id); } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) && !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) { /* TCP packet in a page chunk that's been checksummed. * Tack it on to our GRO skb and let it go. */ qlge_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp, length, vlan_id); } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { /* Non-TCP packet in a page chunk. Allocate an * skb, tack it on frags, and send it up. */ qlge_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp, length, vlan_id); } else { /* Non-TCP/UDP large frames that span multiple buffers * can be processed corrrectly by the split frame logic. */ qlge_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, vlan_id); } return (unsigned long)length; } /* Process an outbound completion from an rx ring. */ static void qlge_process_mac_tx_intr(struct qlge_adapter *qdev, struct qlge_ob_mac_iocb_rsp *mac_rsp) { struct tx_ring *tx_ring; struct tx_ring_desc *tx_ring_desc; tx_ring = &qdev->tx_ring[mac_rsp->txq_idx]; tx_ring_desc = &tx_ring->q[mac_rsp->tid]; qlge_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); tx_ring->tx_bytes += (tx_ring_desc->skb)->len; tx_ring->tx_packets++; dev_kfree_skb(tx_ring_desc->skb); tx_ring_desc->skb = NULL; if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E | OB_MAC_IOCB_RSP_S | OB_MAC_IOCB_RSP_L | OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) { if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) { netif_warn(qdev, tx_done, qdev->ndev, "Total descriptor length did not match transfer length.\n"); } if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) { netif_warn(qdev, tx_done, qdev->ndev, "Frame too short to be valid, not sent.\n"); } if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) { netif_warn(qdev, tx_done, qdev->ndev, "Frame too long, but sent anyway.\n"); } if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) { netif_warn(qdev, tx_done, qdev->ndev, "PCI backplane error. Frame not sent.\n"); } } atomic_inc(&tx_ring->tx_count); } /* Fire up a handler to reset the MPI processor. */ void qlge_queue_fw_error(struct qlge_adapter *qdev) { qlge_link_off(qdev); queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0); } void qlge_queue_asic_error(struct qlge_adapter *qdev) { qlge_link_off(qdev); qlge_disable_interrupts(qdev); /* Clear adapter up bit to signal the recovery * process that it shouldn't kill the reset worker * thread */ clear_bit(QL_ADAPTER_UP, &qdev->flags); /* Set asic recovery bit to indicate reset process that we are * in fatal error recovery process rather than normal close */ set_bit(QL_ASIC_RECOVERY, &qdev->flags); queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0); } static void qlge_process_chip_ae_intr(struct qlge_adapter *qdev, struct qlge_ib_ae_iocb_rsp *ib_ae_rsp) { switch (ib_ae_rsp->event) { case MGMT_ERR_EVENT: netif_err(qdev, rx_err, qdev->ndev, "Management Processor Fatal Error.\n"); qlge_queue_fw_error(qdev); return; case CAM_LOOKUP_ERR_EVENT: netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n"); netdev_err(qdev->ndev, "This event shouldn't occur.\n"); qlge_queue_asic_error(qdev); return; case SOFT_ECC_ERROR_EVENT: netdev_err(qdev->ndev, "Soft ECC error detected.\n"); qlge_queue_asic_error(qdev); break; case PCI_ERR_ANON_BUF_RD: netdev_err(qdev->ndev, "PCI error occurred when reading anonymous buffers from rx_ring %d.\n", ib_ae_rsp->q_id); qlge_queue_asic_error(qdev); break; default: netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n", ib_ae_rsp->event); qlge_queue_asic_error(qdev); break; } } static int qlge_clean_outbound_rx_ring(struct rx_ring *rx_ring) { struct qlge_adapter *qdev = rx_ring->qdev; u32 prod = qlge_read_sh_reg(rx_ring->prod_idx_sh_reg); struct qlge_ob_mac_iocb_rsp *net_rsp = NULL; int count = 0; struct tx_ring *tx_ring; /* While there are entries in the completion queue. */ while (prod != rx_ring->cnsmr_idx) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "cq_id = %d, prod = %d, cnsmr = %d\n", rx_ring->cq_id, prod, rx_ring->cnsmr_idx); net_rsp = (struct qlge_ob_mac_iocb_rsp *)rx_ring->curr_entry; rmb(); switch (net_rsp->opcode) { case OPCODE_OB_MAC_TSO_IOCB: case OPCODE_OB_MAC_IOCB: qlge_process_mac_tx_intr(qdev, net_rsp); break; default: netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Hit default case, not handled! dropping the packet, opcode = %x.\n", net_rsp->opcode); } count++; qlge_update_cq(rx_ring); prod = qlge_read_sh_reg(rx_ring->prod_idx_sh_reg); } if (!net_rsp) return 0; qlge_write_cq_idx(rx_ring); tx_ring = &qdev->tx_ring[net_rsp->txq_idx]; if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) { if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4))) /* * The queue got stopped because the tx_ring was full. * Wake it up, because it's now at least 25% empty. */ netif_wake_subqueue(qdev->ndev, tx_ring->wq_id); } return count; } static int qlge_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget) { struct qlge_adapter *qdev = rx_ring->qdev; u32 prod = qlge_read_sh_reg(rx_ring->prod_idx_sh_reg); struct qlge_net_rsp_iocb *net_rsp; int count = 0; /* While there are entries in the completion queue. */ while (prod != rx_ring->cnsmr_idx) { netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "cq_id = %d, prod = %d, cnsmr = %d\n", rx_ring->cq_id, prod, rx_ring->cnsmr_idx); net_rsp = rx_ring->curr_entry; rmb(); switch (net_rsp->opcode) { case OPCODE_IB_MAC_IOCB: qlge_process_mac_rx_intr(qdev, rx_ring, (struct qlge_ib_mac_iocb_rsp *) net_rsp); break; case OPCODE_IB_AE_IOCB: qlge_process_chip_ae_intr(qdev, (struct qlge_ib_ae_iocb_rsp *) net_rsp); break; default: netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Hit default case, not handled! dropping the packet, opcode = %x.\n", net_rsp->opcode); break; } count++; qlge_update_cq(rx_ring); prod = qlge_read_sh_reg(rx_ring->prod_idx_sh_reg); if (count == budget) break; } qlge_update_buffer_queues(rx_ring, GFP_ATOMIC, 0); qlge_write_cq_idx(rx_ring); return count; } static int qlge_napi_poll_msix(struct napi_struct *napi, int budget) { struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi); struct qlge_adapter *qdev = rx_ring->qdev; struct rx_ring *trx_ring; int i, work_done = 0; struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id]; netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id); /* Service the TX rings first. They start * right after the RSS rings. */ for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) { trx_ring = &qdev->rx_ring[i]; /* If this TX completion ring belongs to this vector and * it's not empty then service it. */ if ((ctx->irq_mask & (1 << trx_ring->cq_id)) && (qlge_read_sh_reg(trx_ring->prod_idx_sh_reg) != trx_ring->cnsmr_idx)) { netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, "%s: Servicing TX completion ring %d.\n", __func__, trx_ring->cq_id); qlge_clean_outbound_rx_ring(trx_ring); } } /* * Now service the RSS ring if it's active. */ if (qlge_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) { netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, "%s: Servicing RX completion ring %d.\n", __func__, rx_ring->cq_id); work_done = qlge_clean_inbound_rx_ring(rx_ring, budget); } if (work_done < budget) { napi_complete_done(napi, work_done); qlge_enable_completion_interrupt(qdev, rx_ring->irq); } return work_done; } static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); if (features & NETIF_F_HW_VLAN_CTAG_RX) { qlge_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK | NIC_RCV_CFG_VLAN_MATCH_AND_NON); } else { qlge_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK); } } /* * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter * based on the features to enable/disable hardware vlan accel */ static int qlge_update_hw_vlan_features(struct net_device *ndev, netdev_features_t features) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); bool need_restart = netif_running(ndev); int status = 0; if (need_restart) { status = qlge_adapter_down(qdev); if (status) { netif_err(qdev, link, qdev->ndev, "Failed to bring down the adapter\n"); return status; } } /* update the features with resent change */ ndev->features = features; if (need_restart) { status = qlge_adapter_up(qdev); if (status) { netif_err(qdev, link, qdev->ndev, "Failed to bring up the adapter\n"); return status; } } return status; } static int qlge_set_features(struct net_device *ndev, netdev_features_t features) { netdev_features_t changed = ndev->features ^ features; int err; if (changed & NETIF_F_HW_VLAN_CTAG_RX) { /* Update the behavior of vlan accel in the adapter */ err = qlge_update_hw_vlan_features(ndev, features); if (err) return err; qlge_vlan_mode(ndev, features); } return 0; } static int __qlge_vlan_rx_add_vid(struct qlge_adapter *qdev, u16 vid) { u32 enable_bit = MAC_ADDR_E; int err; err = qlge_set_mac_addr_reg(qdev, (u8 *)&enable_bit, MAC_ADDR_TYPE_VLAN, vid); if (err) netif_err(qdev, ifup, qdev->ndev, "Failed to init vlan address.\n"); return err; } static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); int status; int err; status = qlge_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return status; err = __qlge_vlan_rx_add_vid(qdev, vid); set_bit(vid, qdev->active_vlans); qlge_sem_unlock(qdev, SEM_MAC_ADDR_MASK); return err; } static int __qlge_vlan_rx_kill_vid(struct qlge_adapter *qdev, u16 vid) { u32 enable_bit = 0; int err; err = qlge_set_mac_addr_reg(qdev, (u8 *)&enable_bit, MAC_ADDR_TYPE_VLAN, vid); if (err) netif_err(qdev, ifup, qdev->ndev, "Failed to clear vlan address.\n"); return err; } static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); int status; int err; status = qlge_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return status; err = __qlge_vlan_rx_kill_vid(qdev, vid); clear_bit(vid, qdev->active_vlans); qlge_sem_unlock(qdev, SEM_MAC_ADDR_MASK); return err; } static void qlge_restore_vlan(struct qlge_adapter *qdev) { int status; u16 vid; status = qlge_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return; for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID) __qlge_vlan_rx_add_vid(qdev, vid); qlge_sem_unlock(qdev, SEM_MAC_ADDR_MASK); } /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */ static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id) { struct rx_ring *rx_ring = dev_id; napi_schedule(&rx_ring->napi); return IRQ_HANDLED; } /* This handles a fatal error, MPI activity, and the default * rx_ring in an MSI-X multiple vector environment. * In MSI/Legacy environment it also process the rest of * the rx_rings. */ static irqreturn_t qlge_isr(int irq, void *dev_id) { struct rx_ring *rx_ring = dev_id; struct qlge_adapter *qdev = rx_ring->qdev; struct intr_context *intr_context = &qdev->intr_context[0]; u32 var; int work_done = 0; /* Experience shows that when using INTx interrupts, interrupts must * be masked manually. * When using MSI mode, INTR_EN_EN must be explicitly disabled * (even though it is auto-masked), otherwise a later command to * enable it is not effective. */ if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) qlge_disable_completion_interrupt(qdev, 0); var = qlge_read32(qdev, STS); /* * Check for fatal error. */ if (var & STS_FE) { qlge_disable_completion_interrupt(qdev, 0); qlge_queue_asic_error(qdev); netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var); var = qlge_read32(qdev, ERR_STS); netdev_err(qdev->ndev, "Resetting chip. Error Status Register = 0x%x\n", var); return IRQ_HANDLED; } /* * Check MPI processor activity. */ if ((var & STS_PI) && (qlge_read32(qdev, INTR_MASK) & INTR_MASK_PI)) { /* * We've got an async event or mailbox completion. * Handle it and clear the source of the interrupt. */ netif_err(qdev, intr, qdev->ndev, "Got MPI processor interrupt.\n"); qlge_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16)); queue_delayed_work_on(smp_processor_id(), qdev->workqueue, &qdev->mpi_work, 0); work_done++; } /* * Get the bit-mask that shows the active queues for this * pass. Compare it to the queues that this irq services * and call napi if there's a match. */ var = qlge_read32(qdev, ISR1); if (var & intr_context->irq_mask) { netif_info(qdev, intr, qdev->ndev, "Waking handler for rx_ring[0].\n"); napi_schedule(&rx_ring->napi); work_done++; } else { /* Experience shows that the device sometimes signals an * interrupt but no work is scheduled from this function. * Nevertheless, the interrupt is auto-masked. Therefore, we * systematically re-enable the interrupt if we didn't * schedule napi. */ qlge_enable_completion_interrupt(qdev, 0); } return work_done ? IRQ_HANDLED : IRQ_NONE; } static int qlge_tso(struct sk_buff *skb, struct qlge_ob_mac_tso_iocb_req *mac_iocb_ptr) { if (skb_is_gso(skb)) { int err; __be16 l3_proto = vlan_get_protocol(skb); err = skb_cow_head(skb, 0); if (err < 0) return err; mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC; mac_iocb_ptr->frame_len = cpu_to_le32((u32)skb->len); mac_iocb_ptr->total_hdrs_len = cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb)); mac_iocb_ptr->net_trans_offset = cpu_to_le16(skb_network_offset(skb) | skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO; if (likely(l3_proto == htons(ETH_P_IP))) { struct iphdr *iph = ip_hdr(skb); iph->check = 0; mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); } else if (l3_proto == htons(ETH_P_IPV6)) { mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6; tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } return 1; } return 0; } static void qlge_hw_csum_setup(struct sk_buff *skb, struct qlge_ob_mac_tso_iocb_req *mac_iocb_ptr) { int len; struct iphdr *iph = ip_hdr(skb); __sum16 *check; mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; mac_iocb_ptr->frame_len = cpu_to_le32((u32)skb->len); mac_iocb_ptr->net_trans_offset = cpu_to_le16(skb_network_offset(skb) | skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; len = (ntohs(iph->tot_len) - (iph->ihl << 2)); if (likely(iph->protocol == IPPROTO_TCP)) { check = &(tcp_hdr(skb)->check); mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC; mac_iocb_ptr->total_hdrs_len = cpu_to_le16(skb_transport_offset(skb) + (tcp_hdr(skb)->doff << 2)); } else { check = &(udp_hdr(skb)->check); mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC; mac_iocb_ptr->total_hdrs_len = cpu_to_le16(skb_transport_offset(skb) + sizeof(struct udphdr)); } *check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, len, iph->protocol, 0); } static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); struct qlge_ob_mac_iocb_req *mac_iocb_ptr; struct tx_ring_desc *tx_ring_desc; int tso; struct tx_ring *tx_ring; u32 tx_ring_idx = (u32)skb->queue_mapping; tx_ring = &qdev->tx_ring[tx_ring_idx]; if (skb_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) { netif_info(qdev, tx_queued, qdev->ndev, "%s: BUG! shutting down tx queue %d due to lack of resources.\n", __func__, tx_ring_idx); netif_stop_subqueue(ndev, tx_ring->wq_id); tx_ring->tx_errors++; return NETDEV_TX_BUSY; } tx_ring_desc = &tx_ring->q[tx_ring->prod_idx]; mac_iocb_ptr = tx_ring_desc->queue_entry; memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr)); mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB; mac_iocb_ptr->tid = tx_ring_desc->index; /* We use the upper 32-bits to store the tx queue for this IO. * When we get the completion we can use it to establish the context. */ mac_iocb_ptr->txq_idx = tx_ring_idx; tx_ring_desc->skb = skb; mac_iocb_ptr->frame_len = cpu_to_le16((u16)skb->len); if (skb_vlan_tag_present(skb)) { netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb)); mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V; mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb)); } tso = qlge_tso(skb, (struct qlge_ob_mac_tso_iocb_req *)mac_iocb_ptr); if (tso < 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) { qlge_hw_csum_setup(skb, (struct qlge_ob_mac_tso_iocb_req *)mac_iocb_ptr); } if (qlge_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) { netif_err(qdev, tx_queued, qdev->ndev, "Could not map the segments.\n"); tx_ring->tx_errors++; return NETDEV_TX_BUSY; } tx_ring->prod_idx++; if (tx_ring->prod_idx == tx_ring->wq_len) tx_ring->prod_idx = 0; wmb(); qlge_write_db_reg_relaxed(tx_ring->prod_idx, tx_ring->prod_idx_db_reg); netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, "tx queued, slot %d, len %d\n", tx_ring->prod_idx, skb->len); atomic_dec(&tx_ring->tx_count); if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) { netif_stop_subqueue(ndev, tx_ring->wq_id); if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4))) /* * The queue got stopped because the tx_ring was full. * Wake it up, because it's now at least 25% empty. */ netif_wake_subqueue(qdev->ndev, tx_ring->wq_id); } return NETDEV_TX_OK; } static void qlge_free_shadow_space(struct qlge_adapter *qdev) { if (qdev->rx_ring_shadow_reg_area) { dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE, qdev->rx_ring_shadow_reg_area, qdev->rx_ring_shadow_reg_dma); qdev->rx_ring_shadow_reg_area = NULL; } if (qdev->tx_ring_shadow_reg_area) { dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE, qdev->tx_ring_shadow_reg_area, qdev->tx_ring_shadow_reg_dma); qdev->tx_ring_shadow_reg_area = NULL; } } static int qlge_alloc_shadow_space(struct qlge_adapter *qdev) { qdev->rx_ring_shadow_reg_area = dma_alloc_coherent(&qdev->pdev->dev, PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma, GFP_ATOMIC); if (!qdev->rx_ring_shadow_reg_area) { netif_err(qdev, ifup, qdev->ndev, "Allocation of RX shadow space failed.\n"); return -ENOMEM; } qdev->tx_ring_shadow_reg_area = dma_alloc_coherent(&qdev->pdev->dev, PAGE_SIZE, &qdev->tx_ring_shadow_reg_dma, GFP_ATOMIC); if (!qdev->tx_ring_shadow_reg_area) { netif_err(qdev, ifup, qdev->ndev, "Allocation of TX shadow space failed.\n"); goto err_wqp_sh_area; } return 0; err_wqp_sh_area: dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE, qdev->rx_ring_shadow_reg_area, qdev->rx_ring_shadow_reg_dma); return -ENOMEM; } static void qlge_init_tx_ring(struct qlge_adapter *qdev, struct tx_ring *tx_ring) { struct tx_ring_desc *tx_ring_desc; int i; struct qlge_ob_mac_iocb_req *mac_iocb_ptr; mac_iocb_ptr = tx_ring->wq_base; tx_ring_desc = tx_ring->q; for (i = 0; i < tx_ring->wq_len; i++) { tx_ring_desc->index = i; tx_ring_desc->skb = NULL; tx_ring_desc->queue_entry = mac_iocb_ptr; mac_iocb_ptr++; tx_ring_desc++; } atomic_set(&tx_ring->tx_count, tx_ring->wq_len); } static void qlge_free_tx_resources(struct qlge_adapter *qdev, struct tx_ring *tx_ring) { if (tx_ring->wq_base) { dma_free_coherent(&qdev->pdev->dev, tx_ring->wq_size, tx_ring->wq_base, tx_ring->wq_base_dma); tx_ring->wq_base = NULL; } kfree(tx_ring->q); tx_ring->q = NULL; } static int qlge_alloc_tx_resources(struct qlge_adapter *qdev, struct tx_ring *tx_ring) { tx_ring->wq_base = dma_alloc_coherent(&qdev->pdev->dev, tx_ring->wq_size, &tx_ring->wq_base_dma, GFP_ATOMIC); if (!tx_ring->wq_base || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) goto pci_alloc_err; tx_ring->q = kmalloc_array(tx_ring->wq_len, sizeof(struct tx_ring_desc), GFP_KERNEL); if (!tx_ring->q) goto err; return 0; err: dma_free_coherent(&qdev->pdev->dev, tx_ring->wq_size, tx_ring->wq_base, tx_ring->wq_base_dma); tx_ring->wq_base = NULL; pci_alloc_err: netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n"); return -ENOMEM; } static void qlge_free_lbq_buffers(struct qlge_adapter *qdev, struct rx_ring *rx_ring) { struct qlge_bq *lbq = &rx_ring->lbq; unsigned int last_offset; last_offset = qlge_lbq_block_size(qdev) - qdev->lbq_buf_size; while (lbq->next_to_clean != lbq->next_to_use) { struct qlge_bq_desc *lbq_desc = &lbq->queue[lbq->next_to_clean]; if (lbq_desc->p.pg_chunk.offset == last_offset) dma_unmap_page(&qdev->pdev->dev, lbq_desc->dma_addr, qlge_lbq_block_size(qdev), DMA_FROM_DEVICE); put_page(lbq_desc->p.pg_chunk.page); lbq->next_to_clean = QLGE_BQ_WRAP(lbq->next_to_clean + 1); } if (rx_ring->master_chunk.page) { dma_unmap_page(&qdev->pdev->dev, rx_ring->chunk_dma_addr, qlge_lbq_block_size(qdev), DMA_FROM_DEVICE); put_page(rx_ring->master_chunk.page); rx_ring->master_chunk.page = NULL; } } static void qlge_free_sbq_buffers(struct qlge_adapter *qdev, struct rx_ring *rx_ring) { int i; for (i = 0; i < QLGE_BQ_LEN; i++) { struct qlge_bq_desc *sbq_desc = &rx_ring->sbq.queue[i]; if (!sbq_desc) { netif_err(qdev, ifup, qdev->ndev, "sbq_desc %d is NULL.\n", i); return; } if (sbq_desc->p.skb) { dma_unmap_single(&qdev->pdev->dev, sbq_desc->dma_addr, SMALL_BUF_MAP_SIZE, DMA_FROM_DEVICE); dev_kfree_skb(sbq_desc->p.skb); sbq_desc->p.skb = NULL; } } } /* Free all large and small rx buffers associated * with the completion queues for this device. */ static void qlge_free_rx_buffers(struct qlge_adapter *qdev) { int i; for (i = 0; i < qdev->rx_ring_count; i++) { struct rx_ring *rx_ring = &qdev->rx_ring[i]; if (rx_ring->lbq.queue) qlge_free_lbq_buffers(qdev, rx_ring); if (rx_ring->sbq.queue) qlge_free_sbq_buffers(qdev, rx_ring); } } static void qlge_alloc_rx_buffers(struct qlge_adapter *qdev) { int i; for (i = 0; i < qdev->rss_ring_count; i++) qlge_update_buffer_queues(&qdev->rx_ring[i], GFP_KERNEL, HZ / 2); } static int qlge_init_bq(struct qlge_bq *bq) { struct rx_ring *rx_ring = QLGE_BQ_CONTAINER(bq); struct qlge_adapter *qdev = rx_ring->qdev; struct qlge_bq_desc *bq_desc; __le64 *buf_ptr; int i; bq->base = dma_alloc_coherent(&qdev->pdev->dev, QLGE_BQ_SIZE, &bq->base_dma, GFP_ATOMIC); if (!bq->base) return -ENOMEM; bq->queue = kmalloc_array(QLGE_BQ_LEN, sizeof(struct qlge_bq_desc), GFP_KERNEL); if (!bq->queue) return -ENOMEM; buf_ptr = bq->base; bq_desc = &bq->queue[0]; for (i = 0; i < QLGE_BQ_LEN; i++, buf_ptr++, bq_desc++) { bq_desc->p.skb = NULL; bq_desc->index = i; bq_desc->buf_ptr = buf_ptr; } return 0; } static void qlge_free_rx_resources(struct qlge_adapter *qdev, struct rx_ring *rx_ring) { /* Free the small buffer queue. */ if (rx_ring->sbq.base) { dma_free_coherent(&qdev->pdev->dev, QLGE_BQ_SIZE, rx_ring->sbq.base, rx_ring->sbq.base_dma); rx_ring->sbq.base = NULL; } /* Free the small buffer queue control blocks. */ kfree(rx_ring->sbq.queue); rx_ring->sbq.queue = NULL; /* Free the large buffer queue. */ if (rx_ring->lbq.base) { dma_free_coherent(&qdev->pdev->dev, QLGE_BQ_SIZE, rx_ring->lbq.base, rx_ring->lbq.base_dma); rx_ring->lbq.base = NULL; } /* Free the large buffer queue control blocks. */ kfree(rx_ring->lbq.queue); rx_ring->lbq.queue = NULL; /* Free the rx queue. */ if (rx_ring->cq_base) { dma_free_coherent(&qdev->pdev->dev, rx_ring->cq_size, rx_ring->cq_base, rx_ring->cq_base_dma); rx_ring->cq_base = NULL; } } /* Allocate queues and buffers for this completions queue based * on the values in the parameter structure. */ static int qlge_alloc_rx_resources(struct qlge_adapter *qdev, struct rx_ring *rx_ring) { /* * Allocate the completion queue for this rx_ring. */ rx_ring->cq_base = dma_alloc_coherent(&qdev->pdev->dev, rx_ring->cq_size, &rx_ring->cq_base_dma, GFP_ATOMIC); if (!rx_ring->cq_base) { netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n"); return -ENOMEM; } if (rx_ring->cq_id < qdev->rss_ring_count && (qlge_init_bq(&rx_ring->sbq) || qlge_init_bq(&rx_ring->lbq))) { qlge_free_rx_resources(qdev, rx_ring); return -ENOMEM; } return 0; } static void qlge_tx_ring_clean(struct qlge_adapter *qdev) { struct tx_ring *tx_ring; struct tx_ring_desc *tx_ring_desc; int i, j; /* * Loop through all queues and free * any resources. */ for (j = 0; j < qdev->tx_ring_count; j++) { tx_ring = &qdev->tx_ring[j]; for (i = 0; i < tx_ring->wq_len; i++) { tx_ring_desc = &tx_ring->q[i]; if (tx_ring_desc && tx_ring_desc->skb) { netif_err(qdev, ifdown, qdev->ndev, "Freeing lost SKB %p, from queue %d, index %d.\n", tx_ring_desc->skb, j, tx_ring_desc->index); qlge_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); dev_kfree_skb(tx_ring_desc->skb); tx_ring_desc->skb = NULL; } } } } static void qlge_free_mem_resources(struct qlge_adapter *qdev) { int i; for (i = 0; i < qdev->tx_ring_count; i++) qlge_free_tx_resources(qdev, &qdev->tx_ring[i]); for (i = 0; i < qdev->rx_ring_count; i++) qlge_free_rx_resources(qdev, &qdev->rx_ring[i]); qlge_free_shadow_space(qdev); } static int qlge_alloc_mem_resources(struct qlge_adapter *qdev) { int i; /* Allocate space for our shadow registers and such. */ if (qlge_alloc_shadow_space(qdev)) return -ENOMEM; for (i = 0; i < qdev->rx_ring_count; i++) { if (qlge_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) { netif_err(qdev, ifup, qdev->ndev, "RX resource allocation failed.\n"); goto err_mem; } } /* Allocate tx queue resources */ for (i = 0; i < qdev->tx_ring_count; i++) { if (qlge_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) { netif_err(qdev, ifup, qdev->ndev, "TX resource allocation failed.\n"); goto err_mem; } } return 0; err_mem: qlge_free_mem_resources(qdev); return -ENOMEM; } /* Set up the rx ring control block and pass it to the chip. * The control block is defined as * "Completion Queue Initialization Control Block", or cqicb. */ static int qlge_start_rx_ring(struct qlge_adapter *qdev, struct rx_ring *rx_ring) { struct cqicb *cqicb = &rx_ring->cqicb; void *shadow_reg = qdev->rx_ring_shadow_reg_area + (rx_ring->cq_id * RX_RING_SHADOW_SPACE); u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma + (rx_ring->cq_id * RX_RING_SHADOW_SPACE); void __iomem *doorbell_area = qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id)); int err = 0; u64 tmp; __le64 *base_indirect_ptr; int page_entries; /* Set up the shadow registers for this ring. */ rx_ring->prod_idx_sh_reg = shadow_reg; rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma; *rx_ring->prod_idx_sh_reg = 0; shadow_reg += sizeof(u64); shadow_reg_dma += sizeof(u64); rx_ring->lbq.base_indirect = shadow_reg; rx_ring->lbq.base_indirect_dma = shadow_reg_dma; shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(QLGE_BQ_LEN)); shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(QLGE_BQ_LEN)); rx_ring->sbq.base_indirect = shadow_reg; rx_ring->sbq.base_indirect_dma = shadow_reg_dma; /* PCI doorbell mem area + 0x00 for consumer index register */ rx_ring->cnsmr_idx_db_reg = (u32 __iomem *)doorbell_area; rx_ring->cnsmr_idx = 0; rx_ring->curr_entry = rx_ring->cq_base; /* PCI doorbell mem area + 0x04 for valid register */ rx_ring->valid_db_reg = doorbell_area + 0x04; /* PCI doorbell mem area + 0x18 for large buffer consumer */ rx_ring->lbq.prod_idx_db_reg = (u32 __iomem *)(doorbell_area + 0x18); /* PCI doorbell mem area + 0x1c */ rx_ring->sbq.prod_idx_db_reg = (u32 __iomem *)(doorbell_area + 0x1c); memset((void *)cqicb, 0, sizeof(struct cqicb)); cqicb->msix_vect = rx_ring->irq; cqicb->len = cpu_to_le16(QLGE_FIT16(rx_ring->cq_len) | LEN_V | LEN_CPP_CONT); cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma); cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma); /* * Set up the control block load flags. */ cqicb->flags = FLAGS_LC | /* Load queue base address */ FLAGS_LV | /* Load MSI-X vector */ FLAGS_LI; /* Load irq delay values */ if (rx_ring->cq_id < qdev->rss_ring_count) { cqicb->flags |= FLAGS_LL; /* Load lbq values */ tmp = (u64)rx_ring->lbq.base_dma; base_indirect_ptr = rx_ring->lbq.base_indirect; page_entries = 0; do { *base_indirect_ptr = cpu_to_le64(tmp); tmp += DB_PAGE_SIZE; base_indirect_ptr++; page_entries++; } while (page_entries < MAX_DB_PAGES_PER_BQ(QLGE_BQ_LEN)); cqicb->lbq_addr = cpu_to_le64(rx_ring->lbq.base_indirect_dma); cqicb->lbq_buf_size = cpu_to_le16(QLGE_FIT16(qdev->lbq_buf_size)); cqicb->lbq_len = cpu_to_le16(QLGE_FIT16(QLGE_BQ_LEN)); rx_ring->lbq.next_to_use = 0; rx_ring->lbq.next_to_clean = 0; cqicb->flags |= FLAGS_LS; /* Load sbq values */ tmp = (u64)rx_ring->sbq.base_dma; base_indirect_ptr = rx_ring->sbq.base_indirect; page_entries = 0; do { *base_indirect_ptr = cpu_to_le64(tmp); tmp += DB_PAGE_SIZE; base_indirect_ptr++; page_entries++; } while (page_entries < MAX_DB_PAGES_PER_BQ(QLGE_BQ_LEN)); cqicb->sbq_addr = cpu_to_le64(rx_ring->sbq.base_indirect_dma); cqicb->sbq_buf_size = cpu_to_le16(SMALL_BUFFER_SIZE); cqicb->sbq_len = cpu_to_le16(QLGE_FIT16(QLGE_BQ_LEN)); rx_ring->sbq.next_to_use = 0; rx_ring->sbq.next_to_clean = 0; } if (rx_ring->cq_id < qdev->rss_ring_count) { /* Inbound completion handling rx_rings run in * separate NAPI contexts. */ netif_napi_add(qdev->ndev, &rx_ring->napi, qlge_napi_poll_msix, 64); cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs); cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames); } else { cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs); cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames); } err = qlge_write_cfg(qdev, cqicb, sizeof(struct cqicb), CFG_LCQ, rx_ring->cq_id); if (err) { netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n"); return err; } return err; } static int qlge_start_tx_ring(struct qlge_adapter *qdev, struct tx_ring *tx_ring) { struct wqicb *wqicb = (struct wqicb *)tx_ring; void __iomem *doorbell_area = qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id); void *shadow_reg = qdev->tx_ring_shadow_reg_area + (tx_ring->wq_id * sizeof(u64)); u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma + (tx_ring->wq_id * sizeof(u64)); int err = 0; /* * Assign doorbell registers for this tx_ring. */ /* TX PCI doorbell mem area for tx producer index */ tx_ring->prod_idx_db_reg = (u32 __iomem *)doorbell_area; tx_ring->prod_idx = 0; /* TX PCI doorbell mem area + 0x04 */ tx_ring->valid_db_reg = doorbell_area + 0x04; /* * Assign shadow registers for this tx_ring. */ tx_ring->cnsmr_idx_sh_reg = shadow_reg; tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma; wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT); wqicb->flags = cpu_to_le16(Q_FLAGS_LC | Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO); wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id); wqicb->rid = 0; wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma); wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma); qlge_init_tx_ring(qdev, tx_ring); err = qlge_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ, (u16)tx_ring->wq_id); if (err) { netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n"); return err; } return err; } static void qlge_disable_msix(struct qlge_adapter *qdev) { if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { pci_disable_msix(qdev->pdev); clear_bit(QL_MSIX_ENABLED, &qdev->flags); kfree(qdev->msi_x_entry); qdev->msi_x_entry = NULL; } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) { pci_disable_msi(qdev->pdev); clear_bit(QL_MSI_ENABLED, &qdev->flags); } } /* We start by trying to get the number of vectors * stored in qdev->intr_count. If we don't get that * many then we reduce the count and try again. */ static void qlge_enable_msix(struct qlge_adapter *qdev) { int i, err; /* Get the MSIX vectors. */ if (qlge_irq_type == MSIX_IRQ) { /* Try to alloc space for the msix struct, * if it fails then go to MSI/legacy. */ qdev->msi_x_entry = kcalloc(qdev->intr_count, sizeof(struct msix_entry), GFP_KERNEL); if (!qdev->msi_x_entry) { qlge_irq_type = MSI_IRQ; goto msi; } for (i = 0; i < qdev->intr_count; i++) qdev->msi_x_entry[i].entry = i; err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry, 1, qdev->intr_count); if (err < 0) { kfree(qdev->msi_x_entry); qdev->msi_x_entry = NULL; netif_warn(qdev, ifup, qdev->ndev, "MSI-X Enable failed, trying MSI.\n"); qlge_irq_type = MSI_IRQ; } else { qdev->intr_count = err; set_bit(QL_MSIX_ENABLED, &qdev->flags); netif_info(qdev, ifup, qdev->ndev, "MSI-X Enabled, got %d vectors.\n", qdev->intr_count); return; } } msi: qdev->intr_count = 1; if (qlge_irq_type == MSI_IRQ) { if (pci_alloc_irq_vectors(qdev->pdev, 1, 1, PCI_IRQ_MSI) >= 0) { set_bit(QL_MSI_ENABLED, &qdev->flags); netif_info(qdev, ifup, qdev->ndev, "Running with MSI interrupts.\n"); return; } } qlge_irq_type = LEG_IRQ; set_bit(QL_LEGACY_ENABLED, &qdev->flags); netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Running with legacy interrupts.\n"); } /* Each vector services 1 RSS ring and 1 or more * TX completion rings. This function loops through * the TX completion rings and assigns the vector that * will service it. An example would be if there are * 2 vectors (so 2 RSS rings) and 8 TX completion rings. * This would mean that vector 0 would service RSS ring 0 * and TX completion rings 0,1,2 and 3. Vector 1 would * service RSS ring 1 and TX completion rings 4,5,6 and 7. */ static void qlge_set_tx_vect(struct qlge_adapter *qdev) { int i, j, vect; u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count; if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { /* Assign irq vectors to TX rx_rings.*/ for (vect = 0, j = 0, i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) { if (j == tx_rings_per_vector) { vect++; j = 0; } qdev->rx_ring[i].irq = vect; j++; } } else { /* For single vector all rings have an irq * of zero. */ for (i = 0; i < qdev->rx_ring_count; i++) qdev->rx_ring[i].irq = 0; } } /* Set the interrupt mask for this vector. Each vector * will service 1 RSS ring and 1 or more TX completion * rings. This function sets up a bit mask per vector * that indicates which rings it services. */ static void qlge_set_irq_mask(struct qlge_adapter *qdev, struct intr_context *ctx) { int j, vect = ctx->intr; u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count; if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { /* Add the RSS ring serviced by this vector * to the mask. */ ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id); /* Add the TX ring(s) serviced by this vector * to the mask. */ for (j = 0; j < tx_rings_per_vector; j++) { ctx->irq_mask |= (1 << qdev->rx_ring[qdev->rss_ring_count + (vect * tx_rings_per_vector) + j].cq_id); } } else { /* For single vector we just shift each queue's * ID into the mask. */ for (j = 0; j < qdev->rx_ring_count; j++) ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id); } } /* * Here we build the intr_context structures based on * our rx_ring count and intr vector count. * The intr_context structure is used to hook each vector * to possibly different handlers. */ static void qlge_resolve_queues_to_irqs(struct qlge_adapter *qdev) { int i = 0; struct intr_context *intr_context = &qdev->intr_context[0]; if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { /* Each rx_ring has it's * own intr_context since we have separate * vectors for each queue. */ for (i = 0; i < qdev->intr_count; i++, intr_context++) { qdev->rx_ring[i].irq = i; intr_context->intr = i; intr_context->qdev = qdev; /* Set up this vector's bit-mask that indicates * which queues it services. */ qlge_set_irq_mask(qdev, intr_context); /* * We set up each vectors enable/disable/read bits so * there's no bit/mask calculations in the critical path. */ intr_context->intr_en_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD | i; intr_context->intr_dis_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK | INTR_EN_IHD | i; intr_context->intr_read_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD | i; if (i == 0) { /* The first vector/queue handles * broadcast/multicast, fatal errors, * and firmware events. This in addition * to normal inbound NAPI processing. */ intr_context->handler = qlge_isr; sprintf(intr_context->name, "%s-rx-%d", qdev->ndev->name, i); } else { /* * Inbound queues handle unicast frames only. */ intr_context->handler = qlge_msix_rx_isr; sprintf(intr_context->name, "%s-rx-%d", qdev->ndev->name, i); } } } else { /* * All rx_rings use the same intr_context since * there is only one vector. */ intr_context->intr = 0; intr_context->qdev = qdev; /* * We set up each vectors enable/disable/read bits so * there's no bit/mask calculations in the critical path. */ intr_context->intr_en_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE; intr_context->intr_dis_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_DISABLE; if (test_bit(QL_LEGACY_ENABLED, &qdev->flags)) { /* Experience shows that when using INTx interrupts, * the device does not always auto-mask INTR_EN_EN. * Moreover, masking INTR_EN_EN manually does not * immediately prevent interrupt generation. */ intr_context->intr_en_mask |= INTR_EN_EI << 16 | INTR_EN_EI; intr_context->intr_dis_mask |= INTR_EN_EI << 16; } intr_context->intr_read_mask = INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ; /* * Single interrupt means one handler for all rings. */ intr_context->handler = qlge_isr; sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name); /* Set up this vector's bit-mask that indicates * which queues it services. In this case there is * a single vector so it will service all RSS and * TX completion rings. */ qlge_set_irq_mask(qdev, intr_context); } /* Tell the TX completion rings which MSIx vector * they will be using. */ qlge_set_tx_vect(qdev); } static void qlge_free_irq(struct qlge_adapter *qdev) { int i; struct intr_context *intr_context = &qdev->intr_context[0]; for (i = 0; i < qdev->intr_count; i++, intr_context++) { if (intr_context->hooked) { if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { free_irq(qdev->msi_x_entry[i].vector, &qdev->rx_ring[i]); } else { free_irq(qdev->pdev->irq, &qdev->rx_ring[0]); } } } qlge_disable_msix(qdev); } static int qlge_request_irq(struct qlge_adapter *qdev) { int i; int status = 0; struct pci_dev *pdev = qdev->pdev; struct intr_context *intr_context = &qdev->intr_context[0]; qlge_resolve_queues_to_irqs(qdev); for (i = 0; i < qdev->intr_count; i++, intr_context++) { if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { status = request_irq(qdev->msi_x_entry[i].vector, intr_context->handler, 0, intr_context->name, &qdev->rx_ring[i]); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed request for MSIX interrupt %d.\n", i); goto err_irq; } } else { netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "trying msi or legacy interrupts.\n"); netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "%s: irq = %d.\n", __func__, pdev->irq); netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "%s: context->name = %s.\n", __func__, intr_context->name); netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "%s: dev_id = 0x%p.\n", __func__, &qdev->rx_ring[0]); status = request_irq(pdev->irq, qlge_isr, test_bit(QL_MSI_ENABLED, &qdev->flags) ? 0 : IRQF_SHARED, intr_context->name, &qdev->rx_ring[0]); if (status) goto err_irq; netif_err(qdev, ifup, qdev->ndev, "Hooked intr 0, queue type RX_Q, with name %s.\n", intr_context->name); } intr_context->hooked = 1; } return status; err_irq: netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n"); qlge_free_irq(qdev); return status; } static int qlge_start_rss(struct qlge_adapter *qdev) { static const u8 init_hash_seed[] = { 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa }; struct ricb *ricb = &qdev->ricb; int status = 0; int i; u8 *hash_id = (u8 *)ricb->hash_cq_id; memset((void *)ricb, 0, sizeof(*ricb)); ricb->base_cq = RSS_L4K; ricb->flags = (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6); ricb->mask = cpu_to_le16((u16)(0x3ff)); /* * Fill out the Indirection Table. */ for (i = 0; i < 1024; i++) hash_id[i] = (i & (qdev->rss_ring_count - 1)); memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40); memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16); status = qlge_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n"); return status; } return status; } static int qlge_clear_routing_entries(struct qlge_adapter *qdev) { int i, status = 0; status = qlge_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return status; /* Clear all the entries in the routing table. */ for (i = 0; i < 16; i++) { status = qlge_set_routing_reg(qdev, i, 0, 0); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for CAM packets.\n"); break; } } qlge_sem_unlock(qdev, SEM_RT_IDX_MASK); return status; } /* Initialize the frame-to-queue routing. */ static int qlge_route_initialize(struct qlge_adapter *qdev) { int status = 0; /* Clear all the entries in the routing table. */ status = qlge_clear_routing_entries(qdev); if (status) return status; status = qlge_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return status; status = qlge_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT, RT_IDX_IP_CSUM_ERR, 1); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for IP CSUM error packets.\n"); goto exit; } status = qlge_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT, RT_IDX_TU_CSUM_ERR, 1); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for TCP/UDP CSUM error packets.\n"); goto exit; } status = qlge_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for broadcast packets.\n"); goto exit; } /* If we have more than one inbound queue, then turn on RSS in the * routing block. */ if (qdev->rss_ring_count > 1) { status = qlge_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT, RT_IDX_RSS_MATCH, 1); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for MATCH RSS packets.\n"); goto exit; } } status = qlge_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT, RT_IDX_CAM_HIT, 1); if (status) netif_err(qdev, ifup, qdev->ndev, "Failed to init routing register for CAM packets.\n"); exit: qlge_sem_unlock(qdev, SEM_RT_IDX_MASK); return status; } int qlge_cam_route_initialize(struct qlge_adapter *qdev) { int status, set; /* If check if the link is up and use to * determine if we are setting or clearing * the MAC address in the CAM. */ set = qlge_read32(qdev, STS); set &= qdev->port_link_up; status = qlge_set_mac_addr(qdev, set); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n"); return status; } status = qlge_route_initialize(qdev); if (status) netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n"); return status; } static int qlge_adapter_initialize(struct qlge_adapter *qdev) { u32 value, mask; int i; int status = 0; /* * Set up the System register to halt on errors. */ value = SYS_EFE | SYS_FAE; mask = value << 16; qlge_write32(qdev, SYS, mask | value); /* Set the default queue, and VLAN behavior. */ value = NIC_RCV_CFG_DFQ; mask = NIC_RCV_CFG_DFQ_MASK; if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) { value |= NIC_RCV_CFG_RV; mask |= (NIC_RCV_CFG_RV << 16); } qlge_write32(qdev, NIC_RCV_CFG, (mask | value)); /* Set the MPI interrupt to enabled. */ qlge_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI); /* Enable the function, set pagesize, enable error checking. */ value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND | FSC_EC | FSC_VM_PAGE_4K; value |= SPLT_SETTING; /* Set/clear header splitting. */ mask = FSC_VM_PAGESIZE_MASK | FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16); qlge_write32(qdev, FSC, mask | value); qlge_write32(qdev, SPLT_HDR, SPLT_LEN); /* Set RX packet routing to use port/pci function on which the * packet arrived on in addition to usual frame routing. * This is helpful on bonding where both interfaces can have * the same MAC address. */ qlge_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ); /* Reroute all packets to our Interface. * They may have been routed to MPI firmware * due to WOL. */ value = qlge_read32(qdev, MGMT_RCV_CFG); value &= ~MGMT_RCV_CFG_RM; mask = 0xffff0000; /* Sticky reg needs clearing due to WOL. */ qlge_write32(qdev, MGMT_RCV_CFG, mask); qlge_write32(qdev, MGMT_RCV_CFG, mask | value); /* Default WOL is enable on Mezz cards */ if (qdev->pdev->subsystem_device == 0x0068 || qdev->pdev->subsystem_device == 0x0180) qdev->wol = WAKE_MAGIC; /* Start up the rx queues. */ for (i = 0; i < qdev->rx_ring_count; i++) { status = qlge_start_rx_ring(qdev, &qdev->rx_ring[i]); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to start rx ring[%d].\n", i); return status; } } /* If there is more than one inbound completion queue * then download a RICB to configure RSS. */ if (qdev->rss_ring_count > 1) { status = qlge_start_rss(qdev); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n"); return status; } } /* Start up the tx queues. */ for (i = 0; i < qdev->tx_ring_count; i++) { status = qlge_start_tx_ring(qdev, &qdev->tx_ring[i]); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to start tx ring[%d].\n", i); return status; } } /* Initialize the port and set the max framesize. */ status = qdev->nic_ops->port_initialize(qdev); if (status) netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n"); /* Set up the MAC address and frame routing filter. */ status = qlge_cam_route_initialize(qdev); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to init CAM/Routing tables.\n"); return status; } /* Start NAPI for the RSS queues. */ for (i = 0; i < qdev->rss_ring_count; i++) napi_enable(&qdev->rx_ring[i].napi); return status; } /* Issue soft reset to chip. */ static int qlge_adapter_reset(struct qlge_adapter *qdev) { u32 value; int status = 0; unsigned long end_jiffies; /* Clear all the entries in the routing table. */ status = qlge_clear_routing_entries(qdev); if (status) { netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n"); return status; } /* Check if bit is set then skip the mailbox command and * clear the bit, else we are in normal reset process. */ if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) { /* Stop management traffic. */ qlge_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP); /* Wait for the NIC and MGMNT FIFOs to empty. */ qlge_wait_fifo_empty(qdev); } else { clear_bit(QL_ASIC_RECOVERY, &qdev->flags); } qlge_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR); end_jiffies = jiffies + usecs_to_jiffies(30); do { value = qlge_read32(qdev, RST_FO); if ((value & RST_FO_FR) == 0) break; cpu_relax(); } while (time_before(jiffies, end_jiffies)); if (value & RST_FO_FR) { netif_err(qdev, ifdown, qdev->ndev, "ETIMEDOUT!!! errored out of resetting the chip!\n"); status = -ETIMEDOUT; } /* Resume management traffic. */ qlge_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME); return status; } static void qlge_display_dev_info(struct net_device *ndev) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); netif_info(qdev, probe, qdev->ndev, "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, XG Roll = %d, XG Rev = %d.\n", qdev->func, qdev->port, qdev->chip_rev_id & 0x0000000f, qdev->chip_rev_id >> 4 & 0x0000000f, qdev->chip_rev_id >> 8 & 0x0000000f, qdev->chip_rev_id >> 12 & 0x0000000f); netif_info(qdev, probe, qdev->ndev, "MAC address %pM\n", ndev->dev_addr); } static int qlge_wol(struct qlge_adapter *qdev) { int status = 0; u32 wol = MB_WOL_DISABLE; /* The CAM is still intact after a reset, but if we * are doing WOL, then we may need to program the * routing regs. We would also need to issue the mailbox * commands to instruct the MPI what to do per the ethtool * settings. */ if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST)) { netif_err(qdev, ifdown, qdev->ndev, "Unsupported WOL parameter. qdev->wol = 0x%x.\n", qdev->wol); return -EINVAL; } if (qdev->wol & WAKE_MAGIC) { status = qlge_mb_wol_set_magic(qdev, 1); if (status) { netif_err(qdev, ifdown, qdev->ndev, "Failed to set magic packet on %s.\n", qdev->ndev->name); return status; } netif_info(qdev, drv, qdev->ndev, "Enabled magic packet successfully on %s.\n", qdev->ndev->name); wol |= MB_WOL_MAGIC_PKT; } if (qdev->wol) { wol |= MB_WOL_MODE_ON; status = qlge_mb_wol_mode(qdev, wol); netif_err(qdev, drv, qdev->ndev, "WOL %s (wol code 0x%x) on %s\n", (status == 0) ? "Successfully set" : "Failed", wol, qdev->ndev->name); } return status; } static void qlge_cancel_all_work_sync(struct qlge_adapter *qdev) { /* Don't kill the reset worker thread if we * are in the process of recovery. */ if (test_bit(QL_ADAPTER_UP, &qdev->flags)) cancel_delayed_work_sync(&qdev->asic_reset_work); cancel_delayed_work_sync(&qdev->mpi_reset_work); cancel_delayed_work_sync(&qdev->mpi_work); cancel_delayed_work_sync(&qdev->mpi_idc_work); cancel_delayed_work_sync(&qdev->mpi_port_cfg_work); } static int qlge_adapter_down(struct qlge_adapter *qdev) { int i, status = 0; qlge_link_off(qdev); qlge_cancel_all_work_sync(qdev); for (i = 0; i < qdev->rss_ring_count; i++) napi_disable(&qdev->rx_ring[i].napi); clear_bit(QL_ADAPTER_UP, &qdev->flags); qlge_disable_interrupts(qdev); qlge_tx_ring_clean(qdev); /* Call netif_napi_del() from common point. */ for (i = 0; i < qdev->rss_ring_count; i++) netif_napi_del(&qdev->rx_ring[i].napi); status = qlge_adapter_reset(qdev); if (status) netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n", qdev->func); qlge_free_rx_buffers(qdev); return status; } static int qlge_adapter_up(struct qlge_adapter *qdev) { int err = 0; err = qlge_adapter_initialize(qdev); if (err) { netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n"); goto err_init; } set_bit(QL_ADAPTER_UP, &qdev->flags); qlge_alloc_rx_buffers(qdev); /* If the port is initialized and the * link is up the turn on the carrier. */ if ((qlge_read32(qdev, STS) & qdev->port_init) && (qlge_read32(qdev, STS) & qdev->port_link_up)) qlge_link_on(qdev); /* Restore rx mode. */ clear_bit(QL_ALLMULTI, &qdev->flags); clear_bit(QL_PROMISCUOUS, &qdev->flags); qlge_set_multicast_list(qdev->ndev); /* Restore vlan setting. */ qlge_restore_vlan(qdev); qlge_enable_interrupts(qdev); qlge_enable_all_completion_interrupts(qdev); netif_tx_start_all_queues(qdev->ndev); return 0; err_init: qlge_adapter_reset(qdev); return err; } static void qlge_release_adapter_resources(struct qlge_adapter *qdev) { qlge_free_mem_resources(qdev); qlge_free_irq(qdev); } static int qlge_get_adapter_resources(struct qlge_adapter *qdev) { if (qlge_alloc_mem_resources(qdev)) { netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n"); return -ENOMEM; } return qlge_request_irq(qdev); } static int qlge_close(struct net_device *ndev) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); int i; /* If we hit pci_channel_io_perm_failure * failure condition, then we already * brought the adapter down. */ if (test_bit(QL_EEH_FATAL, &qdev->flags)) { netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n"); clear_bit(QL_EEH_FATAL, &qdev->flags); return 0; } /* * Wait for device to recover from a reset. * (Rarely happens, but possible.) */ while (!test_bit(QL_ADAPTER_UP, &qdev->flags)) msleep(1); /* Make sure refill_work doesn't re-enable napi */ for (i = 0; i < qdev->rss_ring_count; i++) cancel_delayed_work_sync(&qdev->rx_ring[i].refill_work); qlge_adapter_down(qdev); qlge_release_adapter_resources(qdev); return 0; } static void qlge_set_lb_size(struct qlge_adapter *qdev) { if (qdev->ndev->mtu <= 1500) qdev->lbq_buf_size = LARGE_BUFFER_MIN_SIZE; else qdev->lbq_buf_size = LARGE_BUFFER_MAX_SIZE; qdev->lbq_buf_order = get_order(qdev->lbq_buf_size); } static int qlge_configure_rings(struct qlge_adapter *qdev) { int i; struct rx_ring *rx_ring; struct tx_ring *tx_ring; int cpu_cnt = min_t(int, MAX_CPUS, num_online_cpus()); /* In a perfect world we have one RSS ring for each CPU * and each has it's own vector. To do that we ask for * cpu_cnt vectors. qlge_enable_msix() will adjust the * vector count to what we actually get. We then * allocate an RSS ring for each. * Essentially, we are doing min(cpu_count, msix_vector_count). */ qdev->intr_count = cpu_cnt; qlge_enable_msix(qdev); /* Adjust the RSS ring count to the actual vector count. */ qdev->rss_ring_count = qdev->intr_count; qdev->tx_ring_count = cpu_cnt; qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count; for (i = 0; i < qdev->tx_ring_count; i++) { tx_ring = &qdev->tx_ring[i]; memset((void *)tx_ring, 0, sizeof(*tx_ring)); tx_ring->qdev = qdev; tx_ring->wq_id = i; tx_ring->wq_len = qdev->tx_ring_size; tx_ring->wq_size = tx_ring->wq_len * sizeof(struct qlge_ob_mac_iocb_req); /* * The completion queue ID for the tx rings start * immediately after the rss rings. */ tx_ring->cq_id = qdev->rss_ring_count + i; } for (i = 0; i < qdev->rx_ring_count; i++) { rx_ring = &qdev->rx_ring[i]; memset((void *)rx_ring, 0, sizeof(*rx_ring)); rx_ring->qdev = qdev; rx_ring->cq_id = i; rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */ if (i < qdev->rss_ring_count) { /* * Inbound (RSS) queues. */ rx_ring->cq_len = qdev->rx_ring_size; rx_ring->cq_size = rx_ring->cq_len * sizeof(struct qlge_net_rsp_iocb); rx_ring->lbq.type = QLGE_LB; rx_ring->sbq.type = QLGE_SB; INIT_DELAYED_WORK(&rx_ring->refill_work, &qlge_slow_refill); } else { /* * Outbound queue handles outbound completions only. */ /* outbound cq is same size as tx_ring it services. */ rx_ring->cq_len = qdev->tx_ring_size; rx_ring->cq_size = rx_ring->cq_len * sizeof(struct qlge_net_rsp_iocb); } } return 0; } static int qlge_open(struct net_device *ndev) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); int err = 0; err = qlge_adapter_reset(qdev); if (err) return err; qlge_set_lb_size(qdev); err = qlge_configure_rings(qdev); if (err) return err; err = qlge_get_adapter_resources(qdev); if (err) goto error_up; err = qlge_adapter_up(qdev); if (err) goto error_up; return err; error_up: qlge_release_adapter_resources(qdev); return err; } static int qlge_change_rx_buffers(struct qlge_adapter *qdev) { int status; /* Wait for an outstanding reset to complete. */ if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) { int i = 4; while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) { netif_err(qdev, ifup, qdev->ndev, "Waiting for adapter UP...\n"); ssleep(1); } if (!i) { netif_err(qdev, ifup, qdev->ndev, "Timed out waiting for adapter UP\n"); return -ETIMEDOUT; } } status = qlge_adapter_down(qdev); if (status) goto error; qlge_set_lb_size(qdev); status = qlge_adapter_up(qdev); if (status) goto error; return status; error: netif_alert(qdev, ifup, qdev->ndev, "Driver up/down cycle failed, closing device.\n"); set_bit(QL_ADAPTER_UP, &qdev->flags); dev_close(qdev->ndev); return status; } static int qlge_change_mtu(struct net_device *ndev, int new_mtu) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); int status; if (ndev->mtu == 1500 && new_mtu == 9000) netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n"); else if (ndev->mtu == 9000 && new_mtu == 1500) netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n"); else return -EINVAL; queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 3 * HZ); ndev->mtu = new_mtu; if (!netif_running(qdev->ndev)) return 0; status = qlge_change_rx_buffers(qdev); if (status) { netif_err(qdev, ifup, qdev->ndev, "Changing MTU failed.\n"); } return status; } static struct net_device_stats *qlge_get_stats(struct net_device *ndev) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); struct rx_ring *rx_ring = &qdev->rx_ring[0]; struct tx_ring *tx_ring = &qdev->tx_ring[0]; unsigned long pkts, mcast, dropped, errors, bytes; int i; /* Get RX stats. */ pkts = mcast = dropped = errors = bytes = 0; for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) { pkts += rx_ring->rx_packets; bytes += rx_ring->rx_bytes; dropped += rx_ring->rx_dropped; errors += rx_ring->rx_errors; mcast += rx_ring->rx_multicast; } ndev->stats.rx_packets = pkts; ndev->stats.rx_bytes = bytes; ndev->stats.rx_dropped = dropped; ndev->stats.rx_errors = errors; ndev->stats.multicast = mcast; /* Get TX stats. */ pkts = errors = bytes = 0; for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) { pkts += tx_ring->tx_packets; bytes += tx_ring->tx_bytes; errors += tx_ring->tx_errors; } ndev->stats.tx_packets = pkts; ndev->stats.tx_bytes = bytes; ndev->stats.tx_errors = errors; return &ndev->stats; } static void qlge_set_multicast_list(struct net_device *ndev) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); struct netdev_hw_addr *ha; int i, status; status = qlge_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return; /* * Set or clear promiscuous mode if a * transition is taking place. */ if (ndev->flags & IFF_PROMISC) { if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) { if (qlge_set_routing_reg (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) { netif_err(qdev, hw, qdev->ndev, "Failed to set promiscuous mode.\n"); } else { set_bit(QL_PROMISCUOUS, &qdev->flags); } } } else { if (test_bit(QL_PROMISCUOUS, &qdev->flags)) { if (qlge_set_routing_reg (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) { netif_err(qdev, hw, qdev->ndev, "Failed to clear promiscuous mode.\n"); } else { clear_bit(QL_PROMISCUOUS, &qdev->flags); } } } /* * Set or clear all multicast mode if a * transition is taking place. */ if ((ndev->flags & IFF_ALLMULTI) || (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) { if (!test_bit(QL_ALLMULTI, &qdev->flags)) { if (qlge_set_routing_reg (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) { netif_err(qdev, hw, qdev->ndev, "Failed to set all-multi mode.\n"); } else { set_bit(QL_ALLMULTI, &qdev->flags); } } } else { if (test_bit(QL_ALLMULTI, &qdev->flags)) { if (qlge_set_routing_reg (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) { netif_err(qdev, hw, qdev->ndev, "Failed to clear all-multi mode.\n"); } else { clear_bit(QL_ALLMULTI, &qdev->flags); } } } if (!netdev_mc_empty(ndev)) { status = qlge_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) goto exit; i = 0; netdev_for_each_mc_addr(ha, ndev) { if (qlge_set_mac_addr_reg(qdev, (u8 *)ha->addr, MAC_ADDR_TYPE_MULTI_MAC, i)) { netif_err(qdev, hw, qdev->ndev, "Failed to loadmulticast address.\n"); qlge_sem_unlock(qdev, SEM_MAC_ADDR_MASK); goto exit; } i++; } qlge_sem_unlock(qdev, SEM_MAC_ADDR_MASK); if (qlge_set_routing_reg (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) { netif_err(qdev, hw, qdev->ndev, "Failed to set multicast match mode.\n"); } else { set_bit(QL_ALLMULTI, &qdev->flags); } } exit: qlge_sem_unlock(qdev, SEM_RT_IDX_MASK); } static int qlge_set_mac_address(struct net_device *ndev, void *p) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); struct sockaddr *addr = p; int status; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); /* Update local copy of current mac address. */ memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len); status = qlge_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return status; status = qlge_set_mac_addr_reg(qdev, (u8 *)ndev->dev_addr, MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ); if (status) netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n"); qlge_sem_unlock(qdev, SEM_MAC_ADDR_MASK); return status; } static void qlge_tx_timeout(struct net_device *ndev, unsigned int txqueue) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); qlge_queue_asic_error(qdev); } static void qlge_asic_reset_work(struct work_struct *work) { struct qlge_adapter *qdev = container_of(work, struct qlge_adapter, asic_reset_work.work); int status; rtnl_lock(); status = qlge_adapter_down(qdev); if (status) goto error; status = qlge_adapter_up(qdev); if (status) goto error; /* Restore rx mode. */ clear_bit(QL_ALLMULTI, &qdev->flags); clear_bit(QL_PROMISCUOUS, &qdev->flags); qlge_set_multicast_list(qdev->ndev); rtnl_unlock(); return; error: netif_alert(qdev, ifup, qdev->ndev, "Driver up/down cycle failed, closing device\n"); set_bit(QL_ADAPTER_UP, &qdev->flags); dev_close(qdev->ndev); rtnl_unlock(); } static const struct nic_operations qla8012_nic_ops = { .get_flash = qlge_get_8012_flash_params, .port_initialize = qlge_8012_port_initialize, }; static const struct nic_operations qla8000_nic_ops = { .get_flash = qlge_get_8000_flash_params, .port_initialize = qlge_8000_port_initialize, }; /* Find the pcie function number for the other NIC * on this chip. Since both NIC functions share a * common firmware we have the lowest enabled function * do any common work. Examples would be resetting * after a fatal firmware error, or doing a firmware * coredump. */ static int qlge_get_alt_pcie_func(struct qlge_adapter *qdev) { int status = 0; u32 temp; u32 nic_func1, nic_func2; status = qlge_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG, &temp); if (status) return status; nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) & MPI_TEST_NIC_FUNC_MASK); nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) & MPI_TEST_NIC_FUNC_MASK); if (qdev->func == nic_func1) qdev->alt_func = nic_func2; else if (qdev->func == nic_func2) qdev->alt_func = nic_func1; else status = -EIO; return status; } static int qlge_get_board_info(struct qlge_adapter *qdev) { int status; qdev->func = (qlge_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT; if (qdev->func > 3) return -EIO; status = qlge_get_alt_pcie_func(qdev); if (status) return status; qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1; if (qdev->port) { qdev->xg_sem_mask = SEM_XGMAC1_MASK; qdev->port_link_up = STS_PL1; qdev->port_init = STS_PI1; qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI; qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO; } else { qdev->xg_sem_mask = SEM_XGMAC0_MASK; qdev->port_link_up = STS_PL0; qdev->port_init = STS_PI0; qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI; qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO; } qdev->chip_rev_id = qlge_read32(qdev, REV_ID); qdev->device_id = qdev->pdev->device; if (qdev->device_id == QLGE_DEVICE_ID_8012) qdev->nic_ops = &qla8012_nic_ops; else if (qdev->device_id == QLGE_DEVICE_ID_8000) qdev->nic_ops = &qla8000_nic_ops; return status; } static void qlge_release_all(struct pci_dev *pdev) { struct qlge_adapter *qdev = pci_get_drvdata(pdev); if (qdev->workqueue) { destroy_workqueue(qdev->workqueue); qdev->workqueue = NULL; } if (qdev->reg_base) iounmap(qdev->reg_base); if (qdev->doorbell_area) iounmap(qdev->doorbell_area); vfree(qdev->mpi_coredump); pci_release_regions(pdev); } static int qlge_init_device(struct pci_dev *pdev, struct qlge_adapter *qdev, int cards_found) { struct net_device *ndev = qdev->ndev; int err = 0; err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "PCI device enable failed.\n"); return err; } qdev->pdev = pdev; pci_set_drvdata(pdev, qdev); /* Set PCIe read request size */ err = pcie_set_readrq(pdev, 4096); if (err) { dev_err(&pdev->dev, "Set readrq failed.\n"); goto err_disable_pci; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "PCI region request failed.\n"); goto err_disable_pci; } pci_set_master(pdev); if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { set_bit(QL_DMA64, &qdev->flags); err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); } else { err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (!err) err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); } if (err) { dev_err(&pdev->dev, "No usable DMA configuration.\n"); goto err_release_pci; } /* Set PCIe reset type for EEH to fundamental. */ pdev->needs_freset = 1; pci_save_state(pdev); qdev->reg_base = ioremap(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); if (!qdev->reg_base) { dev_err(&pdev->dev, "Register mapping failed.\n"); err = -ENOMEM; goto err_release_pci; } qdev->doorbell_area_size = pci_resource_len(pdev, 3); qdev->doorbell_area = ioremap(pci_resource_start(pdev, 3), pci_resource_len(pdev, 3)); if (!qdev->doorbell_area) { dev_err(&pdev->dev, "Doorbell register mapping failed.\n"); err = -ENOMEM; goto err_iounmap_base; } err = qlge_get_board_info(qdev); if (err) { dev_err(&pdev->dev, "Register access failed.\n"); err = -EIO; goto err_iounmap_doorbell; } qdev->msg_enable = netif_msg_init(debug, default_msg); spin_lock_init(&qdev->stats_lock); if (qlge_mpi_coredump) { qdev->mpi_coredump = vmalloc(sizeof(struct qlge_mpi_coredump)); if (!qdev->mpi_coredump) { err = -ENOMEM; goto err_iounmap_doorbell; } if (qlge_force_coredump) set_bit(QL_FRC_COREDUMP, &qdev->flags); } /* make sure the EEPROM is good */ err = qdev->nic_ops->get_flash(qdev); if (err) { dev_err(&pdev->dev, "Invalid FLASH.\n"); goto err_free_mpi_coredump; } /* Keep local copy of current mac address. */ memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len); /* Set up the default ring sizes. */ qdev->tx_ring_size = NUM_TX_RING_ENTRIES; qdev->rx_ring_size = NUM_RX_RING_ENTRIES; /* Set up the coalescing parameters. */ qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT; qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT; qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; /* * Set up the operating parameters. */ qdev->workqueue = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, ndev->name); if (!qdev->workqueue) { err = -ENOMEM; goto err_free_mpi_coredump; } INIT_DELAYED_WORK(&qdev->asic_reset_work, qlge_asic_reset_work); INIT_DELAYED_WORK(&qdev->mpi_reset_work, qlge_mpi_reset_work); INIT_DELAYED_WORK(&qdev->mpi_work, qlge_mpi_work); INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, qlge_mpi_port_cfg_work); INIT_DELAYED_WORK(&qdev->mpi_idc_work, qlge_mpi_idc_work); init_completion(&qdev->ide_completion); mutex_init(&qdev->mpi_mutex); if (!cards_found) { dev_info(&pdev->dev, "%s\n", DRV_STRING); dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n", DRV_NAME, DRV_VERSION); } return 0; err_free_mpi_coredump: vfree(qdev->mpi_coredump); err_iounmap_doorbell: iounmap(qdev->doorbell_area); err_iounmap_base: iounmap(qdev->reg_base); err_release_pci: pci_release_regions(pdev); err_disable_pci: pci_disable_device(pdev); return err; } static const struct net_device_ops qlge_netdev_ops = { .ndo_open = qlge_open, .ndo_stop = qlge_close, .ndo_start_xmit = qlge_send, .ndo_change_mtu = qlge_change_mtu, .ndo_get_stats = qlge_get_stats, .ndo_set_rx_mode = qlge_set_multicast_list, .ndo_set_mac_address = qlge_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = qlge_tx_timeout, .ndo_set_features = qlge_set_features, .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid, }; static void qlge_timer(struct timer_list *t) { struct qlge_adapter *qdev = from_timer(qdev, t, timer); u32 var = 0; var = qlge_read32(qdev, STS); if (pci_channel_offline(qdev->pdev)) { netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var); return; } mod_timer(&qdev->timer, jiffies + (5 * HZ)); } static const struct devlink_ops qlge_devlink_ops; static int qlge_probe(struct pci_dev *pdev, const struct pci_device_id *pci_entry) { struct qlge_netdev_priv *ndev_priv; struct qlge_adapter *qdev = NULL; struct net_device *ndev = NULL; struct devlink *devlink; static int cards_found; int err; devlink = devlink_alloc(&qlge_devlink_ops, sizeof(struct qlge_adapter), &pdev->dev); if (!devlink) return -ENOMEM; qdev = devlink_priv(devlink); ndev = alloc_etherdev_mq(sizeof(struct qlge_netdev_priv), min(MAX_CPUS, netif_get_num_default_rss_queues())); if (!ndev) { err = -ENOMEM; goto devlink_free; } ndev_priv = netdev_priv(ndev); ndev_priv->qdev = qdev; ndev_priv->ndev = ndev; qdev->ndev = ndev; err = qlge_init_device(pdev, qdev, cards_found); if (err < 0) goto netdev_free; SET_NETDEV_DEV(ndev, &pdev->dev); ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM; ndev->features = ndev->hw_features; ndev->vlan_features = ndev->hw_features; /* vlan gets same features (except vlan filter) */ ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); if (test_bit(QL_DMA64, &qdev->flags)) ndev->features |= NETIF_F_HIGHDMA; /* * Set up net_device structure. */ ndev->tx_queue_len = qdev->tx_ring_size; ndev->irq = pdev->irq; ndev->netdev_ops = &qlge_netdev_ops; ndev->ethtool_ops = &qlge_ethtool_ops; ndev->watchdog_timeo = 10 * HZ; /* MTU range: this driver only supports 1500 or 9000, so this only * filters out values above or below, and we'll rely on * qlge_change_mtu to make sure only 1500 or 9000 are allowed */ ndev->min_mtu = ETH_DATA_LEN; ndev->max_mtu = 9000; err = register_netdev(ndev); if (err) { dev_err(&pdev->dev, "net device registration failed.\n"); qlge_release_all(pdev); pci_disable_device(pdev); goto netdev_free; } err = devlink_register(devlink); if (err) goto netdev_free; err = qlge_health_create_reporters(qdev); if (err) goto devlink_unregister; /* Start up the timer to trigger EEH if * the bus goes dead */ timer_setup(&qdev->timer, qlge_timer, TIMER_DEFERRABLE); mod_timer(&qdev->timer, jiffies + (5 * HZ)); qlge_link_off(qdev); qlge_display_dev_info(ndev); atomic_set(&qdev->lb_count, 0); cards_found++; return 0; devlink_unregister: devlink_unregister(devlink); netdev_free: free_netdev(ndev); devlink_free: devlink_free(devlink); return err; } netdev_tx_t qlge_lb_send(struct sk_buff *skb, struct net_device *ndev) { return qlge_send(skb, ndev); } int qlge_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget) { return qlge_clean_inbound_rx_ring(rx_ring, budget); } static void qlge_remove(struct pci_dev *pdev) { struct qlge_adapter *qdev = pci_get_drvdata(pdev); struct net_device *ndev = qdev->ndev; struct devlink *devlink = priv_to_devlink(qdev); del_timer_sync(&qdev->timer); qlge_cancel_all_work_sync(qdev); unregister_netdev(ndev); qlge_release_all(pdev); pci_disable_device(pdev); devlink_health_reporter_destroy(qdev->reporter); devlink_unregister(devlink); devlink_free(devlink); free_netdev(ndev); } /* Clean up resources without touching hardware. */ static void qlge_eeh_close(struct net_device *ndev) { struct qlge_adapter *qdev = netdev_to_qdev(ndev); int i; if (netif_carrier_ok(ndev)) { netif_carrier_off(ndev); netif_stop_queue(ndev); } /* Disabling the timer */ qlge_cancel_all_work_sync(qdev); for (i = 0; i < qdev->rss_ring_count; i++) netif_napi_del(&qdev->rx_ring[i].napi); clear_bit(QL_ADAPTER_UP, &qdev->flags); qlge_tx_ring_clean(qdev); qlge_free_rx_buffers(qdev); qlge_release_adapter_resources(qdev); } /* * This callback is called by the PCI subsystem whenever * a PCI bus error is detected. */ static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct qlge_adapter *qdev = pci_get_drvdata(pdev); struct net_device *ndev = qdev->ndev; switch (state) { case pci_channel_io_normal: return PCI_ERS_RESULT_CAN_RECOVER; case pci_channel_io_frozen: netif_device_detach(ndev); del_timer_sync(&qdev->timer); if (netif_running(ndev)) qlge_eeh_close(ndev); pci_disable_device(pdev); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: dev_err(&pdev->dev, "%s: pci_channel_io_perm_failure.\n", __func__); del_timer_sync(&qdev->timer); qlge_eeh_close(ndev); set_bit(QL_EEH_FATAL, &qdev->flags); return PCI_ERS_RESULT_DISCONNECT; } /* Request a slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /* * This callback is called after the PCI buss has been reset. * Basically, this tries to restart the card from scratch. * This is a shortened version of the device probe/discovery code, * it resembles the first-half of the () routine. */ static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev) { struct qlge_adapter *qdev = pci_get_drvdata(pdev); pdev->error_state = pci_channel_io_normal; pci_restore_state(pdev); if (pci_enable_device(pdev)) { netif_err(qdev, ifup, qdev->ndev, "Cannot re-enable PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); if (qlge_adapter_reset(qdev)) { netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n"); set_bit(QL_EEH_FATAL, &qdev->flags); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_RECOVERED; } static void qlge_io_resume(struct pci_dev *pdev) { struct qlge_adapter *qdev = pci_get_drvdata(pdev); struct net_device *ndev = qdev->ndev; int err = 0; if (netif_running(ndev)) { err = qlge_open(ndev); if (err) { netif_err(qdev, ifup, qdev->ndev, "Device initialization failed after reset.\n"); return; } } else { netif_err(qdev, ifup, qdev->ndev, "Device was not running prior to EEH.\n"); } mod_timer(&qdev->timer, jiffies + (5 * HZ)); netif_device_attach(ndev); } static const struct pci_error_handlers qlge_err_handler = { .error_detected = qlge_io_error_detected, .slot_reset = qlge_io_slot_reset, .resume = qlge_io_resume, }; static int __maybe_unused qlge_suspend(struct device *dev_d) { struct pci_dev *pdev = to_pci_dev(dev_d); struct qlge_adapter *qdev; struct net_device *ndev; int err; qdev = pci_get_drvdata(pdev); ndev = qdev->ndev; netif_device_detach(ndev); del_timer_sync(&qdev->timer); if (netif_running(ndev)) { err = qlge_adapter_down(qdev); if (!err) return err; } qlge_wol(qdev); return 0; } static int __maybe_unused qlge_resume(struct device *dev_d) { struct pci_dev *pdev = to_pci_dev(dev_d); struct qlge_adapter *qdev; struct net_device *ndev; int err; qdev = pci_get_drvdata(pdev); ndev = qdev->ndev; pci_set_master(pdev); device_wakeup_disable(dev_d); if (netif_running(ndev)) { err = qlge_adapter_up(qdev); if (err) return err; } mod_timer(&qdev->timer, jiffies + (5 * HZ)); netif_device_attach(ndev); return 0; } static void qlge_shutdown(struct pci_dev *pdev) { qlge_suspend(&pdev->dev); } static SIMPLE_DEV_PM_OPS(qlge_pm_ops, qlge_suspend, qlge_resume); static struct pci_driver qlge_driver = { .name = DRV_NAME, .id_table = qlge_pci_tbl, .probe = qlge_probe, .remove = qlge_remove, .driver.pm = &qlge_pm_ops, .shutdown = qlge_shutdown, .err_handler = &qlge_err_handler }; module_pci_driver(qlge_driver);