/* ************************************************************************* * Ralink Tech Inc. * 5F., No.36, Taiyuan St., Jhubei City, * Hsinchu County 302, * Taiwan, R.O.C. * * (c) Copyright 2002-2007, Ralink Technology, Inc. * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * * ************************************************************************* Module Name: md5.c Abstract: Revision History: Who When What -------- ---------- ---------------------------------------------- Name Date Modification logs jan 10-28-03 Initial Rita 11-23-04 Modify MD5 and SHA-1 Rita 10-14-05 Modify SHA-1 in big-endian platform */ #include "../rt_config.h" /** * md5_mac: * @key: pointer to the key used for MAC generation * @key_len: length of the key in bytes * @data: pointer to the data area for which the MAC is generated * @data_len: length of the data in bytes * @mac: pointer to the buffer holding space for the MAC; the buffer should * have space for 128-bit (16 bytes) MD5 hash value * * md5_mac() determines the message authentication code by using secure hash * MD5(key | data | key). */ void md5_mac(u8 *key, size_t key_len, u8 *data, size_t data_len, u8 *mac) { MD5_CTX context; MD5Init(&context); MD5Update(&context, key, key_len); MD5Update(&context, data, data_len); MD5Update(&context, key, key_len); MD5Final(mac, &context); } /** * hmac_md5: * @key: pointer to the key used for MAC generation * @key_len: length of the key in bytes * @data: pointer to the data area for which the MAC is generated * @data_len: length of the data in bytes * @mac: pointer to the buffer holding space for the MAC; the buffer should * have space for 128-bit (16 bytes) MD5 hash value * * hmac_md5() determines the message authentication code using HMAC-MD5. * This implementation is based on the sample code presented in RFC 2104. */ void hmac_md5(u8 *key, size_t key_len, u8 *data, size_t data_len, u8 *mac) { MD5_CTX context; u8 k_ipad[65]; /* inner padding - key XORd with ipad */ u8 k_opad[65]; /* outer padding - key XORd with opad */ u8 tk[16]; int i; //assert(key != NULL && data != NULL && mac != NULL); /* if key is longer than 64 bytes reset it to key = MD5(key) */ if (key_len > 64) { MD5_CTX ttcontext; MD5Init(&ttcontext); MD5Update(&ttcontext, key, key_len); MD5Final(tk, &ttcontext); //key=(PUCHAR)ttcontext.buf; key = tk; key_len = 16; } /* the HMAC_MD5 transform looks like: * * MD5(K XOR opad, MD5(K XOR ipad, text)) * * where K is an n byte key * ipad is the byte 0x36 repeated 64 times * opad is the byte 0x5c repeated 64 times * and text is the data being protected */ /* start out by storing key in pads */ NdisZeroMemory(k_ipad, sizeof(k_ipad)); NdisZeroMemory(k_opad, sizeof(k_opad)); //assert(key_len < sizeof(k_ipad)); NdisMoveMemory(k_ipad, key, key_len); NdisMoveMemory(k_opad, key, key_len); /* XOR key with ipad and opad values */ for (i = 0; i < 64; i++) { k_ipad[i] ^= 0x36; k_opad[i] ^= 0x5c; } /* perform inner MD5 */ MD5Init(&context); /* init context for 1st pass */ MD5Update(&context, k_ipad, 64); /* start with inner pad */ MD5Update(&context, data, data_len); /* then text of datagram */ MD5Final(mac, &context); /* finish up 1st pass */ /* perform outer MD5 */ MD5Init(&context); /* init context for 2nd pass */ MD5Update(&context, k_opad, 64); /* start with outer pad */ MD5Update(&context, mac, 16); /* then results of 1st hash */ MD5Final(mac, &context); /* finish up 2nd pass */ } #ifndef RT_BIG_ENDIAN #define byteReverse(buf, len) /* Nothing */ #else void byteReverse(unsigned char *buf, unsigned longs); void byteReverse(unsigned char *buf, unsigned longs) { do { *(UINT32 *)buf = SWAP32(*(UINT32 *)buf); buf += 4; } while (--longs); } #endif /* ========================== MD5 implementation =========================== */ // four base functions for MD5 #define MD5_F1(x, y, z) (((x) & (y)) | ((~x) & (z))) #define MD5_F2(x, y, z) (((x) & (z)) | ((y) & (~z))) #define MD5_F3(x, y, z) ((x) ^ (y) ^ (z)) #define MD5_F4(x, y, z) ((y) ^ ((x) | (~z))) #define CYCLIC_LEFT_SHIFT(w, s) (((w) << (s)) | ((w) >> (32-(s)))) #define MD5Step(f, w, x, y, z, data, t, s) \ ( w += f(x, y, z) + data + t, w = (CYCLIC_LEFT_SHIFT(w, s)) & 0xffffffff, w += x ) /* * Function Description: * Initiate MD5 Context satisfied in RFC 1321 * * Arguments: * pCtx Pointer to MD5 context * * Return Value: * None */ VOID MD5Init(MD5_CTX *pCtx) { pCtx->Buf[0]=0x67452301; pCtx->Buf[1]=0xefcdab89; pCtx->Buf[2]=0x98badcfe; pCtx->Buf[3]=0x10325476; pCtx->LenInBitCount[0]=0; pCtx->LenInBitCount[1]=0; } /* * Function Description: * Update MD5 Context, allow of an arrary of octets as the next portion * of the message * * Arguments: * pCtx Pointer to MD5 context * pData Pointer to input data * LenInBytes The length of input data (unit: byte) * * Return Value: * None * * Note: * Called after MD5Init or MD5Update(itself) */ VOID MD5Update(MD5_CTX *pCtx, UCHAR *pData, UINT32 LenInBytes) { UINT32 TfTimes; UINT32 temp; unsigned int i; temp = pCtx->LenInBitCount[0]; pCtx->LenInBitCount[0] = (UINT32) (pCtx->LenInBitCount[0] + (LenInBytes << 3)); if (pCtx->LenInBitCount[0] < temp) pCtx->LenInBitCount[1]++; //carry in pCtx->LenInBitCount[1] += LenInBytes >> 29; // mod 64 bytes temp = (temp >> 3) & 0x3f; // process lacks of 64-byte data if (temp) { UCHAR *pAds = (UCHAR *) pCtx->Input + temp; if ((temp+LenInBytes) < 64) { NdisMoveMemory(pAds, (UCHAR *)pData, LenInBytes); return; } NdisMoveMemory(pAds, (UCHAR *)pData, 64-temp); byteReverse(pCtx->Input, 16); MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input); pData += 64-temp; LenInBytes -= 64-temp; } // end of if (temp) TfTimes = (LenInBytes >> 6); for (i=TfTimes; i>0; i--) { NdisMoveMemory(pCtx->Input, (UCHAR *)pData, 64); byteReverse(pCtx->Input, 16); MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input); pData += 64; LenInBytes -= 64; } // end of for // buffering lacks of 64-byte data if(LenInBytes) NdisMoveMemory(pCtx->Input, (UCHAR *)pData, LenInBytes); } /* * Function Description: * Append padding bits and length of original message in the tail * The message digest has to be completed in the end * * Arguments: * Digest Output of Digest-Message for MD5 * pCtx Pointer to MD5 context * * Return Value: * None * * Note: * Called after MD5Update */ VOID MD5Final(UCHAR Digest[16], MD5_CTX *pCtx) { UCHAR Remainder; UCHAR PadLenInBytes; UCHAR *pAppend=0; unsigned int i; Remainder = (UCHAR)((pCtx->LenInBitCount[0] >> 3) & 0x3f); PadLenInBytes = (Remainder < 56) ? (56-Remainder) : (120-Remainder); pAppend = (UCHAR *)pCtx->Input + Remainder; // padding bits without crossing block(64-byte based) boundary if (Remainder < 56) { *pAppend = 0x80; PadLenInBytes --; NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, PadLenInBytes); // add data-length field, from low to high for (i=0; i<4; i++) { pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[0] >> (i << 3)) & 0xff); pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[1] >> (i << 3)) & 0xff); } byteReverse(pCtx->Input, 16); MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input); } // end of if // padding bits with crossing block(64-byte based) boundary else { // the first block === *pAppend = 0x80; PadLenInBytes --; NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, (64-Remainder-1)); PadLenInBytes -= (64 - Remainder - 1); byteReverse(pCtx->Input, 16); MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input); // the second block === NdisZeroMemory((UCHAR *)pCtx->Input, PadLenInBytes); // add data-length field for (i=0; i<4; i++) { pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[0] >> (i << 3)) & 0xff); pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[1] >> (i << 3)) & 0xff); } byteReverse(pCtx->Input, 16); MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input); } // end of else NdisMoveMemory((UCHAR *)Digest, (UINT32 *)pCtx->Buf, 16); // output byteReverse((UCHAR *)Digest, 4); NdisZeroMemory(pCtx, sizeof(pCtx)); // memory free } /* * Function Description: * The central algorithm of MD5, consists of four rounds and sixteen * steps per round * * Arguments: * Buf Buffers of four states (output: 16 bytes) * Mes Input data (input: 64 bytes) * * Return Value: * None * * Note: * Called by MD5Update or MD5Final */ VOID MD5Transform(UINT32 Buf[4], UINT32 Mes[16]) { UINT32 Reg[4], Temp; unsigned int i; static UCHAR LShiftVal[16] = { 7, 12, 17, 22, 5, 9 , 14, 20, 4, 11, 16, 23, 6, 10, 15, 21, }; // [equal to 4294967296*abs(sin(index))] static UINT32 MD5Table[64] = { 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }; for (i=0; i<4; i++) Reg[i]=Buf[i]; // 64 steps in MD5 algorithm for (i=0; i<16; i++) { MD5Step(MD5_F1, Reg[0], Reg[1], Reg[2], Reg[3], Mes[i], MD5Table[i], LShiftVal[i & 0x3]); // one-word right shift Temp = Reg[3]; Reg[3] = Reg[2]; Reg[2] = Reg[1]; Reg[1] = Reg[0]; Reg[0] = Temp; } for (i=16; i<32; i++) { MD5Step(MD5_F2, Reg[0], Reg[1], Reg[2], Reg[3], Mes[(5*(i & 0xf)+1) & 0xf], MD5Table[i], LShiftVal[(0x1 << 2)+(i & 0x3)]); // one-word right shift Temp = Reg[3]; Reg[3] = Reg[2]; Reg[2] = Reg[1]; Reg[1] = Reg[0]; Reg[0] = Temp; } for (i=32; i<48; i++) { MD5Step(MD5_F3, Reg[0], Reg[1], Reg[2], Reg[3], Mes[(3*(i & 0xf)+5) & 0xf], MD5Table[i], LShiftVal[(0x1 << 3)+(i & 0x3)]); // one-word right shift Temp = Reg[3]; Reg[3] = Reg[2]; Reg[2] = Reg[1]; Reg[1] = Reg[0]; Reg[0] = Temp; } for (i=48; i<64; i++) { MD5Step(MD5_F4, Reg[0], Reg[1], Reg[2], Reg[3], Mes[(7*(i & 0xf)) & 0xf], MD5Table[i], LShiftVal[(0x3 << 2)+(i & 0x3)]); // one-word right shift Temp = Reg[3]; Reg[3] = Reg[2]; Reg[2] = Reg[1]; Reg[1] = Reg[0]; Reg[0] = Temp; } // (temporary)output for (i=0; i<4; i++) Buf[i] += Reg[i]; } /* ========================= SHA-1 implementation ========================== */ // four base functions for SHA-1 #define SHA1_F1(b, c, d) (((b) & (c)) | ((~b) & (d))) #define SHA1_F2(b, c, d) ((b) ^ (c) ^ (d)) #define SHA1_F3(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d))) #define SHA1Step(f, a, b, c, d, e, w, k) \ ( e += ( f(b, c, d) + w + k + CYCLIC_LEFT_SHIFT(a, 5)) & 0xffffffff, \ b = CYCLIC_LEFT_SHIFT(b, 30) ) //Initiate SHA-1 Context satisfied in RFC 3174 VOID SHAInit(SHA_CTX *pCtx) { pCtx->Buf[0]=0x67452301; pCtx->Buf[1]=0xefcdab89; pCtx->Buf[2]=0x98badcfe; pCtx->Buf[3]=0x10325476; pCtx->Buf[4]=0xc3d2e1f0; pCtx->LenInBitCount[0]=0; pCtx->LenInBitCount[1]=0; } /* * Function Description: * Update SHA-1 Context, allow of an arrary of octets as the next * portion of the message * * Arguments: * pCtx Pointer to SHA-1 context * pData Pointer to input data * LenInBytes The length of input data (unit: byte) * * Return Value: * error indicate more than pow(2,64) bits of data * * Note: * Called after SHAInit or SHAUpdate(itself) */ UCHAR SHAUpdate(SHA_CTX *pCtx, UCHAR *pData, UINT32 LenInBytes) { UINT32 TfTimes; UINT32 temp1,temp2; unsigned int i; UCHAR err=1; temp1 = pCtx->LenInBitCount[0]; temp2 = pCtx->LenInBitCount[1]; pCtx->LenInBitCount[0] = (UINT32) (pCtx->LenInBitCount[0] + (LenInBytes << 3)); if (pCtx->LenInBitCount[0] < temp1) pCtx->LenInBitCount[1]++; //carry in pCtx->LenInBitCount[1] = (UINT32) (pCtx->LenInBitCount[1] +(LenInBytes >> 29)); if (pCtx->LenInBitCount[1] < temp2) return (err); //check total length of original data // mod 64 bytes temp1 = (temp1 >> 3) & 0x3f; // process lacks of 64-byte data if (temp1) { UCHAR *pAds = (UCHAR *) pCtx->Input + temp1; if ((temp1+LenInBytes) < 64) { NdisMoveMemory(pAds, (UCHAR *)pData, LenInBytes); return (0); } NdisMoveMemory(pAds, (UCHAR *)pData, 64-temp1); byteReverse((UCHAR *)pCtx->Input, 16); NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16); SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input); pData += 64-temp1; LenInBytes -= 64-temp1; } // end of if (temp1) TfTimes = (LenInBytes >> 6); for (i=TfTimes; i>0; i--) { NdisMoveMemory(pCtx->Input, (UCHAR *)pData, 64); byteReverse((UCHAR *)pCtx->Input, 16); NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16); SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input); pData += 64; LenInBytes -= 64; } // end of for // buffering lacks of 64-byte data if(LenInBytes) NdisMoveMemory(pCtx->Input, (UCHAR *)pData, LenInBytes); return (0); } // Append padding bits and length of original message in the tail // The message digest has to be completed in the end VOID SHAFinal(SHA_CTX *pCtx, UCHAR Digest[20]) { UCHAR Remainder; UCHAR PadLenInBytes; UCHAR *pAppend=0; unsigned int i; Remainder = (UCHAR)((pCtx->LenInBitCount[0] >> 3) & 0x3f); pAppend = (UCHAR *)pCtx->Input + Remainder; PadLenInBytes = (Remainder < 56) ? (56-Remainder) : (120-Remainder); // padding bits without crossing block(64-byte based) boundary if (Remainder < 56) { *pAppend = 0x80; PadLenInBytes --; NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, PadLenInBytes); // add data-length field, from high to low for (i=0; i<4; i++) { pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[1] >> ((3-i) << 3)) & 0xff); pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[0] >> ((3-i) << 3)) & 0xff); } byteReverse((UCHAR *)pCtx->Input, 16); NdisZeroMemory((UCHAR *)pCtx->Input + 64, 14); SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input); } // end of if // padding bits with crossing block(64-byte based) boundary else { // the first block === *pAppend = 0x80; PadLenInBytes --; NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, (64-Remainder-1)); PadLenInBytes -= (64 - Remainder - 1); byteReverse((UCHAR *)pCtx->Input, 16); NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16); SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input); // the second block === NdisZeroMemory((UCHAR *)pCtx->Input, PadLenInBytes); // add data-length field for (i=0; i<4; i++) { pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[1] >> ((3-i) << 3)) & 0xff); pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[0] >> ((3-i) << 3)) & 0xff); } byteReverse((UCHAR *)pCtx->Input, 16); NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16); SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input); } // end of else //Output, bytereverse for (i=0; i<20; i++) { Digest [i] = (UCHAR)(pCtx->Buf[i>>2] >> 8*(3-(i & 0x3))); } NdisZeroMemory(pCtx, sizeof(pCtx)); // memory free } // The central algorithm of SHA-1, consists of four rounds and // twenty steps per round VOID SHATransform(UINT32 Buf[5], UINT32 Mes[20]) { UINT32 Reg[5],Temp; unsigned int i; UINT32 W[80]; static UINT32 SHA1Table[4] = { 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6 }; Reg[0]=Buf[0]; Reg[1]=Buf[1]; Reg[2]=Buf[2]; Reg[3]=Buf[3]; Reg[4]=Buf[4]; //the first octet of a word is stored in the 0th element, bytereverse for(i = 0; i < 16; i++) { W[i] = (Mes[i] >> 24) & 0xff; W[i] |= (Mes[i] >> 8 ) & 0xff00; W[i] |= (Mes[i] << 8 ) & 0xff0000; W[i] |= (Mes[i] << 24) & 0xff000000; } for (i = 0; i < 64; i++) W[16+i] = CYCLIC_LEFT_SHIFT(W[i] ^ W[2+i] ^ W[8+i] ^ W[13+i], 1); // 80 steps in SHA-1 algorithm for (i=0; i<80; i++) { if (i<20) SHA1Step(SHA1_F1, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4], W[i], SHA1Table[0]); else if (i>=20 && i<40) SHA1Step(SHA1_F2, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4], W[i], SHA1Table[1]); else if (i>=40 && i<60) SHA1Step(SHA1_F3, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4], W[i], SHA1Table[2]); else SHA1Step(SHA1_F2, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4], W[i], SHA1Table[3]); // one-word right shift Temp = Reg[4]; Reg[4] = Reg[3]; Reg[3] = Reg[2]; Reg[2] = Reg[1]; Reg[1] = Reg[0]; Reg[0] = Temp; } // end of for-loop // (temporary)output for (i=0; i<5; i++) Buf[i] += Reg[i]; } /* ========================= AES En/Decryption ========================== */ /* forward S-box */ static uint32 FSb[256] = { 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 }; /* forward table */ #define FT \ \ V(C6,63,63,A5), V(F8,7C,7C,84), V(EE,77,77,99), V(F6,7B,7B,8D), \ V(FF,F2,F2,0D), V(D6,6B,6B,BD), V(DE,6F,6F,B1), V(91,C5,C5,54), \ V(60,30,30,50), V(02,01,01,03), V(CE,67,67,A9), V(56,2B,2B,7D), \ V(E7,FE,FE,19), V(B5,D7,D7,62), V(4D,AB,AB,E6), V(EC,76,76,9A), \ V(8F,CA,CA,45), V(1F,82,82,9D), V(89,C9,C9,40), V(FA,7D,7D,87), \ V(EF,FA,FA,15), V(B2,59,59,EB), V(8E,47,47,C9), V(FB,F0,F0,0B), \ V(41,AD,AD,EC), V(B3,D4,D4,67), V(5F,A2,A2,FD), V(45,AF,AF,EA), \ V(23,9C,9C,BF), V(53,A4,A4,F7), V(E4,72,72,96), V(9B,C0,C0,5B), \ V(75,B7,B7,C2), V(E1,FD,FD,1C), V(3D,93,93,AE), V(4C,26,26,6A), \ V(6C,36,36,5A), V(7E,3F,3F,41), V(F5,F7,F7,02), V(83,CC,CC,4F), \ V(68,34,34,5C), V(51,A5,A5,F4), V(D1,E5,E5,34), V(F9,F1,F1,08), \ V(E2,71,71,93), V(AB,D8,D8,73), V(62,31,31,53), V(2A,15,15,3F), \ V(08,04,04,0C), V(95,C7,C7,52), V(46,23,23,65), V(9D,C3,C3,5E), \ V(30,18,18,28), V(37,96,96,A1), V(0A,05,05,0F), V(2F,9A,9A,B5), \ V(0E,07,07,09), V(24,12,12,36), V(1B,80,80,9B), V(DF,E2,E2,3D), \ V(CD,EB,EB,26), V(4E,27,27,69), V(7F,B2,B2,CD), V(EA,75,75,9F), \ V(12,09,09,1B), V(1D,83,83,9E), V(58,2C,2C,74), V(34,1A,1A,2E), \ V(36,1B,1B,2D), V(DC,6E,6E,B2), V(B4,5A,5A,EE), V(5B,A0,A0,FB), \ V(A4,52,52,F6), V(76,3B,3B,4D), V(B7,D6,D6,61), V(7D,B3,B3,CE), \ V(52,29,29,7B), V(DD,E3,E3,3E), V(5E,2F,2F,71), V(13,84,84,97), \ V(A6,53,53,F5), V(B9,D1,D1,68), V(00,00,00,00), V(C1,ED,ED,2C), \ V(40,20,20,60), V(E3,FC,FC,1F), V(79,B1,B1,C8), V(B6,5B,5B,ED), \ V(D4,6A,6A,BE), V(8D,CB,CB,46), V(67,BE,BE,D9), V(72,39,39,4B), \ V(94,4A,4A,DE), V(98,4C,4C,D4), V(B0,58,58,E8), V(85,CF,CF,4A), \ V(BB,D0,D0,6B), V(C5,EF,EF,2A), V(4F,AA,AA,E5), V(ED,FB,FB,16), \ V(86,43,43,C5), V(9A,4D,4D,D7), V(66,33,33,55), V(11,85,85,94), \ V(8A,45,45,CF), V(E9,F9,F9,10), V(04,02,02,06), V(FE,7F,7F,81), \ V(A0,50,50,F0), V(78,3C,3C,44), V(25,9F,9F,BA), V(4B,A8,A8,E3), \ V(A2,51,51,F3), V(5D,A3,A3,FE), V(80,40,40,C0), V(05,8F,8F,8A), \ V(3F,92,92,AD), V(21,9D,9D,BC), V(70,38,38,48), V(F1,F5,F5,04), \ V(63,BC,BC,DF), V(77,B6,B6,C1), V(AF,DA,DA,75), V(42,21,21,63), \ V(20,10,10,30), V(E5,FF,FF,1A), V(FD,F3,F3,0E), V(BF,D2,D2,6D), \ V(81,CD,CD,4C), V(18,0C,0C,14), V(26,13,13,35), V(C3,EC,EC,2F), \ V(BE,5F,5F,E1), V(35,97,97,A2), V(88,44,44,CC), V(2E,17,17,39), \ V(93,C4,C4,57), V(55,A7,A7,F2), V(FC,7E,7E,82), V(7A,3D,3D,47), \ V(C8,64,64,AC), V(BA,5D,5D,E7), V(32,19,19,2B), V(E6,73,73,95), \ V(C0,60,60,A0), V(19,81,81,98), V(9E,4F,4F,D1), V(A3,DC,DC,7F), \ V(44,22,22,66), V(54,2A,2A,7E), V(3B,90,90,AB), V(0B,88,88,83), \ V(8C,46,46,CA), V(C7,EE,EE,29), V(6B,B8,B8,D3), V(28,14,14,3C), \ V(A7,DE,DE,79), V(BC,5E,5E,E2), V(16,0B,0B,1D), V(AD,DB,DB,76), \ V(DB,E0,E0,3B), V(64,32,32,56), V(74,3A,3A,4E), V(14,0A,0A,1E), \ V(92,49,49,DB), V(0C,06,06,0A), V(48,24,24,6C), V(B8,5C,5C,E4), \ V(9F,C2,C2,5D), V(BD,D3,D3,6E), V(43,AC,AC,EF), V(C4,62,62,A6), \ V(39,91,91,A8), V(31,95,95,A4), V(D3,E4,E4,37), V(F2,79,79,8B), \ V(D5,E7,E7,32), V(8B,C8,C8,43), V(6E,37,37,59), V(DA,6D,6D,B7), \ V(01,8D,8D,8C), V(B1,D5,D5,64), V(9C,4E,4E,D2), V(49,A9,A9,E0), \ V(D8,6C,6C,B4), V(AC,56,56,FA), V(F3,F4,F4,07), V(CF,EA,EA,25), \ V(CA,65,65,AF), V(F4,7A,7A,8E), V(47,AE,AE,E9), V(10,08,08,18), \ V(6F,BA,BA,D5), V(F0,78,78,88), V(4A,25,25,6F), V(5C,2E,2E,72), \ V(38,1C,1C,24), V(57,A6,A6,F1), V(73,B4,B4,C7), V(97,C6,C6,51), \ V(CB,E8,E8,23), V(A1,DD,DD,7C), V(E8,74,74,9C), V(3E,1F,1F,21), \ V(96,4B,4B,DD), V(61,BD,BD,DC), V(0D,8B,8B,86), V(0F,8A,8A,85), \ V(E0,70,70,90), V(7C,3E,3E,42), V(71,B5,B5,C4), V(CC,66,66,AA), \ V(90,48,48,D8), V(06,03,03,05), V(F7,F6,F6,01), V(1C,0E,0E,12), \ V(C2,61,61,A3), V(6A,35,35,5F), V(AE,57,57,F9), V(69,B9,B9,D0), \ V(17,86,86,91), V(99,C1,C1,58), V(3A,1D,1D,27), V(27,9E,9E,B9), \ V(D9,E1,E1,38), V(EB,F8,F8,13), V(2B,98,98,B3), V(22,11,11,33), \ V(D2,69,69,BB), V(A9,D9,D9,70), V(07,8E,8E,89), V(33,94,94,A7), \ V(2D,9B,9B,B6), V(3C,1E,1E,22), V(15,87,87,92), V(C9,E9,E9,20), \ V(87,CE,CE,49), V(AA,55,55,FF), V(50,28,28,78), V(A5,DF,DF,7A), \ V(03,8C,8C,8F), V(59,A1,A1,F8), V(09,89,89,80), V(1A,0D,0D,17), \ V(65,BF,BF,DA), V(D7,E6,E6,31), V(84,42,42,C6), V(D0,68,68,B8), \ V(82,41,41,C3), V(29,99,99,B0), V(5A,2D,2D,77), V(1E,0F,0F,11), \ V(7B,B0,B0,CB), V(A8,54,54,FC), V(6D,BB,BB,D6), V(2C,16,16,3A) #define V(a,b,c,d) 0x##a##b##c##d static uint32 FT0[256] = { FT }; #undef V #define V(a,b,c,d) 0x##d##a##b##c static uint32 FT1[256] = { FT }; #undef V #define V(a,b,c,d) 0x##c##d##a##b static uint32 FT2[256] = { FT }; #undef V #define V(a,b,c,d) 0x##b##c##d##a static uint32 FT3[256] = { FT }; #undef V #undef FT /* reverse S-box */ static uint32 RSb[256] = { 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D }; /* reverse table */ #define RT \ \ V(51,F4,A7,50), V(7E,41,65,53), V(1A,17,A4,C3), V(3A,27,5E,96), \ V(3B,AB,6B,CB), V(1F,9D,45,F1), V(AC,FA,58,AB), V(4B,E3,03,93), \ V(20,30,FA,55), V(AD,76,6D,F6), V(88,CC,76,91), V(F5,02,4C,25), \ V(4F,E5,D7,FC), V(C5,2A,CB,D7), V(26,35,44,80), V(B5,62,A3,8F), \ V(DE,B1,5A,49), V(25,BA,1B,67), V(45,EA,0E,98), V(5D,FE,C0,E1), \ V(C3,2F,75,02), V(81,4C,F0,12), V(8D,46,97,A3), V(6B,D3,F9,C6), \ V(03,8F,5F,E7), V(15,92,9C,95), V(BF,6D,7A,EB), V(95,52,59,DA), \ V(D4,BE,83,2D), V(58,74,21,D3), V(49,E0,69,29), V(8E,C9,C8,44), \ V(75,C2,89,6A), V(F4,8E,79,78), V(99,58,3E,6B), V(27,B9,71,DD), \ V(BE,E1,4F,B6), V(F0,88,AD,17), V(C9,20,AC,66), V(7D,CE,3A,B4), \ V(63,DF,4A,18), V(E5,1A,31,82), V(97,51,33,60), V(62,53,7F,45), \ V(B1,64,77,E0), V(BB,6B,AE,84), V(FE,81,A0,1C), V(F9,08,2B,94), \ V(70,48,68,58), V(8F,45,FD,19), V(94,DE,6C,87), V(52,7B,F8,B7), \ V(AB,73,D3,23), V(72,4B,02,E2), V(E3,1F,8F,57), V(66,55,AB,2A), \ V(B2,EB,28,07), V(2F,B5,C2,03), V(86,C5,7B,9A), V(D3,37,08,A5), \ V(30,28,87,F2), V(23,BF,A5,B2), V(02,03,6A,BA), V(ED,16,82,5C), \ V(8A,CF,1C,2B), V(A7,79,B4,92), V(F3,07,F2,F0), V(4E,69,E2,A1), \ V(65,DA,F4,CD), V(06,05,BE,D5), V(D1,34,62,1F), V(C4,A6,FE,8A), \ V(34,2E,53,9D), V(A2,F3,55,A0), V(05,8A,E1,32), V(A4,F6,EB,75), \ V(0B,83,EC,39), V(40,60,EF,AA), V(5E,71,9F,06), V(BD,6E,10,51), \ V(3E,21,8A,F9), V(96,DD,06,3D), V(DD,3E,05,AE), V(4D,E6,BD,46), \ V(91,54,8D,B5), V(71,C4,5D,05), V(04,06,D4,6F), V(60,50,15,FF), \ V(19,98,FB,24), V(D6,BD,E9,97), V(89,40,43,CC), V(67,D9,9E,77), \ V(B0,E8,42,BD), V(07,89,8B,88), V(E7,19,5B,38), V(79,C8,EE,DB), \ V(A1,7C,0A,47), V(7C,42,0F,E9), V(F8,84,1E,C9), V(00,00,00,00), \ V(09,80,86,83), V(32,2B,ED,48), V(1E,11,70,AC), V(6C,5A,72,4E), \ V(FD,0E,FF,FB), V(0F,85,38,56), V(3D,AE,D5,1E), V(36,2D,39,27), \ V(0A,0F,D9,64), V(68,5C,A6,21), V(9B,5B,54,D1), V(24,36,2E,3A), \ V(0C,0A,67,B1), V(93,57,E7,0F), V(B4,EE,96,D2), V(1B,9B,91,9E), \ V(80,C0,C5,4F), V(61,DC,20,A2), V(5A,77,4B,69), V(1C,12,1A,16), \ V(E2,93,BA,0A), V(C0,A0,2A,E5), V(3C,22,E0,43), V(12,1B,17,1D), \ V(0E,09,0D,0B), V(F2,8B,C7,AD), V(2D,B6,A8,B9), V(14,1E,A9,C8), \ V(57,F1,19,85), V(AF,75,07,4C), V(EE,99,DD,BB), V(A3,7F,60,FD), \ V(F7,01,26,9F), V(5C,72,F5,BC), V(44,66,3B,C5), V(5B,FB,7E,34), \ V(8B,43,29,76), V(CB,23,C6,DC), V(B6,ED,FC,68), V(B8,E4,F1,63), \ V(D7,31,DC,CA), V(42,63,85,10), V(13,97,22,40), V(84,C6,11,20), \ V(85,4A,24,7D), V(D2,BB,3D,F8), V(AE,F9,32,11), V(C7,29,A1,6D), \ V(1D,9E,2F,4B), V(DC,B2,30,F3), V(0D,86,52,EC), V(77,C1,E3,D0), \ V(2B,B3,16,6C), V(A9,70,B9,99), V(11,94,48,FA), V(47,E9,64,22), \ V(A8,FC,8C,C4), V(A0,F0,3F,1A), V(56,7D,2C,D8), V(22,33,90,EF), \ V(87,49,4E,C7), V(D9,38,D1,C1), V(8C,CA,A2,FE), V(98,D4,0B,36), \ V(A6,F5,81,CF), V(A5,7A,DE,28), V(DA,B7,8E,26), V(3F,AD,BF,A4), \ V(2C,3A,9D,E4), V(50,78,92,0D), V(6A,5F,CC,9B), V(54,7E,46,62), \ V(F6,8D,13,C2), V(90,D8,B8,E8), V(2E,39,F7,5E), V(82,C3,AF,F5), \ V(9F,5D,80,BE), V(69,D0,93,7C), V(6F,D5,2D,A9), V(CF,25,12,B3), \ V(C8,AC,99,3B), V(10,18,7D,A7), V(E8,9C,63,6E), V(DB,3B,BB,7B), \ V(CD,26,78,09), V(6E,59,18,F4), V(EC,9A,B7,01), V(83,4F,9A,A8), \ V(E6,95,6E,65), V(AA,FF,E6,7E), V(21,BC,CF,08), V(EF,15,E8,E6), \ V(BA,E7,9B,D9), V(4A,6F,36,CE), V(EA,9F,09,D4), V(29,B0,7C,D6), \ V(31,A4,B2,AF), V(2A,3F,23,31), V(C6,A5,94,30), V(35,A2,66,C0), \ V(74,4E,BC,37), V(FC,82,CA,A6), V(E0,90,D0,B0), V(33,A7,D8,15), \ V(F1,04,98,4A), V(41,EC,DA,F7), V(7F,CD,50,0E), V(17,91,F6,2F), \ V(76,4D,D6,8D), V(43,EF,B0,4D), V(CC,AA,4D,54), V(E4,96,04,DF), \ V(9E,D1,B5,E3), V(4C,6A,88,1B), V(C1,2C,1F,B8), V(46,65,51,7F), \ V(9D,5E,EA,04), V(01,8C,35,5D), V(FA,87,74,73), V(FB,0B,41,2E), \ V(B3,67,1D,5A), V(92,DB,D2,52), V(E9,10,56,33), V(6D,D6,47,13), \ V(9A,D7,61,8C), V(37,A1,0C,7A), V(59,F8,14,8E), V(EB,13,3C,89), \ V(CE,A9,27,EE), V(B7,61,C9,35), V(E1,1C,E5,ED), V(7A,47,B1,3C), \ V(9C,D2,DF,59), V(55,F2,73,3F), V(18,14,CE,79), V(73,C7,37,BF), \ V(53,F7,CD,EA), V(5F,FD,AA,5B), V(DF,3D,6F,14), V(78,44,DB,86), \ V(CA,AF,F3,81), V(B9,68,C4,3E), V(38,24,34,2C), V(C2,A3,40,5F), \ V(16,1D,C3,72), V(BC,E2,25,0C), V(28,3C,49,8B), V(FF,0D,95,41), \ V(39,A8,01,71), V(08,0C,B3,DE), V(D8,B4,E4,9C), V(64,56,C1,90), \ V(7B,CB,84,61), V(D5,32,B6,70), V(48,6C,5C,74), V(D0,B8,57,42) #define V(a,b,c,d) 0x##a##b##c##d static uint32 RT0[256] = { RT }; #undef V #define V(a,b,c,d) 0x##d##a##b##c static uint32 RT1[256] = { RT }; #undef V #define V(a,b,c,d) 0x##c##d##a##b static uint32 RT2[256] = { RT }; #undef V #define V(a,b,c,d) 0x##b##c##d##a static uint32 RT3[256] = { RT }; #undef V #undef RT /* round constants */ static uint32 RCON[10] = { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000 }; /* key schedule tables */ static int KT_init = 1; static uint32 KT0[256]; static uint32 KT1[256]; static uint32 KT2[256]; static uint32 KT3[256]; /* platform-independant 32-bit integer manipulation macros */ #define GET_UINT32(n,b,i) \ { \ (n) = ( (uint32) (b)[(i) ] << 24 ) \ | ( (uint32) (b)[(i) + 1] << 16 ) \ | ( (uint32) (b)[(i) + 2] << 8 ) \ | ( (uint32) (b)[(i) + 3] ); \ } #define PUT_UINT32(n,b,i) \ { \ (b)[(i) ] = (uint8) ( (n) >> 24 ); \ (b)[(i) + 1] = (uint8) ( (n) >> 16 ); \ (b)[(i) + 2] = (uint8) ( (n) >> 8 ); \ (b)[(i) + 3] = (uint8) ( (n) ); \ } /* AES key scheduling routine */ int rtmp_aes_set_key( aes_context *ctx, uint8 *key, int nbits ) { int i; uint32 *RK, *SK; switch( nbits ) { case 128: ctx->nr = 10; break; case 192: ctx->nr = 12; break; case 256: ctx->nr = 14; break; default : return( 1 ); } RK = ctx->erk; for( i = 0; i < (nbits >> 5); i++ ) { GET_UINT32( RK[i], key, i * 4 ); } /* setup encryption round keys */ switch( nbits ) { case 128: for( i = 0; i < 10; i++, RK += 4 ) { RK[4] = RK[0] ^ RCON[i] ^ ( FSb[ (uint8) ( RK[3] >> 16 ) ] << 24 ) ^ ( FSb[ (uint8) ( RK[3] >> 8 ) ] << 16 ) ^ ( FSb[ (uint8) ( RK[3] ) ] << 8 ) ^ ( FSb[ (uint8) ( RK[3] >> 24 ) ] ); RK[5] = RK[1] ^ RK[4]; RK[6] = RK[2] ^ RK[5]; RK[7] = RK[3] ^ RK[6]; } break; case 192: for( i = 0; i < 8; i++, RK += 6 ) { RK[6] = RK[0] ^ RCON[i] ^ ( FSb[ (uint8) ( RK[5] >> 16 ) ] << 24 ) ^ ( FSb[ (uint8) ( RK[5] >> 8 ) ] << 16 ) ^ ( FSb[ (uint8) ( RK[5] ) ] << 8 ) ^ ( FSb[ (uint8) ( RK[5] >> 24 ) ] ); RK[7] = RK[1] ^ RK[6]; RK[8] = RK[2] ^ RK[7]; RK[9] = RK[3] ^ RK[8]; RK[10] = RK[4] ^ RK[9]; RK[11] = RK[5] ^ RK[10]; } break; case 256: for( i = 0; i < 7; i++, RK += 8 ) { RK[8] = RK[0] ^ RCON[i] ^ ( FSb[ (uint8) ( RK[7] >> 16 ) ] << 24 ) ^ ( FSb[ (uint8) ( RK[7] >> 8 ) ] << 16 ) ^ ( FSb[ (uint8) ( RK[7] ) ] << 8 ) ^ ( FSb[ (uint8) ( RK[7] >> 24 ) ] ); RK[9] = RK[1] ^ RK[8]; RK[10] = RK[2] ^ RK[9]; RK[11] = RK[3] ^ RK[10]; RK[12] = RK[4] ^ ( FSb[ (uint8) ( RK[11] >> 24 ) ] << 24 ) ^ ( FSb[ (uint8) ( RK[11] >> 16 ) ] << 16 ) ^ ( FSb[ (uint8) ( RK[11] >> 8 ) ] << 8 ) ^ ( FSb[ (uint8) ( RK[11] ) ] ); RK[13] = RK[5] ^ RK[12]; RK[14] = RK[6] ^ RK[13]; RK[15] = RK[7] ^ RK[14]; } break; } /* setup decryption round keys */ if( KT_init ) { for( i = 0; i < 256; i++ ) { KT0[i] = RT0[ FSb[i] ]; KT1[i] = RT1[ FSb[i] ]; KT2[i] = RT2[ FSb[i] ]; KT3[i] = RT3[ FSb[i] ]; } KT_init = 0; } SK = ctx->drk; *SK++ = *RK++; *SK++ = *RK++; *SK++ = *RK++; *SK++ = *RK++; for( i = 1; i < ctx->nr; i++ ) { RK -= 8; *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^ KT1[ (uint8) ( *RK >> 16 ) ] ^ KT2[ (uint8) ( *RK >> 8 ) ] ^ KT3[ (uint8) ( *RK ) ]; RK++; *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^ KT1[ (uint8) ( *RK >> 16 ) ] ^ KT2[ (uint8) ( *RK >> 8 ) ] ^ KT3[ (uint8) ( *RK ) ]; RK++; *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^ KT1[ (uint8) ( *RK >> 16 ) ] ^ KT2[ (uint8) ( *RK >> 8 ) ] ^ KT3[ (uint8) ( *RK ) ]; RK++; *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^ KT1[ (uint8) ( *RK >> 16 ) ] ^ KT2[ (uint8) ( *RK >> 8 ) ] ^ KT3[ (uint8) ( *RK ) ]; RK++; } RK -= 8; *SK++ = *RK++; *SK++ = *RK++; *SK++ = *RK++; *SK++ = *RK++; return( 0 ); } /* AES 128-bit block encryption routine */ void rtmp_aes_encrypt(aes_context *ctx, uint8 input[16], uint8 output[16] ) { uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3; RK = ctx->erk; GET_UINT32( X0, input, 0 ); X0 ^= RK[0]; GET_UINT32( X1, input, 4 ); X1 ^= RK[1]; GET_UINT32( X2, input, 8 ); X2 ^= RK[2]; GET_UINT32( X3, input, 12 ); X3 ^= RK[3]; #define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \ { \ RK += 4; \ \ X0 = RK[0] ^ FT0[ (uint8) ( Y0 >> 24 ) ] ^ \ FT1[ (uint8) ( Y1 >> 16 ) ] ^ \ FT2[ (uint8) ( Y2 >> 8 ) ] ^ \ FT3[ (uint8) ( Y3 ) ]; \ \ X1 = RK[1] ^ FT0[ (uint8) ( Y1 >> 24 ) ] ^ \ FT1[ (uint8) ( Y2 >> 16 ) ] ^ \ FT2[ (uint8) ( Y3 >> 8 ) ] ^ \ FT3[ (uint8) ( Y0 ) ]; \ \ X2 = RK[2] ^ FT0[ (uint8) ( Y2 >> 24 ) ] ^ \ FT1[ (uint8) ( Y3 >> 16 ) ] ^ \ FT2[ (uint8) ( Y0 >> 8 ) ] ^ \ FT3[ (uint8) ( Y1 ) ]; \ \ X3 = RK[3] ^ FT0[ (uint8) ( Y3 >> 24 ) ] ^ \ FT1[ (uint8) ( Y0 >> 16 ) ] ^ \ FT2[ (uint8) ( Y1 >> 8 ) ] ^ \ FT3[ (uint8) ( Y2 ) ]; \ } AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 1 */ AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 2 */ AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 3 */ AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 4 */ AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 5 */ AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 6 */ AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 7 */ AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 8 */ AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 9 */ if( ctx->nr > 10 ) { AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 10 */ AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 11 */ } if( ctx->nr > 12 ) { AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 12 */ AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 13 */ } /* last round */ RK += 4; X0 = RK[0] ^ ( FSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^ ( FSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^ ( FSb[ (uint8) ( Y2 >> 8 ) ] << 8 ) ^ ( FSb[ (uint8) ( Y3 ) ] ); X1 = RK[1] ^ ( FSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^ ( FSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^ ( FSb[ (uint8) ( Y3 >> 8 ) ] << 8 ) ^ ( FSb[ (uint8) ( Y0 ) ] ); X2 = RK[2] ^ ( FSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^ ( FSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^ ( FSb[ (uint8) ( Y0 >> 8 ) ] << 8 ) ^ ( FSb[ (uint8) ( Y1 ) ] ); X3 = RK[3] ^ ( FSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^ ( FSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^ ( FSb[ (uint8) ( Y1 >> 8 ) ] << 8 ) ^ ( FSb[ (uint8) ( Y2 ) ] ); PUT_UINT32( X0, output, 0 ); PUT_UINT32( X1, output, 4 ); PUT_UINT32( X2, output, 8 ); PUT_UINT32( X3, output, 12 ); } /* AES 128-bit block decryption routine */ void rtmp_aes_decrypt( aes_context *ctx, uint8 input[16], uint8 output[16] ) { uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3; RK = ctx->drk; GET_UINT32( X0, input, 0 ); X0 ^= RK[0]; GET_UINT32( X1, input, 4 ); X1 ^= RK[1]; GET_UINT32( X2, input, 8 ); X2 ^= RK[2]; GET_UINT32( X3, input, 12 ); X3 ^= RK[3]; #define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \ { \ RK += 4; \ \ X0 = RK[0] ^ RT0[ (uint8) ( Y0 >> 24 ) ] ^ \ RT1[ (uint8) ( Y3 >> 16 ) ] ^ \ RT2[ (uint8) ( Y2 >> 8 ) ] ^ \ RT3[ (uint8) ( Y1 ) ]; \ \ X1 = RK[1] ^ RT0[ (uint8) ( Y1 >> 24 ) ] ^ \ RT1[ (uint8) ( Y0 >> 16 ) ] ^ \ RT2[ (uint8) ( Y3 >> 8 ) ] ^ \ RT3[ (uint8) ( Y2 ) ]; \ \ X2 = RK[2] ^ RT0[ (uint8) ( Y2 >> 24 ) ] ^ \ RT1[ (uint8) ( Y1 >> 16 ) ] ^ \ RT2[ (uint8) ( Y0 >> 8 ) ] ^ \ RT3[ (uint8) ( Y3 ) ]; \ \ X3 = RK[3] ^ RT0[ (uint8) ( Y3 >> 24 ) ] ^ \ RT1[ (uint8) ( Y2 >> 16 ) ] ^ \ RT2[ (uint8) ( Y1 >> 8 ) ] ^ \ RT3[ (uint8) ( Y0 ) ]; \ } AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 1 */ AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 2 */ AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 3 */ AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 4 */ AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 5 */ AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 6 */ AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 7 */ AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 8 */ AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 9 */ if( ctx->nr > 10 ) { AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 10 */ AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 11 */ } if( ctx->nr > 12 ) { AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 12 */ AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 13 */ } /* last round */ RK += 4; X0 = RK[0] ^ ( RSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^ ( RSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^ ( RSb[ (uint8) ( Y2 >> 8 ) ] << 8 ) ^ ( RSb[ (uint8) ( Y1 ) ] ); X1 = RK[1] ^ ( RSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^ ( RSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^ ( RSb[ (uint8) ( Y3 >> 8 ) ] << 8 ) ^ ( RSb[ (uint8) ( Y2 ) ] ); X2 = RK[2] ^ ( RSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^ ( RSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^ ( RSb[ (uint8) ( Y0 >> 8 ) ] << 8 ) ^ ( RSb[ (uint8) ( Y3 ) ] ); X3 = RK[3] ^ ( RSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^ ( RSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^ ( RSb[ (uint8) ( Y1 >> 8 ) ] << 8 ) ^ ( RSb[ (uint8) ( Y0 ) ] ); PUT_UINT32( X0, output, 0 ); PUT_UINT32( X1, output, 4 ); PUT_UINT32( X2, output, 8 ); PUT_UINT32( X3, output, 12 ); } /* ======================================================================== Routine Description: SHA1 function Arguments: Return Value: Note: ======================================================================== */ VOID HMAC_SHA1( IN UCHAR *text, IN UINT text_len, IN UCHAR *key, IN UINT key_len, IN UCHAR *digest) { SHA_CTX context; UCHAR k_ipad[65]; /* inner padding - key XORd with ipad */ UCHAR k_opad[65]; /* outer padding - key XORd with opad */ INT i; // if key is longer than 64 bytes reset it to key=SHA1(key) if (key_len > 64) { SHA_CTX tctx; SHAInit(&tctx); SHAUpdate(&tctx, key, key_len); SHAFinal(&tctx, key); key_len = 20; } NdisZeroMemory(k_ipad, sizeof(k_ipad)); NdisZeroMemory(k_opad, sizeof(k_opad)); NdisMoveMemory(k_ipad, key, key_len); NdisMoveMemory(k_opad, key, key_len); // XOR key with ipad and opad values for (i = 0; i < 64; i++) { k_ipad[i] ^= 0x36; k_opad[i] ^= 0x5c; } // perform inner SHA1 SHAInit(&context); /* init context for 1st pass */ SHAUpdate(&context, k_ipad, 64); /* start with inner pad */ SHAUpdate(&context, text, text_len); /* then text of datagram */ SHAFinal(&context, digest); /* finish up 1st pass */ //perform outer SHA1 SHAInit(&context); /* init context for 2nd pass */ SHAUpdate(&context, k_opad, 64); /* start with outer pad */ SHAUpdate(&context, digest, 20); /* then results of 1st hash */ SHAFinal(&context, digest); /* finish up 2nd pass */ } /* * F(P, S, c, i) = U1 xor U2 xor ... Uc * U1 = PRF(P, S || Int(i)) * U2 = PRF(P, U1) * Uc = PRF(P, Uc-1) */ void F(char *password, unsigned char *ssid, int ssidlength, int iterations, int count, unsigned char *output) { unsigned char digest[36], digest1[SHA_DIGEST_LEN]; int i, j; /* U1 = PRF(P, S || int(i)) */ memcpy(digest, ssid, ssidlength); digest[ssidlength] = (unsigned char)((count>>24) & 0xff); digest[ssidlength+1] = (unsigned char)((count>>16) & 0xff); digest[ssidlength+2] = (unsigned char)((count>>8) & 0xff); digest[ssidlength+3] = (unsigned char)(count & 0xff); HMAC_SHA1(digest, ssidlength+4, (unsigned char*) password, (int) strlen(password), digest1); // for WPA update /* output = U1 */ memcpy(output, digest1, SHA_DIGEST_LEN); for (i = 1; i < iterations; i++) { /* Un = PRF(P, Un-1) */ HMAC_SHA1(digest1, SHA_DIGEST_LEN, (unsigned char*) password, (int) strlen(password), digest); // for WPA update memcpy(digest1, digest, SHA_DIGEST_LEN); /* output = output xor Un */ for (j = 0; j < SHA_DIGEST_LEN; j++) { output[j] ^= digest[j]; } } } /* * password - ascii string up to 63 characters in length * ssid - octet string up to 32 octets * ssidlength - length of ssid in octets * output must be 40 octets in length and outputs 256 bits of key */ int PasswordHash(char *password, unsigned char *ssid, int ssidlength, unsigned char *output) { if ((strlen(password) > 63) || (ssidlength > 32)) return 0; F(password, ssid, ssidlength, 4096, 1, output); F(password, ssid, ssidlength, 4096, 2, &output[SHA_DIGEST_LEN]); return 1; }