// SPDX-License-Identifier: GPL-2.0 /* * Copyright(c) 2008 - 2010 Realtek Corporation. All rights reserved. * * Contact Information: wlanfae */ #include #include "rtl_core.h" #include "r8192E_hw.h" #include "r8192E_phyreg.h" #include "r8190P_rtl8256.h" #include "r8192E_phy.h" #include "rtl_dm.h" #include "r8192E_hwimg.h" static u32 RF_CHANNEL_TABLE_ZEBRA[] = { 0, 0x085c, 0x08dc, 0x095c, 0x09dc, 0x0a5c, 0x0adc, 0x0b5c, 0x0bdc, 0x0c5c, 0x0cdc, 0x0d5c, 0x0ddc, 0x0e5c, 0x0f72, }; /*************************Define local function prototype**********************/ static u32 _rtl92e_phy_rf_fw_read(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset); static void _rtl92e_phy_rf_fw_write(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset, u32 Data); static u32 _rtl92e_calculate_bit_shift(u32 dwBitMask) { if (!dwBitMask) return 32; return ffs(dwBitMask) - 1; } u8 rtl92e_is_legal_rf_path(struct net_device *dev, u32 eRFPath) { u8 ret = 1; struct r8192_priv *priv = rtllib_priv(dev); if (priv->rf_type == RF_2T4R) ret = 0; else if (priv->rf_type == RF_1T2R) { if (eRFPath == RF90_PATH_A || eRFPath == RF90_PATH_B) ret = 1; else if (eRFPath == RF90_PATH_C || eRFPath == RF90_PATH_D) ret = 0; } return ret; } void rtl92e_set_bb_reg(struct net_device *dev, u32 dwRegAddr, u32 dwBitMask, u32 dwData) { u32 OriginalValue, BitShift, NewValue; if (dwBitMask != bMaskDWord) { OriginalValue = rtl92e_readl(dev, dwRegAddr); BitShift = _rtl92e_calculate_bit_shift(dwBitMask); NewValue = (OriginalValue & ~dwBitMask) | (dwData << BitShift); rtl92e_writel(dev, dwRegAddr, NewValue); } else rtl92e_writel(dev, dwRegAddr, dwData); } u32 rtl92e_get_bb_reg(struct net_device *dev, u32 dwRegAddr, u32 dwBitMask) { u32 OriginalValue, BitShift; OriginalValue = rtl92e_readl(dev, dwRegAddr); BitShift = _rtl92e_calculate_bit_shift(dwBitMask); return (OriginalValue & dwBitMask) >> BitShift; } static u32 _rtl92e_phy_rf_read(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset) { struct r8192_priv *priv = rtllib_priv(dev); u32 ret = 0; u32 NewOffset = 0; struct bb_reg_definition *pPhyReg = &priv->PHYRegDef[eRFPath]; Offset &= 0x3f; if (priv->rf_chip == RF_8256) { rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0); if (Offset >= 31) { priv->RfReg0Value[eRFPath] |= 0x140; rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16)); NewOffset = Offset - 30; } else if (Offset >= 16) { priv->RfReg0Value[eRFPath] |= 0x100; priv->RfReg0Value[eRFPath] &= (~0x40); rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16)); NewOffset = Offset - 15; } else NewOffset = Offset; } else { NewOffset = Offset; } rtl92e_set_bb_reg(dev, pPhyReg->rfHSSIPara2, bLSSIReadAddress, NewOffset); rtl92e_set_bb_reg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x0); rtl92e_set_bb_reg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x1); mdelay(1); ret = rtl92e_get_bb_reg(dev, pPhyReg->rfLSSIReadBack, bLSSIReadBackData); if (priv->rf_chip == RF_8256) { priv->RfReg0Value[eRFPath] &= 0xebf; rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3); } return ret; } static void _rtl92e_phy_rf_write(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset, u32 Data) { struct r8192_priv *priv = rtllib_priv(dev); u32 DataAndAddr = 0, NewOffset = 0; struct bb_reg_definition *pPhyReg = &priv->PHYRegDef[eRFPath]; Offset &= 0x3f; if (priv->rf_chip == RF_8256) { rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0); if (Offset >= 31) { priv->RfReg0Value[eRFPath] |= 0x140; rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); NewOffset = Offset - 30; } else if (Offset >= 16) { priv->RfReg0Value[eRFPath] |= 0x100; priv->RfReg0Value[eRFPath] &= (~0x40); rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); NewOffset = Offset - 15; } else NewOffset = Offset; } else { NewOffset = Offset; } DataAndAddr = (NewOffset & 0x3f) | (Data << 16); rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr); if (Offset == 0x0) priv->RfReg0Value[eRFPath] = Data; if (priv->rf_chip == RF_8256) { if (Offset != 0) { priv->RfReg0Value[eRFPath] &= 0xebf; rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); } rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3); } } void rtl92e_set_rf_reg(struct net_device *dev, enum rf90_radio_path eRFPath, u32 RegAddr, u32 BitMask, u32 Data) { struct r8192_priv *priv = rtllib_priv(dev); u32 Original_Value, BitShift, New_Value; if (!rtl92e_is_legal_rf_path(dev, eRFPath)) return; if (priv->rtllib->rf_power_state != rf_on && !priv->being_init_adapter) return; if (priv->Rf_Mode == RF_OP_By_FW) { if (BitMask != bMask12Bits) { Original_Value = _rtl92e_phy_rf_fw_read(dev, eRFPath, RegAddr); BitShift = _rtl92e_calculate_bit_shift(BitMask); New_Value = (Original_Value & ~BitMask) | (Data << BitShift); _rtl92e_phy_rf_fw_write(dev, eRFPath, RegAddr, New_Value); } else _rtl92e_phy_rf_fw_write(dev, eRFPath, RegAddr, Data); udelay(200); } else { if (BitMask != bMask12Bits) { Original_Value = _rtl92e_phy_rf_read(dev, eRFPath, RegAddr); BitShift = _rtl92e_calculate_bit_shift(BitMask); New_Value = (Original_Value & ~BitMask) | (Data << BitShift); _rtl92e_phy_rf_write(dev, eRFPath, RegAddr, New_Value); } else _rtl92e_phy_rf_write(dev, eRFPath, RegAddr, Data); } } u32 rtl92e_get_rf_reg(struct net_device *dev, enum rf90_radio_path eRFPath, u32 RegAddr, u32 BitMask) { u32 Original_Value, Readback_Value, BitShift; struct r8192_priv *priv = rtllib_priv(dev); if (!rtl92e_is_legal_rf_path(dev, eRFPath)) return 0; if (priv->rtllib->rf_power_state != rf_on && !priv->being_init_adapter) return 0; mutex_lock(&priv->rf_mutex); if (priv->Rf_Mode == RF_OP_By_FW) { Original_Value = _rtl92e_phy_rf_fw_read(dev, eRFPath, RegAddr); udelay(200); } else { Original_Value = _rtl92e_phy_rf_read(dev, eRFPath, RegAddr); } BitShift = _rtl92e_calculate_bit_shift(BitMask); Readback_Value = (Original_Value & BitMask) >> BitShift; mutex_unlock(&priv->rf_mutex); return Readback_Value; } static u32 _rtl92e_phy_rf_fw_read(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset) { u32 Data = 0; u8 time = 0; Data |= ((Offset & 0xFF) << 12); Data |= ((eRFPath & 0x3) << 20); Data |= 0x80000000; while (rtl92e_readl(dev, QPNR) & 0x80000000) { if (time++ < 100) udelay(10); else break; } rtl92e_writel(dev, QPNR, Data); while (rtl92e_readl(dev, QPNR) & 0x80000000) { if (time++ < 100) udelay(10); else return 0; } return rtl92e_readl(dev, RF_DATA); } static void _rtl92e_phy_rf_fw_write(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset, u32 Data) { u8 time = 0; Data |= ((Offset & 0xFF) << 12); Data |= ((eRFPath & 0x3) << 20); Data |= 0x400000; Data |= 0x80000000; while (rtl92e_readl(dev, QPNR) & 0x80000000) { if (time++ < 100) udelay(10); else break; } rtl92e_writel(dev, QPNR, Data); } void rtl92e_config_mac(struct net_device *dev) { u32 dwArrayLen = 0, i = 0; u32 *pdwArray = NULL; struct r8192_priv *priv = rtllib_priv(dev); if (priv->bTXPowerDataReadFromEEPORM) { dwArrayLen = MACPHY_Array_PGLength; pdwArray = Rtl819XMACPHY_Array_PG; } else { dwArrayLen = MACPHY_ArrayLength; pdwArray = Rtl819XMACPHY_Array; } for (i = 0; i < dwArrayLen; i += 3) { if (pdwArray[i] == 0x318) pdwArray[i+2] = 0x00000800; rtl92e_set_bb_reg(dev, pdwArray[i], pdwArray[i+1], pdwArray[i+2]); } return; } static void _rtl92e_phy_config_bb(struct net_device *dev, u8 ConfigType) { int i; u32 *Rtl819XPHY_REGArray_Table = NULL; u32 *Rtl819XAGCTAB_Array_Table = NULL; u16 AGCTAB_ArrayLen, PHY_REGArrayLen = 0; struct r8192_priv *priv = rtllib_priv(dev); AGCTAB_ArrayLen = AGCTAB_ArrayLength; Rtl819XAGCTAB_Array_Table = Rtl819XAGCTAB_Array; if (priv->rf_type == RF_2T4R) { PHY_REGArrayLen = PHY_REGArrayLength; Rtl819XPHY_REGArray_Table = Rtl819XPHY_REGArray; } else if (priv->rf_type == RF_1T2R) { PHY_REGArrayLen = PHY_REG_1T2RArrayLength; Rtl819XPHY_REGArray_Table = Rtl819XPHY_REG_1T2RArray; } if (ConfigType == BaseBand_Config_PHY_REG) { for (i = 0; i < PHY_REGArrayLen; i += 2) { rtl92e_set_bb_reg(dev, Rtl819XPHY_REGArray_Table[i], bMaskDWord, Rtl819XPHY_REGArray_Table[i+1]); } } else if (ConfigType == BaseBand_Config_AGC_TAB) { for (i = 0; i < AGCTAB_ArrayLen; i += 2) { rtl92e_set_bb_reg(dev, Rtl819XAGCTAB_Array_Table[i], bMaskDWord, Rtl819XAGCTAB_Array_Table[i+1]); } } } static void _rtl92e_init_bb_rf_reg_def(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); priv->PHYRegDef[RF90_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; priv->PHYRegDef[RF90_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; priv->PHYRegDef[RF90_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW; priv->PHYRegDef[RF90_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW; priv->PHYRegDef[RF90_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; priv->PHYRegDef[RF90_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB; priv->PHYRegDef[RF90_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB; priv->PHYRegDef[RF90_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB; priv->PHYRegDef[RF90_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_C].rfintfo = rFPGA0_XC_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_D].rfintfo = rFPGA0_XD_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_C].rfintfe = rFPGA0_XC_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_D].rfintfe = rFPGA0_XD_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; priv->PHYRegDef[RF90_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter; priv->PHYRegDef[RF90_PATH_C].rf3wireOffset = rFPGA0_XC_LSSIParameter; priv->PHYRegDef[RF90_PATH_D].rf3wireOffset = rFPGA0_XD_LSSIParameter; priv->PHYRegDef[RF90_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter; priv->PHYRegDef[RF90_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter; priv->PHYRegDef[RF90_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter; priv->PHYRegDef[RF90_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter; priv->PHYRegDef[RF90_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1; priv->PHYRegDef[RF90_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1; priv->PHYRegDef[RF90_PATH_C].rfHSSIPara1 = rFPGA0_XC_HSSIParameter1; priv->PHYRegDef[RF90_PATH_D].rfHSSIPara1 = rFPGA0_XD_HSSIParameter1; priv->PHYRegDef[RF90_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; priv->PHYRegDef[RF90_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; priv->PHYRegDef[RF90_PATH_C].rfHSSIPara2 = rFPGA0_XC_HSSIParameter2; priv->PHYRegDef[RF90_PATH_D].rfHSSIPara2 = rFPGA0_XD_HSSIParameter2; priv->PHYRegDef[RF90_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; priv->PHYRegDef[RF90_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl; priv->PHYRegDef[RF90_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl; priv->PHYRegDef[RF90_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl; priv->PHYRegDef[RF90_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1; priv->PHYRegDef[RF90_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1; priv->PHYRegDef[RF90_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1; priv->PHYRegDef[RF90_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1; priv->PHYRegDef[RF90_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2; priv->PHYRegDef[RF90_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2; priv->PHYRegDef[RF90_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2; priv->PHYRegDef[RF90_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2; priv->PHYRegDef[RF90_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance; priv->PHYRegDef[RF90_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance; priv->PHYRegDef[RF90_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance; priv->PHYRegDef[RF90_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance; priv->PHYRegDef[RF90_PATH_A].rfRxAFE = rOFDM0_XARxAFE; priv->PHYRegDef[RF90_PATH_B].rfRxAFE = rOFDM0_XBRxAFE; priv->PHYRegDef[RF90_PATH_C].rfRxAFE = rOFDM0_XCRxAFE; priv->PHYRegDef[RF90_PATH_D].rfRxAFE = rOFDM0_XDRxAFE; priv->PHYRegDef[RF90_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance; priv->PHYRegDef[RF90_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance; priv->PHYRegDef[RF90_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance; priv->PHYRegDef[RF90_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance; priv->PHYRegDef[RF90_PATH_A].rfTxAFE = rOFDM0_XATxAFE; priv->PHYRegDef[RF90_PATH_B].rfTxAFE = rOFDM0_XBTxAFE; priv->PHYRegDef[RF90_PATH_C].rfTxAFE = rOFDM0_XCTxAFE; priv->PHYRegDef[RF90_PATH_D].rfTxAFE = rOFDM0_XDTxAFE; priv->PHYRegDef[RF90_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack; priv->PHYRegDef[RF90_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack; priv->PHYRegDef[RF90_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack; priv->PHYRegDef[RF90_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack; } bool rtl92e_check_bb_and_rf(struct net_device *dev, enum hw90_block CheckBlock, enum rf90_radio_path eRFPath) { bool ret = true; u32 i, CheckTimes = 4, dwRegRead = 0; u32 WriteAddr[4]; u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f}; WriteAddr[HW90_BLOCK_MAC] = 0x100; WriteAddr[HW90_BLOCK_PHY0] = 0x900; WriteAddr[HW90_BLOCK_PHY1] = 0x800; WriteAddr[HW90_BLOCK_RF] = 0x3; if (CheckBlock == HW90_BLOCK_MAC) { netdev_warn(dev, "%s(): No checks available for MAC block.\n", __func__); return ret; } for (i = 0; i < CheckTimes; i++) { switch (CheckBlock) { case HW90_BLOCK_PHY0: case HW90_BLOCK_PHY1: rtl92e_writel(dev, WriteAddr[CheckBlock], WriteData[i]); dwRegRead = rtl92e_readl(dev, WriteAddr[CheckBlock]); break; case HW90_BLOCK_RF: WriteData[i] &= 0xfff; rtl92e_set_rf_reg(dev, eRFPath, WriteAddr[HW90_BLOCK_RF], bMask12Bits, WriteData[i]); mdelay(10); dwRegRead = rtl92e_get_rf_reg(dev, eRFPath, WriteAddr[HW90_BLOCK_RF], bMaskDWord); mdelay(10); break; default: ret = false; break; } if (dwRegRead != WriteData[i]) { netdev_warn(dev, "%s(): Check failed.\n", __func__); ret = false; break; } } return ret; } static bool _rtl92e_bb_config_para_file(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); bool rtStatus = true; u8 bRegValue = 0, eCheckItem = 0; u32 dwRegValue = 0; bRegValue = rtl92e_readb(dev, BB_GLOBAL_RESET); rtl92e_writeb(dev, BB_GLOBAL_RESET, (bRegValue|BB_GLOBAL_RESET_BIT)); dwRegValue = rtl92e_readl(dev, CPU_GEN); rtl92e_writel(dev, CPU_GEN, (dwRegValue&(~CPU_GEN_BB_RST))); for (eCheckItem = (enum hw90_block)HW90_BLOCK_PHY0; eCheckItem <= HW90_BLOCK_PHY1; eCheckItem++) { rtStatus = rtl92e_check_bb_and_rf(dev, (enum hw90_block)eCheckItem, (enum rf90_radio_path)0); if (!rtStatus) { return rtStatus; } } rtl92e_set_bb_reg(dev, rFPGA0_RFMOD, bCCKEn|bOFDMEn, 0x0); _rtl92e_phy_config_bb(dev, BaseBand_Config_PHY_REG); dwRegValue = rtl92e_readl(dev, CPU_GEN); rtl92e_writel(dev, CPU_GEN, (dwRegValue|CPU_GEN_BB_RST)); _rtl92e_phy_config_bb(dev, BaseBand_Config_AGC_TAB); if (priv->IC_Cut > VERSION_8190_BD) { if (priv->rf_type == RF_2T4R) dwRegValue = priv->AntennaTxPwDiff[2]<<8 | priv->AntennaTxPwDiff[1]<<4 | priv->AntennaTxPwDiff[0]; else dwRegValue = 0x0; rtl92e_set_bb_reg(dev, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC|bXDTxAGC), dwRegValue); dwRegValue = priv->CrystalCap; rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, bXtalCap92x, dwRegValue); } return rtStatus; } bool rtl92e_config_bb(struct net_device *dev) { _rtl92e_init_bb_rf_reg_def(dev); return _rtl92e_bb_config_para_file(dev); } void rtl92e_get_tx_power(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); priv->MCSTxPowerLevelOriginalOffset[0] = rtl92e_readl(dev, rTxAGC_Rate18_06); priv->MCSTxPowerLevelOriginalOffset[1] = rtl92e_readl(dev, rTxAGC_Rate54_24); priv->MCSTxPowerLevelOriginalOffset[2] = rtl92e_readl(dev, rTxAGC_Mcs03_Mcs00); priv->MCSTxPowerLevelOriginalOffset[3] = rtl92e_readl(dev, rTxAGC_Mcs07_Mcs04); priv->MCSTxPowerLevelOriginalOffset[4] = rtl92e_readl(dev, rTxAGC_Mcs11_Mcs08); priv->MCSTxPowerLevelOriginalOffset[5] = rtl92e_readl(dev, rTxAGC_Mcs15_Mcs12); priv->DefaultInitialGain[0] = rtl92e_readb(dev, rOFDM0_XAAGCCore1); priv->DefaultInitialGain[1] = rtl92e_readb(dev, rOFDM0_XBAGCCore1); priv->DefaultInitialGain[2] = rtl92e_readb(dev, rOFDM0_XCAGCCore1); priv->DefaultInitialGain[3] = rtl92e_readb(dev, rOFDM0_XDAGCCore1); priv->framesync = rtl92e_readb(dev, rOFDM0_RxDetector3); priv->framesyncC34 = rtl92e_readl(dev, rOFDM0_RxDetector2); priv->SifsTime = rtl92e_readw(dev, SIFS); } void rtl92e_set_tx_power(struct net_device *dev, u8 channel) { struct r8192_priv *priv = rtllib_priv(dev); u8 powerlevel = 0, powerlevelOFDM24G = 0; s8 ant_pwr_diff; u32 u4RegValue; if (priv->epromtype == EEPROM_93C46) { powerlevel = priv->TxPowerLevelCCK[channel-1]; powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1]; } else if (priv->epromtype == EEPROM_93C56) { if (priv->rf_type == RF_1T2R) { powerlevel = priv->TxPowerLevelCCK_C[channel-1]; powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_C[channel-1]; } else if (priv->rf_type == RF_2T4R) { powerlevel = priv->TxPowerLevelCCK_A[channel-1]; powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_A[channel-1]; ant_pwr_diff = priv->TxPowerLevelOFDM24G_C[channel-1] - priv->TxPowerLevelOFDM24G_A[channel-1]; priv->RF_C_TxPwDiff = ant_pwr_diff; ant_pwr_diff &= 0xf; priv->AntennaTxPwDiff[2] = 0; priv->AntennaTxPwDiff[1] = (u8)(ant_pwr_diff); priv->AntennaTxPwDiff[0] = 0; u4RegValue = priv->AntennaTxPwDiff[2]<<8 | priv->AntennaTxPwDiff[1]<<4 | priv->AntennaTxPwDiff[0]; rtl92e_set_bb_reg(dev, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC|bXDTxAGC), u4RegValue); } } switch (priv->rf_chip) { case RF_8225: break; case RF_8256: rtl92e_set_cck_tx_power(dev, powerlevel); rtl92e_set_ofdm_tx_power(dev, powerlevelOFDM24G); break; case RF_8258: break; default: netdev_err(dev, "Invalid RF Chip ID.\n"); break; } } bool rtl92e_config_phy(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); bool rtStatus = true; switch (priv->rf_chip) { case RF_8225: break; case RF_8256: rtStatus = rtl92e_config_rf(dev); break; case RF_8258: break; case RF_PSEUDO_11N: break; default: netdev_err(dev, "Invalid RF Chip ID.\n"); break; } return rtStatus; } u8 rtl92e_config_rf_path(struct net_device *dev, enum rf90_radio_path eRFPath) { int i; switch (eRFPath) { case RF90_PATH_A: for (i = 0; i < RadioA_ArrayLength; i += 2) { if (Rtl819XRadioA_Array[i] == 0xfe) { msleep(100); continue; } rtl92e_set_rf_reg(dev, eRFPath, Rtl819XRadioA_Array[i], bMask12Bits, Rtl819XRadioA_Array[i+1]); } break; case RF90_PATH_B: for (i = 0; i < RadioB_ArrayLength; i += 2) { if (Rtl819XRadioB_Array[i] == 0xfe) { msleep(100); continue; } rtl92e_set_rf_reg(dev, eRFPath, Rtl819XRadioB_Array[i], bMask12Bits, Rtl819XRadioB_Array[i+1]); } break; case RF90_PATH_C: for (i = 0; i < RadioC_ArrayLength; i += 2) { if (Rtl819XRadioC_Array[i] == 0xfe) { msleep(100); continue; } rtl92e_set_rf_reg(dev, eRFPath, Rtl819XRadioC_Array[i], bMask12Bits, Rtl819XRadioC_Array[i+1]); } break; case RF90_PATH_D: for (i = 0; i < RadioD_ArrayLength; i += 2) { if (Rtl819XRadioD_Array[i] == 0xfe) { msleep(100); continue; } rtl92e_set_rf_reg(dev, eRFPath, Rtl819XRadioD_Array[i], bMask12Bits, Rtl819XRadioD_Array[i+1]); } break; default: break; } return 0; } static void _rtl92e_set_tx_power_level(struct net_device *dev, u8 channel) { struct r8192_priv *priv = rtllib_priv(dev); u8 powerlevel = priv->TxPowerLevelCCK[channel-1]; u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1]; switch (priv->rf_chip) { case RF_8225: break; case RF_8256: rtl92e_set_cck_tx_power(dev, powerlevel); rtl92e_set_ofdm_tx_power(dev, powerlevelOFDM24G); break; case RF_8258: break; default: netdev_warn(dev, "%s(): Invalid RF Chip ID\n", __func__); break; } } static u8 _rtl92e_phy_set_sw_chnl_cmd_array(struct net_device *dev, struct sw_chnl_cmd *CmdTable, u32 CmdTableIdx, u32 CmdTableSz, enum sw_chnl_cmd_id CmdID, u32 Para1, u32 Para2, u32 msDelay) { struct sw_chnl_cmd *pCmd; if (CmdTable == NULL) { netdev_err(dev, "%s(): CmdTable cannot be NULL.\n", __func__); return false; } if (CmdTableIdx >= CmdTableSz) { netdev_err(dev, "%s(): Invalid index requested.\n", __func__); return false; } pCmd = CmdTable + CmdTableIdx; pCmd->CmdID = CmdID; pCmd->Para1 = Para1; pCmd->Para2 = Para2; pCmd->msDelay = msDelay; return true; } static u8 _rtl92e_phy_switch_channel_step(struct net_device *dev, u8 channel, u8 *stage, u8 *step, u32 *delay) { struct r8192_priv *priv = rtllib_priv(dev); struct rtllib_device *ieee = priv->rtllib; u32 PreCommonCmdCnt; u32 PostCommonCmdCnt; u32 RfDependCmdCnt; struct sw_chnl_cmd *CurrentCmd = NULL; u8 eRFPath; if (!rtllib_legal_channel(priv->rtllib, channel)) { netdev_err(dev, "Invalid channel requested: %d\n", channel); return true; } { PreCommonCmdCnt = 0; _rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT, CmdID_SetTxPowerLevel, 0, 0, 0); _rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT, CmdID_End, 0, 0, 0); PostCommonCmdCnt = 0; _rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->PostCommonCmd, PostCommonCmdCnt++, MAX_POSTCMD_CNT, CmdID_End, 0, 0, 0); RfDependCmdCnt = 0; switch (priv->rf_chip) { case RF_8225: if (!(channel >= 1 && channel <= 14)) { netdev_err(dev, "Invalid channel requested for 8225: %d\n", channel); return false; } _rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_RF_WriteReg, rZebra1_Channel, RF_CHANNEL_TABLE_ZEBRA[channel], 10); _rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_End, 0, 0, 0); break; case RF_8256: if (!(channel >= 1 && channel <= 14)) { netdev_err(dev, "Invalid channel requested for 8256: %d\n", channel); return false; } _rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_RF_WriteReg, rZebra1_Channel, channel, 10); _rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_End, 0, 0, 0); break; case RF_8258: break; default: netdev_warn(dev, "Unknown RF Chip ID\n"); return false; } do { switch (*stage) { case 0: CurrentCmd = &ieee->PreCommonCmd[*step]; break; case 1: CurrentCmd = &ieee->RfDependCmd[*step]; break; case 2: CurrentCmd = &ieee->PostCommonCmd[*step]; break; } if (CurrentCmd && CurrentCmd->CmdID == CmdID_End) { if ((*stage) == 2) return true; (*stage)++; (*step) = 0; continue; } if (!CurrentCmd) continue; switch (CurrentCmd->CmdID) { case CmdID_SetTxPowerLevel: if (priv->IC_Cut > VERSION_8190_BD) _rtl92e_set_tx_power_level(dev, channel); break; case CmdID_WritePortUlong: rtl92e_writel(dev, CurrentCmd->Para1, CurrentCmd->Para2); break; case CmdID_WritePortUshort: rtl92e_writew(dev, CurrentCmd->Para1, CurrentCmd->Para2); break; case CmdID_WritePortUchar: rtl92e_writeb(dev, CurrentCmd->Para1, CurrentCmd->Para2); break; case CmdID_RF_WriteReg: for (eRFPath = 0; eRFPath < priv->NumTotalRFPath; eRFPath++) rtl92e_set_rf_reg(dev, (enum rf90_radio_path)eRFPath, CurrentCmd->Para1, bMask12Bits, CurrentCmd->Para2<<7); break; default: break; } break; } while (true); } /*for (Number of RF paths)*/ (*delay) = CurrentCmd->msDelay; (*step)++; return false; } static void _rtl92e_phy_switch_channel(struct net_device *dev, u8 channel) { struct r8192_priv *priv = rtllib_priv(dev); u32 delay = 0; while (!_rtl92e_phy_switch_channel_step(dev, channel, &priv->SwChnlStage, &priv->SwChnlStep, &delay)) { if (delay > 0) msleep(delay); if (!priv->up) break; } } static void _rtl92e_phy_switch_channel_work_item(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); _rtl92e_phy_switch_channel(dev, priv->chan); } u8 rtl92e_set_channel(struct net_device *dev, u8 channel) { struct r8192_priv *priv = rtllib_priv(dev); if (!priv->up) { netdev_err(dev, "%s(): Driver is not initialized\n", __func__); return false; } if (priv->SwChnlInProgress) return false; switch (priv->rtllib->mode) { case WIRELESS_MODE_A: case WIRELESS_MODE_N_5G: if (channel <= 14) { netdev_warn(dev, "Channel %d not available in 802.11a.\n", channel); return false; } break; case WIRELESS_MODE_B: if (channel > 14) { netdev_warn(dev, "Channel %d not available in 802.11b.\n", channel); return false; } break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: if (channel > 14) { netdev_warn(dev, "Channel %d not available in 802.11g.\n", channel); return false; } break; } priv->SwChnlInProgress = true; if (channel == 0) channel = 1; priv->chan = channel; priv->SwChnlStage = 0; priv->SwChnlStep = 0; if (priv->up) _rtl92e_phy_switch_channel_work_item(dev); priv->SwChnlInProgress = false; return true; } static void _rtl92e_cck_tx_power_track_bw_switch_tssi(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: priv->CCKPresentAttentuation = priv->CCKPresentAttentuation_20Mdefault + priv->CCKPresentAttentuation_difference; if (priv->CCKPresentAttentuation > (CCKTxBBGainTableLength-1)) priv->CCKPresentAttentuation = CCKTxBBGainTableLength-1; if (priv->CCKPresentAttentuation < 0) priv->CCKPresentAttentuation = 0; if (priv->rtllib->current_network.channel == 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = true; rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else if (priv->rtllib->current_network.channel != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = false; rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else { rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } break; case HT_CHANNEL_WIDTH_20_40: priv->CCKPresentAttentuation = priv->CCKPresentAttentuation_40Mdefault + priv->CCKPresentAttentuation_difference; if (priv->CCKPresentAttentuation > (CCKTxBBGainTableLength - 1)) priv->CCKPresentAttentuation = CCKTxBBGainTableLength-1; if (priv->CCKPresentAttentuation < 0) priv->CCKPresentAttentuation = 0; if (priv->rtllib->current_network.channel == 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = true; rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else if (priv->rtllib->current_network.channel != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = false; rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else { rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } break; } } static void _rtl92e_cck_tx_power_track_bw_switch_thermal(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); if (priv->rtllib->current_network.channel == 14 && !priv->bcck_in_ch14) priv->bcck_in_ch14 = true; else if (priv->rtllib->current_network.channel != 14 && priv->bcck_in_ch14) priv->bcck_in_ch14 = false; switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: if (priv->Record_CCK_20Mindex == 0) priv->Record_CCK_20Mindex = 6; priv->CCK_index = priv->Record_CCK_20Mindex; break; case HT_CHANNEL_WIDTH_20_40: priv->CCK_index = priv->Record_CCK_40Mindex; break; } rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } static void _rtl92e_cck_tx_power_track_bw_switch(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); if (priv->IC_Cut >= IC_VersionCut_D) _rtl92e_cck_tx_power_track_bw_switch_tssi(dev); else _rtl92e_cck_tx_power_track_bw_switch_thermal(dev); } static void _rtl92e_set_bw_mode_work_item(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); u8 regBwOpMode; if (priv->rf_chip == RF_PSEUDO_11N) { priv->SetBWModeInProgress = false; return; } if (!priv->up) { netdev_err(dev, "%s(): Driver is not initialized\n", __func__); return; } regBwOpMode = rtl92e_readb(dev, BW_OPMODE); switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: regBwOpMode |= BW_OPMODE_20MHZ; rtl92e_writeb(dev, BW_OPMODE, regBwOpMode); break; case HT_CHANNEL_WIDTH_20_40: regBwOpMode &= ~BW_OPMODE_20MHZ; rtl92e_writeb(dev, BW_OPMODE, regBwOpMode); break; default: netdev_err(dev, "%s(): unknown Bandwidth: %#X\n", __func__, priv->CurrentChannelBW); break; } switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: rtl92e_set_bb_reg(dev, rFPGA0_RFMOD, bRFMOD, 0x0); rtl92e_set_bb_reg(dev, rFPGA1_RFMOD, bRFMOD, 0x0); if (!priv->btxpower_tracking) { rtl92e_writel(dev, rCCK0_TxFilter1, 0x1a1b0000); rtl92e_writel(dev, rCCK0_TxFilter2, 0x090e1317); rtl92e_writel(dev, rCCK0_DebugPort, 0x00000204); } else { _rtl92e_cck_tx_power_track_bw_switch(dev); } rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x00100000, 1); break; case HT_CHANNEL_WIDTH_20_40: rtl92e_set_bb_reg(dev, rFPGA0_RFMOD, bRFMOD, 0x1); rtl92e_set_bb_reg(dev, rFPGA1_RFMOD, bRFMOD, 0x1); if (!priv->btxpower_tracking) { rtl92e_writel(dev, rCCK0_TxFilter1, 0x35360000); rtl92e_writel(dev, rCCK0_TxFilter2, 0x121c252e); rtl92e_writel(dev, rCCK0_DebugPort, 0x00000409); } else { _rtl92e_cck_tx_power_track_bw_switch(dev); } rtl92e_set_bb_reg(dev, rCCK0_System, bCCKSideBand, (priv->nCur40MhzPrimeSC>>1)); rtl92e_set_bb_reg(dev, rOFDM1_LSTF, 0xC00, priv->nCur40MhzPrimeSC); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x00100000, 0); break; default: netdev_err(dev, "%s(): unknown Bandwidth: %#X\n", __func__, priv->CurrentChannelBW); break; } switch (priv->rf_chip) { case RF_8225: break; case RF_8256: rtl92e_set_bandwidth(dev, priv->CurrentChannelBW); break; case RF_8258: break; case RF_PSEUDO_11N: break; default: netdev_info(dev, "%s(): Unknown RFChipID: %d\n", __func__, priv->rf_chip); break; } atomic_dec(&(priv->rtllib->atm_swbw)); priv->SetBWModeInProgress = false; } void rtl92e_set_bw_mode(struct net_device *dev, enum ht_channel_width bandwidth, enum ht_extchnl_offset Offset) { struct r8192_priv *priv = rtllib_priv(dev); if (priv->SetBWModeInProgress) return; atomic_inc(&(priv->rtllib->atm_swbw)); priv->SetBWModeInProgress = true; priv->CurrentChannelBW = bandwidth; if (Offset == HT_EXTCHNL_OFFSET_LOWER) priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER; else if (Offset == HT_EXTCHNL_OFFSET_UPPER) priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER; else priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE; _rtl92e_set_bw_mode_work_item(dev); } void rtl92e_init_gain(struct net_device *dev, u8 Operation) { #define SCAN_RX_INITIAL_GAIN 0x17 #define POWER_DETECTION_TH 0x08 struct r8192_priv *priv = rtllib_priv(dev); u32 BitMask; u8 initial_gain; if (priv->up) { switch (Operation) { case IG_Backup: initial_gain = SCAN_RX_INITIAL_GAIN; BitMask = bMaskByte0; if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) rtl92e_set_bb_reg(dev, UFWP, bMaskByte1, 0x8); priv->initgain_backup.xaagccore1 = rtl92e_get_bb_reg(dev, rOFDM0_XAAGCCore1, BitMask); priv->initgain_backup.xbagccore1 = rtl92e_get_bb_reg(dev, rOFDM0_XBAGCCore1, BitMask); priv->initgain_backup.xcagccore1 = rtl92e_get_bb_reg(dev, rOFDM0_XCAGCCore1, BitMask); priv->initgain_backup.xdagccore1 = rtl92e_get_bb_reg(dev, rOFDM0_XDAGCCore1, BitMask); BitMask = bMaskByte2; priv->initgain_backup.cca = (u8)rtl92e_get_bb_reg(dev, rCCK0_CCA, BitMask); rtl92e_writeb(dev, rOFDM0_XAAGCCore1, initial_gain); rtl92e_writeb(dev, rOFDM0_XBAGCCore1, initial_gain); rtl92e_writeb(dev, rOFDM0_XCAGCCore1, initial_gain); rtl92e_writeb(dev, rOFDM0_XDAGCCore1, initial_gain); rtl92e_writeb(dev, 0xa0a, POWER_DETECTION_TH); break; case IG_Restore: BitMask = 0x7f; if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) rtl92e_set_bb_reg(dev, UFWP, bMaskByte1, 0x8); rtl92e_set_bb_reg(dev, rOFDM0_XAAGCCore1, BitMask, (u32)priv->initgain_backup.xaagccore1); rtl92e_set_bb_reg(dev, rOFDM0_XBAGCCore1, BitMask, (u32)priv->initgain_backup.xbagccore1); rtl92e_set_bb_reg(dev, rOFDM0_XCAGCCore1, BitMask, (u32)priv->initgain_backup.xcagccore1); rtl92e_set_bb_reg(dev, rOFDM0_XDAGCCore1, BitMask, (u32)priv->initgain_backup.xdagccore1); BitMask = bMaskByte2; rtl92e_set_bb_reg(dev, rCCK0_CCA, BitMask, (u32)priv->initgain_backup.cca); rtl92e_set_tx_power(dev, priv->rtllib->current_network.channel); if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) rtl92e_set_bb_reg(dev, UFWP, bMaskByte1, 0x1); break; } } } void rtl92e_set_rf_off(struct net_device *dev) { rtl92e_set_bb_reg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x0); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x18, 0x0); rtl92e_set_bb_reg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0); rtl92e_set_bb_reg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x60, 0x0); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x4, 0x0); rtl92e_writeb(dev, ANAPAR_FOR_8192PciE, 0x07); } static bool _rtl92e_set_rf_power_state(struct net_device *dev, enum rt_rf_power_state rf_power_state) { struct r8192_priv *priv = rtllib_priv(dev); struct rt_pwr_save_ctrl *pPSC = (struct rt_pwr_save_ctrl *) (&(priv->rtllib->PowerSaveControl)); bool bResult = true; u8 i = 0, QueueID = 0; struct rtl8192_tx_ring *ring = NULL; if (priv->SetRFPowerStateInProgress) return false; priv->SetRFPowerStateInProgress = true; switch (priv->rf_chip) { case RF_8256: switch (rf_power_state) { case rf_on: if ((priv->rtllib->rf_power_state == rf_off) && RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC)) { bool rtstatus; u32 InitilizeCount = 3; do { InitilizeCount--; priv->RegRfOff = false; rtstatus = rtl92e_enable_nic(dev); } while (!rtstatus && (InitilizeCount > 0)); if (!rtstatus) { netdev_err(dev, "%s(): Failed to initialize Adapter.\n", __func__); priv->SetRFPowerStateInProgress = false; return false; } RT_CLEAR_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC); } else { rtl92e_writeb(dev, ANAPAR, 0x37); mdelay(1); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x4, 0x1); priv->bHwRfOffAction = 0; rtl92e_set_bb_reg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x18, 0x3); rtl92e_set_bb_reg(dev, rOFDM0_TRxPathEnable, 0x3, 0x3); rtl92e_set_bb_reg(dev, rOFDM1_TRxPathEnable, 0x3, 0x3); rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x60, 0x3); } break; case rf_sleep: if (priv->rtllib->rf_power_state == rf_off) break; for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) { ring = &priv->tx_ring[QueueID]; if (skb_queue_len(&ring->queue) == 0) { QueueID++; continue; } else { udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_9x) { break; } } rtl92e_set_rf_off(dev); break; case rf_off: for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) { ring = &priv->tx_ring[QueueID]; if (skb_queue_len(&ring->queue) == 0) { QueueID++; continue; } else { udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_9x) { break; } } if (pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC && !RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC)) { rtl92e_disable_nic(dev); RT_SET_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC); } else if (!(pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC)) { rtl92e_set_rf_off(dev); } break; default: bResult = false; netdev_warn(dev, "%s(): Unknown state requested: 0x%X.\n", __func__, rf_power_state); break; } break; default: netdev_warn(dev, "%s(): Unknown RF type\n", __func__); break; } if (bResult) { priv->rtllib->rf_power_state = rf_power_state; switch (priv->rf_chip) { case RF_8256: break; default: netdev_warn(dev, "%s(): Unknown RF type\n", __func__); break; } } priv->SetRFPowerStateInProgress = false; return bResult; } bool rtl92e_set_rf_power_state(struct net_device *dev, enum rt_rf_power_state rf_power_state) { struct r8192_priv *priv = rtllib_priv(dev); bool bResult = false; if (rf_power_state == priv->rtllib->rf_power_state && priv->bHwRfOffAction == 0) { return bResult; } bResult = _rtl92e_set_rf_power_state(dev, rf_power_state); return bResult; } void rtl92e_scan_op_backup(struct net_device *dev, u8 Operation) { struct r8192_priv *priv = rtllib_priv(dev); if (priv->up) { switch (Operation) { case SCAN_OPT_BACKUP: priv->rtllib->InitialGainHandler(dev, IG_Backup); break; case SCAN_OPT_RESTORE: priv->rtllib->InitialGainHandler(dev, IG_Restore); break; } } }