/****************************************************************************** * Copyright(c) 2008 - 2010 Realtek Corporation. All rights reserved. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae ******************************************************************************/ #include "rtllib.h" #include "rtl819x_HT.h" u8 MCS_FILTER_ALL[16] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; u8 MCS_FILTER_1SS[16] = { 0xff, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} ; u16 MCS_DATA_RATE[2][2][77] = { {{13, 26, 39, 52, 78, 104, 117, 130, 26, 52, 78, 104, 156, 208, 234, 260, 39, 78, 117, 234, 312, 351, 390, 52, 104, 156, 208, 312, 416, 468, 520, 0, 78, 104, 130, 117, 156, 195, 104, 130, 130, 156, 182, 182, 208, 156, 195, 195, 234, 273, 273, 312, 130, 156, 181, 156, 181, 208, 234, 208, 234, 260, 260, 286, 195, 234, 273, 234, 273, 312, 351, 312, 351, 390, 390, 429} , {14, 29, 43, 58, 87, 116, 130, 144, 29, 58, 87, 116, 173, 231, 260, 289, 43, 87, 130, 173, 260, 347, 390, 433, 58, 116, 173, 231, 347, 462, 520, 578, 0, 87, 116, 144, 130, 173, 217, 116, 144, 144, 173, 202, 202, 231, 173, 217, 217, 260, 303, 303, 347, 144, 173, 202, 173, 202, 231, 260, 231, 260, 289, 289, 318, 217, 260, 303, 260, 303, 347, 390, 347, 390, 433, 433, 477} } , {{27, 54, 81, 108, 162, 216, 243, 270, 54, 108, 162, 216, 324, 432, 486, 540, 81, 162, 243, 324, 486, 648, 729, 810, 108, 216, 324, 432, 648, 864, 972, 1080, 12, 162, 216, 270, 243, 324, 405, 216, 270, 270, 324, 378, 378, 432, 324, 405, 405, 486, 567, 567, 648, 270, 324, 378, 324, 378, 432, 486, 432, 486, 540, 540, 594, 405, 486, 567, 486, 567, 648, 729, 648, 729, 810, 810, 891}, {30, 60, 90, 120, 180, 240, 270, 300, 60, 120, 180, 240, 360, 480, 540, 600, 90, 180, 270, 360, 540, 720, 810, 900, 120, 240, 360, 480, 720, 960, 1080, 1200, 13, 180, 240, 300, 270, 360, 450, 240, 300, 300, 360, 420, 420, 480, 360, 450, 450, 540, 630, 630, 720, 300, 360, 420, 360, 420, 480, 540, 480, 540, 600, 600, 660, 450, 540, 630, 540, 630, 720, 810, 720, 810, 900, 900, 990} } }; static u8 UNKNOWN_BORADCOM[3] = {0x00, 0x14, 0xbf}; static u8 LINKSYSWRT330_LINKSYSWRT300_BROADCOM[3] = {0x00, 0x1a, 0x70}; static u8 LINKSYSWRT350_LINKSYSWRT150_BROADCOM[3] = {0x00, 0x1d, 0x7e}; static u8 BELKINF5D8233V1_RALINK[3] = {0x00, 0x17, 0x3f}; static u8 BELKINF5D82334V3_RALINK[3] = {0x00, 0x1c, 0xdf}; static u8 PCI_RALINK[3] = {0x00, 0x90, 0xcc}; static u8 EDIMAX_RALINK[3] = {0x00, 0x0e, 0x2e}; static u8 AIRLINK_RALINK[3] = {0x00, 0x18, 0x02}; static u8 DLINK_ATHEROS_1[3] = {0x00, 0x1c, 0xf0}; static u8 DLINK_ATHEROS_2[3] = {0x00, 0x21, 0x91}; static u8 CISCO_BROADCOM[3] = {0x00, 0x17, 0x94}; static u8 LINKSYS_MARVELL_4400N[3] = {0x00, 0x14, 0xa4}; void HTUpdateDefaultSetting(struct rtllib_device *ieee) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; pHTInfo->bAcceptAddbaReq = 1; pHTInfo->bRegShortGI20MHz = 1; pHTInfo->bRegShortGI40MHz = 1; pHTInfo->bRegBW40MHz = 1; if (pHTInfo->bRegBW40MHz) pHTInfo->bRegSuppCCK = 1; else pHTInfo->bRegSuppCCK = true; pHTInfo->nAMSDU_MaxSize = 7935UL; pHTInfo->bAMSDU_Support = 0; pHTInfo->bAMPDUEnable = 1; pHTInfo->AMPDU_Factor = 2; pHTInfo->MPDU_Density = 0; pHTInfo->SelfMimoPs = 3; if (pHTInfo->SelfMimoPs == 2) pHTInfo->SelfMimoPs = 3; ieee->bTxDisableRateFallBack = 0; ieee->bTxUseDriverAssingedRate = 0; ieee->bTxEnableFwCalcDur = 1; pHTInfo->bRegRT2RTAggregation = 1; pHTInfo->bRegRxReorderEnable = 1; pHTInfo->RxReorderWinSize = 64; pHTInfo->RxReorderPendingTime = 30; } void HTDebugHTCapability(u8 *CapIE, u8 *TitleString) { static u8 EWC11NHTCap[] = {0x00, 0x90, 0x4c, 0x33}; struct ht_capab_ele *pCapELE; if (!memcmp(CapIE, EWC11NHTCap, sizeof(EWC11NHTCap))) { RTLLIB_DEBUG(RTLLIB_DL_HT, "EWC IE in %s()\n", __func__); pCapELE = (struct ht_capab_ele *)(&CapIE[4]); } else pCapELE = (struct ht_capab_ele *)(&CapIE[0]); RTLLIB_DEBUG(RTLLIB_DL_HT, ". Called by %s\n", TitleString); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tSupported Channel Width = %s\n", (pCapELE->ChlWidth) ? "20MHz" : "20/40MHz"); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tSupport Short GI for 20M = %s\n", (pCapELE->ShortGI20Mhz) ? "YES" : "NO"); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tSupport Short GI for 40M = %s\n", (pCapELE->ShortGI40Mhz) ? "YES" : "NO"); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tSupport TX STBC = %s\n", (pCapELE->TxSTBC) ? "YES" : "NO"); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tMax AMSDU Size = %s\n", (pCapELE->MaxAMSDUSize) ? "3839" : "7935"); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tSupport CCK in 20/40 mode = %s\n", (pCapELE->DssCCk) ? "YES" : "NO"); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tMax AMPDU Factor = %d\n", pCapELE->MaxRxAMPDUFactor); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tMPDU Density = %d\n", pCapELE->MPDUDensity); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tMCS Rate Set = [%x][%x][%x][%x][%x]\n", pCapELE->MCS[0], pCapELE->MCS[1], pCapELE->MCS[2], pCapELE->MCS[3], pCapELE->MCS[4]); return; } void HTDebugHTInfo(u8 *InfoIE, u8 *TitleString) { static u8 EWC11NHTInfo[] = {0x00, 0x90, 0x4c, 0x34}; struct ht_info_ele *pHTInfoEle; if (!memcmp(InfoIE, EWC11NHTInfo, sizeof(EWC11NHTInfo))) { RTLLIB_DEBUG(RTLLIB_DL_HT, "EWC IE in %s()\n", __func__); pHTInfoEle = (struct ht_info_ele *)(&InfoIE[4]); } else pHTInfoEle = (struct ht_info_ele *)(&InfoIE[0]); RTLLIB_DEBUG(RTLLIB_DL_HT, ". " "Called by %s\n", TitleString); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tPrimary channel = %d\n", pHTInfoEle->ControlChl); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tSenondary channel ="); switch (pHTInfoEle->ExtChlOffset) { case 0: RTLLIB_DEBUG(RTLLIB_DL_HT, "Not Present\n"); break; case 1: RTLLIB_DEBUG(RTLLIB_DL_HT, "Upper channel\n"); break; case 2: RTLLIB_DEBUG(RTLLIB_DL_HT, "Reserved. Eooro!!!\n"); break; case 3: RTLLIB_DEBUG(RTLLIB_DL_HT, "Lower Channel\n"); break; } RTLLIB_DEBUG(RTLLIB_DL_HT, "\tRecommended channel width = %s\n", (pHTInfoEle->RecommemdedTxWidth) ? "20Mhz" : "40Mhz"); RTLLIB_DEBUG(RTLLIB_DL_HT, "\tOperation mode for protection = "); switch (pHTInfoEle->OptMode) { case 0: RTLLIB_DEBUG(RTLLIB_DL_HT, "No Protection\n"); break; case 1: RTLLIB_DEBUG(RTLLIB_DL_HT, "HT non-member protection mode\n"); break; case 2: RTLLIB_DEBUG(RTLLIB_DL_HT, "Suggest to open protection\n"); break; case 3: RTLLIB_DEBUG(RTLLIB_DL_HT, "HT mixed mode\n"); break; } RTLLIB_DEBUG(RTLLIB_DL_HT, "\tBasic MCS Rate Set = [%x][%x][%x][%x]" "[%x]\n", pHTInfoEle->BasicMSC[0], pHTInfoEle->BasicMSC[1], pHTInfoEle->BasicMSC[2], pHTInfoEle->BasicMSC[3], pHTInfoEle->BasicMSC[4]); return; } static bool IsHTHalfNmode40Bandwidth(struct rtllib_device *ieee) { bool retValue = false; struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; if (pHTInfo->bCurrentHTSupport == false) retValue = false; else if (pHTInfo->bRegBW40MHz == false) retValue = false; else if (!ieee->GetHalfNmodeSupportByAPsHandler(ieee->dev)) retValue = false; else if (((struct ht_capab_ele *)(pHTInfo->PeerHTCapBuf))->ChlWidth) retValue = true; else retValue = false; return retValue; } static bool IsHTHalfNmodeSGI(struct rtllib_device *ieee, bool is40MHz) { bool retValue = false; struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; if (pHTInfo->bCurrentHTSupport == false) retValue = false; else if (!ieee->GetHalfNmodeSupportByAPsHandler(ieee->dev)) retValue = false; else if (is40MHz) { if (((struct ht_capab_ele *) (pHTInfo->PeerHTCapBuf))->ShortGI40Mhz) retValue = true; else retValue = false; } else { if (((struct ht_capab_ele *) (pHTInfo->PeerHTCapBuf))->ShortGI20Mhz) retValue = true; else retValue = false; } return retValue; } u16 HTHalfMcsToDataRate(struct rtllib_device *ieee, u8 nMcsRate) { u8 is40MHz; u8 isShortGI; is40MHz = (IsHTHalfNmode40Bandwidth(ieee)) ? 1 : 0; isShortGI = (IsHTHalfNmodeSGI(ieee, is40MHz)) ? 1 : 0; return MCS_DATA_RATE[is40MHz][isShortGI][(nMcsRate & 0x7f)]; } u16 HTMcsToDataRate(struct rtllib_device *ieee, u8 nMcsRate) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; u8 is40MHz = (pHTInfo->bCurBW40MHz) ? 1 : 0; u8 isShortGI = (pHTInfo->bCurBW40MHz) ? ((pHTInfo->bCurShortGI40MHz) ? 1 : 0) : ((pHTInfo->bCurShortGI20MHz) ? 1 : 0); return MCS_DATA_RATE[is40MHz][isShortGI][(nMcsRate & 0x7f)]; } u16 TxCountToDataRate(struct rtllib_device *ieee, u8 nDataRate) { u16 CCKOFDMRate[12] = {0x02, 0x04, 0x0b, 0x16, 0x0c, 0x12, 0x18, 0x24, 0x30, 0x48, 0x60, 0x6c}; u8 is40MHz = 0; u8 isShortGI = 0; if (nDataRate < 12) { return CCKOFDMRate[nDataRate]; } else { if (nDataRate >= 0x10 && nDataRate <= 0x1f) { is40MHz = 0; isShortGI = 0; } else if (nDataRate >= 0x20 && nDataRate <= 0x2f) { is40MHz = 1; isShortGI = 0; } else if (nDataRate >= 0x30 && nDataRate <= 0x3f) { is40MHz = 0; isShortGI = 1; } else if (nDataRate >= 0x40 && nDataRate <= 0x4f) { is40MHz = 1; isShortGI = 1; } return MCS_DATA_RATE[is40MHz][isShortGI][nDataRate&0xf]; } } bool IsHTHalfNmodeAPs(struct rtllib_device *ieee) { bool retValue = false; struct rtllib_network *net = &ieee->current_network; if ((memcmp(net->bssid, BELKINF5D8233V1_RALINK, 3) == 0) || (memcmp(net->bssid, BELKINF5D82334V3_RALINK, 3) == 0) || (memcmp(net->bssid, PCI_RALINK, 3) == 0) || (memcmp(net->bssid, EDIMAX_RALINK, 3) == 0) || (memcmp(net->bssid, AIRLINK_RALINK, 3) == 0) || (net->ralink_cap_exist)) retValue = true; else if (!memcmp(net->bssid, UNKNOWN_BORADCOM, 3) || !memcmp(net->bssid, LINKSYSWRT330_LINKSYSWRT300_BROADCOM, 3) || !memcmp(net->bssid, LINKSYSWRT350_LINKSYSWRT150_BROADCOM, 3) || (net->broadcom_cap_exist)) retValue = true; else if (net->bssht.bdRT2RTAggregation) retValue = true; else retValue = false; return retValue; } static void HTIOTPeerDetermine(struct rtllib_device *ieee) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; struct rtllib_network *net = &ieee->current_network; if (net->bssht.bdRT2RTAggregation) { pHTInfo->IOTPeer = HT_IOT_PEER_REALTEK; if (net->bssht.RT2RT_HT_Mode & RT_HT_CAP_USE_92SE) pHTInfo->IOTPeer = HT_IOT_PEER_REALTEK_92SE; if (net->bssht.RT2RT_HT_Mode & RT_HT_CAP_USE_SOFTAP) pHTInfo->IOTPeer = HT_IOT_PEER_92U_SOFTAP; } else if (net->broadcom_cap_exist) pHTInfo->IOTPeer = HT_IOT_PEER_BROADCOM; else if (!memcmp(net->bssid, UNKNOWN_BORADCOM, 3) || !memcmp(net->bssid, LINKSYSWRT330_LINKSYSWRT300_BROADCOM, 3) || !memcmp(net->bssid, LINKSYSWRT350_LINKSYSWRT150_BROADCOM, 3)) pHTInfo->IOTPeer = HT_IOT_PEER_BROADCOM; else if ((memcmp(net->bssid, BELKINF5D8233V1_RALINK, 3) == 0) || (memcmp(net->bssid, BELKINF5D82334V3_RALINK, 3) == 0) || (memcmp(net->bssid, PCI_RALINK, 3) == 0) || (memcmp(net->bssid, EDIMAX_RALINK, 3) == 0) || (memcmp(net->bssid, AIRLINK_RALINK, 3) == 0) || net->ralink_cap_exist) pHTInfo->IOTPeer = HT_IOT_PEER_RALINK; else if ((net->atheros_cap_exist) || (memcmp(net->bssid, DLINK_ATHEROS_1, 3) == 0) || (memcmp(net->bssid, DLINK_ATHEROS_2, 3) == 0)) pHTInfo->IOTPeer = HT_IOT_PEER_ATHEROS; else if ((memcmp(net->bssid, CISCO_BROADCOM, 3) == 0) || net->cisco_cap_exist) pHTInfo->IOTPeer = HT_IOT_PEER_CISCO; else if ((memcmp(net->bssid, LINKSYS_MARVELL_4400N, 3) == 0) || net->marvell_cap_exist) pHTInfo->IOTPeer = HT_IOT_PEER_MARVELL; else if (net->airgo_cap_exist) pHTInfo->IOTPeer = HT_IOT_PEER_AIRGO; else pHTInfo->IOTPeer = HT_IOT_PEER_UNKNOWN; RTLLIB_DEBUG(RTLLIB_DL_IOT, "Joseph debug!! IOTPEER: %x\n", pHTInfo->IOTPeer); } static u8 HTIOTActIsDisableMCS14(struct rtllib_device *ieee, u8 *PeerMacAddr) { return 0; } static bool HTIOTActIsDisableMCS15(struct rtllib_device *ieee) { bool retValue = false; return retValue; } static bool HTIOTActIsDisableMCSTwoSpatialStream(struct rtllib_device *ieee) { return false; } static u8 HTIOTActIsDisableEDCATurbo(struct rtllib_device *ieee, u8 *PeerMacAddr) { return false; } static u8 HTIOTActIsMgntUseCCK6M(struct rtllib_device *ieee, struct rtllib_network *network) { u8 retValue = 0; if (ieee->pHTInfo->IOTPeer == HT_IOT_PEER_BROADCOM) retValue = 1; return retValue; } static u8 HTIOTActIsCCDFsync(struct rtllib_device *ieee) { u8 retValue = 0; if (ieee->pHTInfo->IOTPeer == HT_IOT_PEER_BROADCOM) retValue = 1; return retValue; } static void HTIOTActDetermineRaFunc(struct rtllib_device *ieee, bool bPeerRx2ss) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; pHTInfo->IOTRaFunc &= HT_IOT_RAFUNC_DISABLE_ALL; if (pHTInfo->IOTPeer == HT_IOT_PEER_RALINK && !bPeerRx2ss) pHTInfo->IOTRaFunc |= HT_IOT_RAFUNC_PEER_1R; if (pHTInfo->IOTAction & HT_IOT_ACT_AMSDU_ENABLE) pHTInfo->IOTRaFunc |= HT_IOT_RAFUNC_TX_AMSDU; } void HTResetIOTSetting(struct rt_hi_throughput *pHTInfo) { pHTInfo->IOTAction = 0; pHTInfo->IOTPeer = HT_IOT_PEER_UNKNOWN; pHTInfo->IOTRaFunc = 0; } void HTConstructCapabilityElement(struct rtllib_device *ieee, u8 *posHTCap, u8 *len, u8 IsEncrypt, bool bAssoc) { struct rt_hi_throughput *pHT = ieee->pHTInfo; struct ht_capab_ele *pCapELE = NULL; if ((posHTCap == NULL) || (pHT == NULL)) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "posHTCap or pHTInfo can't be " "null in HTConstructCapabilityElement()\n"); return; } memset(posHTCap, 0, *len); if ((bAssoc) && (pHT->ePeerHTSpecVer == HT_SPEC_VER_EWC)) { u8 EWC11NHTCap[] = {0x00, 0x90, 0x4c, 0x33}; memcpy(posHTCap, EWC11NHTCap, sizeof(EWC11NHTCap)); pCapELE = (struct ht_capab_ele *)&(posHTCap[4]); *len = 30 + 2; } else { pCapELE = (struct ht_capab_ele *)posHTCap; *len = 26 + 2; } pCapELE->AdvCoding = 0; if (ieee->GetHalfNmodeSupportByAPsHandler(ieee->dev)) pCapELE->ChlWidth = 0; else pCapELE->ChlWidth = (pHT->bRegBW40MHz ? 1 : 0); pCapELE->MimoPwrSave = pHT->SelfMimoPs; pCapELE->GreenField = 0; pCapELE->ShortGI20Mhz = 1; pCapELE->ShortGI40Mhz = 1; pCapELE->TxSTBC = 1; pCapELE->RxSTBC = 0; pCapELE->DelayBA = 0; pCapELE->MaxAMSDUSize = (MAX_RECEIVE_BUFFER_SIZE >= 7935) ? 1 : 0; pCapELE->DssCCk = ((pHT->bRegBW40MHz) ? (pHT->bRegSuppCCK ? 1 : 0) : 0); pCapELE->PSMP = 0; pCapELE->LSigTxopProtect = 0; RTLLIB_DEBUG(RTLLIB_DL_HT, "TX HT cap/info ele BW=%d MaxAMSDUSize:%d " "DssCCk:%d\n", pCapELE->ChlWidth, pCapELE->MaxAMSDUSize, pCapELE->DssCCk); if (IsEncrypt) { pCapELE->MPDUDensity = 7; pCapELE->MaxRxAMPDUFactor = 2; } else { pCapELE->MaxRxAMPDUFactor = 3; pCapELE->MPDUDensity = 0; } memcpy(pCapELE->MCS, ieee->Regdot11HTOperationalRateSet, 16); memset(&pCapELE->ExtHTCapInfo, 0, 2); memset(pCapELE->TxBFCap, 0, 4); pCapELE->ASCap = 0; if (bAssoc) { if (pHT->IOTAction & HT_IOT_ACT_DISABLE_MCS15) pCapELE->MCS[1] &= 0x7f; if (pHT->IOTAction & HT_IOT_ACT_DISABLE_MCS14) pCapELE->MCS[1] &= 0xbf; if (pHT->IOTAction & HT_IOT_ACT_DISABLE_ALL_2SS) pCapELE->MCS[1] &= 0x00; if (pHT->IOTAction & HT_IOT_ACT_DISABLE_RX_40MHZ_SHORT_GI) pCapELE->ShortGI40Mhz = 0; if (ieee->GetHalfNmodeSupportByAPsHandler(ieee->dev)) { pCapELE->ChlWidth = 0; pCapELE->MCS[1] = 0; } } return; } void HTConstructInfoElement(struct rtllib_device *ieee, u8 *posHTInfo, u8 *len, u8 IsEncrypt) { struct rt_hi_throughput *pHT = ieee->pHTInfo; struct ht_info_ele *pHTInfoEle = (struct ht_info_ele *)posHTInfo; if ((posHTInfo == NULL) || (pHTInfoEle == NULL)) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "posHTInfo or pHTInfoEle can't be " "null in HTConstructInfoElement()\n"); return; } memset(posHTInfo, 0, *len); if ((ieee->iw_mode == IW_MODE_ADHOC) || (ieee->iw_mode == IW_MODE_MASTER)) { pHTInfoEle->ControlChl = ieee->current_network.channel; pHTInfoEle->ExtChlOffset = ((pHT->bRegBW40MHz == false) ? HT_EXTCHNL_OFFSET_NO_EXT : (ieee->current_network.channel <= 6) ? HT_EXTCHNL_OFFSET_UPPER : HT_EXTCHNL_OFFSET_LOWER); pHTInfoEle->RecommemdedTxWidth = pHT->bRegBW40MHz; pHTInfoEle->RIFS = 0; pHTInfoEle->PSMPAccessOnly = 0; pHTInfoEle->SrvIntGranularity = 0; pHTInfoEle->OptMode = pHT->CurrentOpMode; pHTInfoEle->NonGFDevPresent = 0; pHTInfoEle->DualBeacon = 0; pHTInfoEle->SecondaryBeacon = 0; pHTInfoEle->LSigTxopProtectFull = 0; pHTInfoEle->PcoActive = 0; pHTInfoEle->PcoPhase = 0; memset(pHTInfoEle->BasicMSC, 0, 16); *len = 22 + 2; } else { *len = 0; } return; } void HTConstructRT2RTAggElement(struct rtllib_device *ieee, u8 *posRT2RTAgg, u8 *len) { if (posRT2RTAgg == NULL) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "posRT2RTAgg can't be null in " "HTConstructRT2RTAggElement()\n"); return; } memset(posRT2RTAgg, 0, *len); *posRT2RTAgg++ = 0x00; *posRT2RTAgg++ = 0xe0; *posRT2RTAgg++ = 0x4c; *posRT2RTAgg++ = 0x02; *posRT2RTAgg++ = 0x01; *posRT2RTAgg = 0x30; if (ieee->bSupportRemoteWakeUp) *posRT2RTAgg |= RT_HT_CAP_USE_WOW; *len = 6 + 2; return; } static u8 HT_PickMCSRate(struct rtllib_device *ieee, u8 *pOperateMCS) { u8 i; if (pOperateMCS == NULL) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "pOperateMCS can't be null" " in HT_PickMCSRate()\n"); return false; } switch (ieee->mode) { case IEEE_A: case IEEE_B: case IEEE_G: for (i = 0; i <= 15; i++) pOperateMCS[i] = 0; break; case IEEE_N_24G: case IEEE_N_5G: pOperateMCS[0] &= RATE_ADPT_1SS_MASK; pOperateMCS[1] &= RATE_ADPT_2SS_MASK; pOperateMCS[3] &= RATE_ADPT_MCS32_MASK; break; default: break; } return true; } u8 HTGetHighestMCSRate(struct rtllib_device *ieee, u8 *pMCSRateSet, u8 *pMCSFilter) { u8 i, j; u8 bitMap; u8 mcsRate = 0; u8 availableMcsRate[16]; if (pMCSRateSet == NULL || pMCSFilter == NULL) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "pMCSRateSet or pMCSFilter can't " "be null in HTGetHighestMCSRate()\n"); return false; } for (i = 0; i < 16; i++) availableMcsRate[i] = pMCSRateSet[i] & pMCSFilter[i]; for (i = 0; i < 16; i++) { if (availableMcsRate[i] != 0) break; } if (i == 16) return false; for (i = 0; i < 16; i++) { if (availableMcsRate[i] != 0) { bitMap = availableMcsRate[i]; for (j = 0; j < 8; j++) { if ((bitMap%2) != 0) { if (HTMcsToDataRate(ieee, (8*i+j)) > HTMcsToDataRate(ieee, mcsRate)) mcsRate = (8*i+j); } bitMap = bitMap>>1; } } } return mcsRate | 0x80; } u8 HTFilterMCSRate(struct rtllib_device *ieee, u8 *pSupportMCS, u8 *pOperateMCS) { u8 i; for (i = 0; i <= 15; i++) pOperateMCS[i] = ieee->Regdot11TxHTOperationalRateSet[i] & pSupportMCS[i]; HT_PickMCSRate(ieee, pOperateMCS); if (ieee->GetHalfNmodeSupportByAPsHandler(ieee->dev)) pOperateMCS[1] = 0; for (i = 2; i <= 15; i++) pOperateMCS[i] = 0; return true; } void HTSetConnectBwMode(struct rtllib_device *ieee, enum ht_channel_width Bandwidth, enum ht_extchnl_offset Offset); void HTOnAssocRsp(struct rtllib_device *ieee) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; struct ht_capab_ele *pPeerHTCap = NULL; struct ht_info_ele *pPeerHTInfo = NULL; u16 nMaxAMSDUSize = 0; u8 *pMcsFilter = NULL; static u8 EWC11NHTCap[] = {0x00, 0x90, 0x4c, 0x33}; static u8 EWC11NHTInfo[] = {0x00, 0x90, 0x4c, 0x34}; if (pHTInfo->bCurrentHTSupport == false) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "<=== HTOnAssocRsp(): " "HT_DISABLE\n"); return; } RTLLIB_DEBUG(RTLLIB_DL_HT, "===> HTOnAssocRsp_wq(): HT_ENABLE\n"); if (!memcmp(pHTInfo->PeerHTCapBuf, EWC11NHTCap, sizeof(EWC11NHTCap))) pPeerHTCap = (struct ht_capab_ele *)(&pHTInfo->PeerHTCapBuf[4]); else pPeerHTCap = (struct ht_capab_ele *)(pHTInfo->PeerHTCapBuf); if (!memcmp(pHTInfo->PeerHTInfoBuf, EWC11NHTInfo, sizeof(EWC11NHTInfo))) pPeerHTInfo = (struct ht_info_ele *) (&pHTInfo->PeerHTInfoBuf[4]); else pPeerHTInfo = (struct ht_info_ele *)(pHTInfo->PeerHTInfoBuf); RTLLIB_DEBUG_DATA(RTLLIB_DL_DATA | RTLLIB_DL_HT, pPeerHTCap, sizeof(struct ht_capab_ele)); HTSetConnectBwMode(ieee, (enum ht_channel_width)(pPeerHTCap->ChlWidth), (enum ht_extchnl_offset)(pPeerHTInfo->ExtChlOffset)); pHTInfo->bCurTxBW40MHz = ((pPeerHTInfo->RecommemdedTxWidth == 1) ? true : false); pHTInfo->bCurShortGI20MHz = ((pHTInfo->bRegShortGI20MHz) ? ((pPeerHTCap->ShortGI20Mhz == 1) ? true : false) : false); pHTInfo->bCurShortGI40MHz = ((pHTInfo->bRegShortGI40MHz) ? ((pPeerHTCap->ShortGI40Mhz == 1) ? true : false) : false); pHTInfo->bCurSuppCCK = ((pHTInfo->bRegSuppCCK) ? ((pPeerHTCap->DssCCk == 1) ? true : false) : false); pHTInfo->bCurrent_AMSDU_Support = pHTInfo->bAMSDU_Support; nMaxAMSDUSize = (pPeerHTCap->MaxAMSDUSize == 0) ? 3839 : 7935; if (pHTInfo->nAMSDU_MaxSize > nMaxAMSDUSize) pHTInfo->nCurrent_AMSDU_MaxSize = nMaxAMSDUSize; else pHTInfo->nCurrent_AMSDU_MaxSize = pHTInfo->nAMSDU_MaxSize; pHTInfo->bCurrentAMPDUEnable = pHTInfo->bAMPDUEnable; if (ieee->rtllib_ap_sec_type && (ieee->rtllib_ap_sec_type(ieee)&(SEC_ALG_WEP|SEC_ALG_TKIP))) { if ((pHTInfo->IOTPeer == HT_IOT_PEER_ATHEROS) || (pHTInfo->IOTPeer == HT_IOT_PEER_UNKNOWN)) pHTInfo->bCurrentAMPDUEnable = false; } if (!pHTInfo->bRegRT2RTAggregation) { if (pHTInfo->AMPDU_Factor > pPeerHTCap->MaxRxAMPDUFactor) pHTInfo->CurrentAMPDUFactor = pPeerHTCap->MaxRxAMPDUFactor; else pHTInfo->CurrentAMPDUFactor = pHTInfo->AMPDU_Factor; } else { if (ieee->current_network.bssht.bdRT2RTAggregation) { if (ieee->pairwise_key_type != KEY_TYPE_NA) pHTInfo->CurrentAMPDUFactor = pPeerHTCap->MaxRxAMPDUFactor; else pHTInfo->CurrentAMPDUFactor = HT_AGG_SIZE_64K; } else { if (pPeerHTCap->MaxRxAMPDUFactor < HT_AGG_SIZE_32K) pHTInfo->CurrentAMPDUFactor = pPeerHTCap->MaxRxAMPDUFactor; else pHTInfo->CurrentAMPDUFactor = HT_AGG_SIZE_32K; } } if (pHTInfo->MPDU_Density > pPeerHTCap->MPDUDensity) pHTInfo->CurrentMPDUDensity = pHTInfo->MPDU_Density; else pHTInfo->CurrentMPDUDensity = pPeerHTCap->MPDUDensity; if (pHTInfo->IOTAction & HT_IOT_ACT_TX_USE_AMSDU_8K) { pHTInfo->bCurrentAMPDUEnable = false; pHTInfo->ForcedAMSDUMode = HT_AGG_FORCE_ENABLE; pHTInfo->ForcedAMSDUMaxSize = 7935; } pHTInfo->bCurRxReorderEnable = pHTInfo->bRegRxReorderEnable; if (pPeerHTCap->MCS[0] == 0) pPeerHTCap->MCS[0] = 0xff; HTIOTActDetermineRaFunc(ieee, ((pPeerHTCap->MCS[1]) != 0)); HTFilterMCSRate(ieee, pPeerHTCap->MCS, ieee->dot11HTOperationalRateSet); pHTInfo->PeerMimoPs = pPeerHTCap->MimoPwrSave; if (pHTInfo->PeerMimoPs == MIMO_PS_STATIC) pMcsFilter = MCS_FILTER_1SS; else pMcsFilter = MCS_FILTER_ALL; ieee->HTHighestOperaRate = HTGetHighestMCSRate(ieee, ieee->dot11HTOperationalRateSet, pMcsFilter); ieee->HTCurrentOperaRate = ieee->HTHighestOperaRate; pHTInfo->CurrentOpMode = pPeerHTInfo->OptMode; } void HTInitializeHTInfo(struct rtllib_device *ieee) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; RTLLIB_DEBUG(RTLLIB_DL_HT, "===========>%s()\n", __func__); pHTInfo->bCurrentHTSupport = false; pHTInfo->bCurBW40MHz = false; pHTInfo->bCurTxBW40MHz = false; pHTInfo->bCurShortGI20MHz = false; pHTInfo->bCurShortGI40MHz = false; pHTInfo->bForcedShortGI = false; pHTInfo->bCurSuppCCK = true; pHTInfo->bCurrent_AMSDU_Support = false; pHTInfo->nCurrent_AMSDU_MaxSize = pHTInfo->nAMSDU_MaxSize; pHTInfo->CurrentMPDUDensity = pHTInfo->MPDU_Density; pHTInfo->CurrentAMPDUFactor = pHTInfo->AMPDU_Factor; memset((void *)(&(pHTInfo->SelfHTCap)), 0, sizeof(pHTInfo->SelfHTCap)); memset((void *)(&(pHTInfo->SelfHTInfo)), 0, sizeof(pHTInfo->SelfHTInfo)); memset((void *)(&(pHTInfo->PeerHTCapBuf)), 0, sizeof(pHTInfo->PeerHTCapBuf)); memset((void *)(&(pHTInfo->PeerHTInfoBuf)), 0, sizeof(pHTInfo->PeerHTInfoBuf)); pHTInfo->bSwBwInProgress = false; pHTInfo->ChnlOp = CHNLOP_NONE; pHTInfo->ePeerHTSpecVer = HT_SPEC_VER_IEEE; pHTInfo->bCurrentRT2RTAggregation = false; pHTInfo->bCurrentRT2RTLongSlotTime = false; pHTInfo->RT2RT_HT_Mode = (enum rt_ht_capability)0; pHTInfo->IOTPeer = 0; pHTInfo->IOTAction = 0; pHTInfo->IOTRaFunc = 0; { u8 *RegHTSuppRateSets = &(ieee->RegHTSuppRateSet[0]); RegHTSuppRateSets[0] = 0xFF; RegHTSuppRateSets[1] = 0xFF; RegHTSuppRateSets[4] = 0x01; } } void HTInitializeBssDesc(struct bss_ht *pBssHT) { pBssHT->bdSupportHT = false; memset(pBssHT->bdHTCapBuf, 0, sizeof(pBssHT->bdHTCapBuf)); pBssHT->bdHTCapLen = 0; memset(pBssHT->bdHTInfoBuf, 0, sizeof(pBssHT->bdHTInfoBuf)); pBssHT->bdHTInfoLen = 0; pBssHT->bdHTSpecVer = HT_SPEC_VER_IEEE; pBssHT->bdRT2RTAggregation = false; pBssHT->bdRT2RTLongSlotTime = false; pBssHT->RT2RT_HT_Mode = (enum rt_ht_capability)0; } void HTResetSelfAndSavePeerSetting(struct rtllib_device *ieee, struct rtllib_network *pNetwork) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; u8 bIOTAction = 0; RTLLIB_DEBUG(RTLLIB_DL_HT, "==============>%s()\n", __func__); /* unmark bEnableHT flag here is the same reason why unmarked in * function rtllib_softmac_new_net. WB 2008.09.10*/ if (pNetwork->bssht.bdSupportHT) { pHTInfo->bCurrentHTSupport = true; pHTInfo->ePeerHTSpecVer = pNetwork->bssht.bdHTSpecVer; if (pNetwork->bssht.bdHTCapLen > 0 && pNetwork->bssht.bdHTCapLen <= sizeof(pHTInfo->PeerHTCapBuf)) memcpy(pHTInfo->PeerHTCapBuf, pNetwork->bssht.bdHTCapBuf, pNetwork->bssht.bdHTCapLen); if (pNetwork->bssht.bdHTInfoLen > 0 && pNetwork->bssht.bdHTInfoLen <= sizeof(pHTInfo->PeerHTInfoBuf)) memcpy(pHTInfo->PeerHTInfoBuf, pNetwork->bssht.bdHTInfoBuf, pNetwork->bssht.bdHTInfoLen); if (pHTInfo->bRegRT2RTAggregation) { pHTInfo->bCurrentRT2RTAggregation = pNetwork->bssht.bdRT2RTAggregation; pHTInfo->bCurrentRT2RTLongSlotTime = pNetwork->bssht.bdRT2RTLongSlotTime; pHTInfo->RT2RT_HT_Mode = pNetwork->bssht.RT2RT_HT_Mode; } else { pHTInfo->bCurrentRT2RTAggregation = false; pHTInfo->bCurrentRT2RTLongSlotTime = false; pHTInfo->RT2RT_HT_Mode = (enum rt_ht_capability)0; } HTIOTPeerDetermine(ieee); pHTInfo->IOTAction = 0; bIOTAction = HTIOTActIsDisableMCS14(ieee, pNetwork->bssid); if (bIOTAction) pHTInfo->IOTAction |= HT_IOT_ACT_DISABLE_MCS14; bIOTAction = HTIOTActIsDisableMCS15(ieee); if (bIOTAction) pHTInfo->IOTAction |= HT_IOT_ACT_DISABLE_MCS15; bIOTAction = HTIOTActIsDisableMCSTwoSpatialStream(ieee); if (bIOTAction) pHTInfo->IOTAction |= HT_IOT_ACT_DISABLE_ALL_2SS; bIOTAction = HTIOTActIsDisableEDCATurbo(ieee, pNetwork->bssid); if (bIOTAction) pHTInfo->IOTAction |= HT_IOT_ACT_DISABLE_EDCA_TURBO; bIOTAction = HTIOTActIsMgntUseCCK6M(ieee, pNetwork); if (bIOTAction) pHTInfo->IOTAction |= HT_IOT_ACT_MGNT_USE_CCK_6M; bIOTAction = HTIOTActIsCCDFsync(ieee); if (bIOTAction) pHTInfo->IOTAction |= HT_IOT_ACT_CDD_FSYNC; } else { pHTInfo->bCurrentHTSupport = false; pHTInfo->bCurrentRT2RTAggregation = false; pHTInfo->bCurrentRT2RTLongSlotTime = false; pHTInfo->RT2RT_HT_Mode = (enum rt_ht_capability)0; pHTInfo->IOTAction = 0; pHTInfo->IOTRaFunc = 0; } } void HT_update_self_and_peer_setting(struct rtllib_device *ieee, struct rtllib_network *pNetwork) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; struct ht_info_ele *pPeerHTInfo = (struct ht_info_ele *)pNetwork->bssht.bdHTInfoBuf; if (pHTInfo->bCurrentHTSupport) { if (pNetwork->bssht.bdHTInfoLen != 0) pHTInfo->CurrentOpMode = pPeerHTInfo->OptMode; } } EXPORT_SYMBOL(HT_update_self_and_peer_setting); void HTUseDefaultSetting(struct rtllib_device *ieee) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; if (pHTInfo->bEnableHT) { pHTInfo->bCurrentHTSupport = true; pHTInfo->bCurSuppCCK = pHTInfo->bRegSuppCCK; pHTInfo->bCurBW40MHz = pHTInfo->bRegBW40MHz; pHTInfo->bCurShortGI20MHz = pHTInfo->bRegShortGI20MHz; pHTInfo->bCurShortGI40MHz = pHTInfo->bRegShortGI40MHz; if (ieee->iw_mode == IW_MODE_ADHOC) ieee->current_network.qos_data.active = ieee->current_network.qos_data.supported; pHTInfo->bCurrent_AMSDU_Support = pHTInfo->bAMSDU_Support; pHTInfo->nCurrent_AMSDU_MaxSize = pHTInfo->nAMSDU_MaxSize; pHTInfo->bCurrentAMPDUEnable = pHTInfo->bAMPDUEnable; pHTInfo->CurrentAMPDUFactor = pHTInfo->AMPDU_Factor; pHTInfo->CurrentMPDUDensity = pHTInfo->CurrentMPDUDensity; HTFilterMCSRate(ieee, ieee->Regdot11TxHTOperationalRateSet, ieee->dot11HTOperationalRateSet); ieee->HTHighestOperaRate = HTGetHighestMCSRate(ieee, ieee->dot11HTOperationalRateSet, MCS_FILTER_ALL); ieee->HTCurrentOperaRate = ieee->HTHighestOperaRate; } else { pHTInfo->bCurrentHTSupport = false; } return; } u8 HTCCheck(struct rtllib_device *ieee, u8 *pFrame) { if (ieee->pHTInfo->bCurrentHTSupport) { if ((IsQoSDataFrame(pFrame) && Frame_Order(pFrame)) == 1) { RTLLIB_DEBUG(RTLLIB_DL_HT, "HT CONTROL FILED " "EXIST!!\n"); return true; } } return false; } static void HTSetConnectBwModeCallback(struct rtllib_device *ieee) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; RTLLIB_DEBUG(RTLLIB_DL_HT, "======>%s()\n", __func__); if (pHTInfo->bCurBW40MHz) { if (pHTInfo->CurSTAExtChnlOffset == HT_EXTCHNL_OFFSET_UPPER) ieee->set_chan(ieee->dev, ieee->current_network.channel + 2); else if (pHTInfo->CurSTAExtChnlOffset == HT_EXTCHNL_OFFSET_LOWER) ieee->set_chan(ieee->dev, ieee->current_network.channel - 2); else ieee->set_chan(ieee->dev, ieee->current_network.channel); ieee->SetBWModeHandler(ieee->dev, HT_CHANNEL_WIDTH_20_40, pHTInfo->CurSTAExtChnlOffset); } else { ieee->set_chan(ieee->dev, ieee->current_network.channel); ieee->SetBWModeHandler(ieee->dev, HT_CHANNEL_WIDTH_20, HT_EXTCHNL_OFFSET_NO_EXT); } pHTInfo->bSwBwInProgress = false; } void HTSetConnectBwMode(struct rtllib_device *ieee, enum ht_channel_width Bandwidth, enum ht_extchnl_offset Offset) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; if (pHTInfo->bRegBW40MHz == false) return; if (ieee->GetHalfNmodeSupportByAPsHandler(ieee->dev)) Bandwidth = HT_CHANNEL_WIDTH_20; if (pHTInfo->bSwBwInProgress) { printk(KERN_INFO "%s: bSwBwInProgress!!\n", __func__); return; } if (Bandwidth == HT_CHANNEL_WIDTH_20_40) { if (ieee->current_network.channel < 2 && Offset == HT_EXTCHNL_OFFSET_LOWER) Offset = HT_EXTCHNL_OFFSET_NO_EXT; if (Offset == HT_EXTCHNL_OFFSET_UPPER || Offset == HT_EXTCHNL_OFFSET_LOWER) { pHTInfo->bCurBW40MHz = true; pHTInfo->CurSTAExtChnlOffset = Offset; } else { pHTInfo->bCurBW40MHz = false; pHTInfo->CurSTAExtChnlOffset = HT_EXTCHNL_OFFSET_NO_EXT; } } else { pHTInfo->bCurBW40MHz = false; pHTInfo->CurSTAExtChnlOffset = HT_EXTCHNL_OFFSET_NO_EXT; } printk(KERN_INFO "%s():pHTInfo->bCurBW40MHz:%x\n", __func__, pHTInfo->bCurBW40MHz); pHTInfo->bSwBwInProgress = true; HTSetConnectBwModeCallback(ieee); }