// SPDX-License-Identifier: GPL-2.0 /****************************************************************************** * * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved. * * Contact Information: * James P. Ketrenos * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * * Few modifications for Realtek's Wi-Fi drivers by * Andrea Merello * * A special thanks goes to Realtek for their support ! * ******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211.h" /* * * * 802.11 Data Frame * * * 802.11 frame_contorl for data frames - 2 bytes * ,-----------------------------------------------------------------------------------------. * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x | * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| * desc | ^-ver-^ | ^type-^ | ^-----subtype-----^ | to |from |more |retry| pwr |more |wep | * | | | x=0 data,x=1 data+ack | DS | DS |frag | | mgm |data | | * '-----------------------------------------------------------------------------------------' * /\ * | * 802.11 Data Frame | * ,--------- 'ctrl' expands to >-----------' * | * ,--'---,-------------------------------------------------------------. * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 | * |------|------|---------|---------|---------|------|---------|------| * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs | * | | tion | (BSSID) | | | ence | data | | * `--------------------------------------------------| |------' * Total: 28 non-data bytes `----.----' * | * .- 'Frame data' expands to <---------------------------' * | * V * ,---------------------------------------------------. * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 | * |------|------|---------|----------|------|---------| * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP | * | DSAP | SSAP | | | | Packet | * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | | * `-----------------------------------------| | * Total: 8 non-data bytes `----.----' * | * .- 'IP Packet' expands, if WEP enabled, to <--' * | * V * ,-----------------------. * Bytes | 4 | 0-2296 | 4 | * |-----|-----------|-----| * Desc. | IV | Encrypted | ICV | * | | IP Packet | | * `-----------------------' * Total: 8 non-data bytes * * * 802.3 Ethernet Data Frame * * ,-----------------------------------------. * Bytes | 6 | 6 | 2 | Variable | 4 | * |-------|-------|------|-----------|------| * Desc. | Dest. | Source| Type | IP Packet | fcs | * | MAC | MAC | | | | * `-----------------------------------------' * Total: 18 non-data bytes * * In the event that fragmentation is required, the incoming payload is split into * N parts of size ieee->fts. The first fragment contains the SNAP header and the * remaining packets are just data. * * If encryption is enabled, each fragment payload size is reduced by enough space * to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP) * So if you have 1500 bytes of payload with ieee->fts set to 500 without * encryption it will take 3 frames. With WEP it will take 4 frames as the * payload of each frame is reduced to 492 bytes. * * SKB visualization * * ,- skb->data * | * | ETHERNET HEADER ,-<-- PAYLOAD * | | 14 bytes from skb->data * | 2 bytes for Type --> ,T. | (sizeof ethhdr) * | | | | * |,-Dest.--. ,--Src.---. | | | * | 6 bytes| | 6 bytes | | | | * v | | | | | | * 0 | v 1 | v | v 2 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 * ^ | ^ | ^ | * | | | | | | * | | | | `T' <---- 2 bytes for Type * | | | | * | | '---SNAP--' <-------- 6 bytes for SNAP * | | * `-IV--' <-------------------- 4 bytes for IV (WEP) * * SNAP HEADER * */ static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 }; static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 }; static inline int ieee80211_put_snap(u8 *data, u16 h_proto) { struct ieee80211_snap_hdr *snap; u8 *oui; snap = (struct ieee80211_snap_hdr *)data; snap->dsap = 0xaa; snap->ssap = 0xaa; snap->ctrl = 0x03; if (h_proto == 0x8137 || h_proto == 0x80f3) oui = P802_1H_OUI; else oui = RFC1042_OUI; snap->oui[0] = oui[0]; snap->oui[1] = oui[1]; snap->oui[2] = oui[2]; *(__be16 *)(data + SNAP_SIZE) = htons(h_proto); return SNAP_SIZE + sizeof(u16); } int ieee80211_encrypt_fragment( struct ieee80211_device *ieee, struct sk_buff *frag, int hdr_len) { struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx]; int res; if (!(crypt && crypt->ops)) { printk("=========>%s(), crypt is null\n", __func__); return -1; } if (ieee->tkip_countermeasures && crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) { if (net_ratelimit()) { struct rtl_80211_hdr_3addrqos *header; header = (struct rtl_80211_hdr_3addrqos *)frag->data; printk(KERN_DEBUG "%s: TKIP countermeasures: dropped " "TX packet to %pM\n", ieee->dev->name, header->addr1); } return -1; } /* To encrypt, frame format is: * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */ // PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption. /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so * call both MSDU and MPDU encryption functions from here. */ atomic_inc(&crypt->refcnt); res = 0; if (crypt->ops->encrypt_msdu) res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv); if (res == 0 && crypt->ops->encrypt_mpdu) res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv); atomic_dec(&crypt->refcnt); if (res < 0) { printk(KERN_INFO "%s: Encryption failed: len=%d.\n", ieee->dev->name, frag->len); ieee->ieee_stats.tx_discards++; return -1; } return 0; } void ieee80211_txb_free(struct ieee80211_txb *txb) { //int i; if (unlikely(!txb)) return; kfree(txb); } EXPORT_SYMBOL(ieee80211_txb_free); static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size, gfp_t gfp_mask) { struct ieee80211_txb *txb; int i; txb = kmalloc( sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags), gfp_mask); if (!txb) return NULL; memset(txb, 0, sizeof(struct ieee80211_txb)); txb->nr_frags = nr_frags; txb->frag_size = __cpu_to_le16(txb_size); for (i = 0; i < nr_frags; i++) { txb->fragments[i] = dev_alloc_skb(txb_size); if (unlikely(!txb->fragments[i])) { i--; break; } memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb)); } if (unlikely(i != nr_frags)) { while (i >= 0) dev_kfree_skb_any(txb->fragments[i--]); kfree(txb); return NULL; } return txb; } // Classify the to-be send data packet // Need to acquire the sent queue index. static int ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network) { struct ethhdr *eth; struct iphdr *ip; eth = (struct ethhdr *)skb->data; if (eth->h_proto != htons(ETH_P_IP)) return 0; ip = ip_hdr(skb); switch (ip->tos & 0xfc) { case 0x20: return 2; case 0x40: return 1; case 0x60: return 3; case 0x80: return 4; case 0xa0: return 5; case 0xc0: return 6; case 0xe0: return 7; default: return 0; } } static void ieee80211_tx_query_agg_cap(struct ieee80211_device *ieee, struct sk_buff *skb, struct cb_desc *tcb_desc) { PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo; struct tx_ts_record *pTxTs = NULL; struct rtl_80211_hdr_1addr *hdr = (struct rtl_80211_hdr_1addr *)skb->data; if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT) return; if (!IsQoSDataFrame(skb->data)) return; if (is_multicast_ether_addr(hdr->addr1)) return; //check packet and mode later #ifdef TO_DO_LIST if (pTcb->PacketLength >= 4096) return; // For RTL819X, if pairwisekey = wep/tkip, we don't aggrregation. if (!Adapter->HalFunc.GetNmodeSupportBySecCfgHandler(Adapter)) return; #endif if (!ieee->GetNmodeSupportBySecCfg(ieee->dev)) { return; } if (pHTInfo->bCurrentAMPDUEnable) { if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true)) { printk("===>can't get TS\n"); return; } if (!pTxTs->tx_admitted_ba_record.valid) { TsStartAddBaProcess(ieee, pTxTs); goto FORCED_AGG_SETTING; } else if (!pTxTs->using_ba) { if (SN_LESS(pTxTs->tx_admitted_ba_record.start_seq_ctrl.field.seq_num, (pTxTs->tx_cur_seq + 1) % 4096)) pTxTs->using_ba = true; else goto FORCED_AGG_SETTING; } if (ieee->iw_mode == IW_MODE_INFRA) { tcb_desc->bAMPDUEnable = true; tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor; tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity; } } FORCED_AGG_SETTING: switch (pHTInfo->ForcedAMPDUMode ) { case HT_AGG_AUTO: break; case HT_AGG_FORCE_ENABLE: tcb_desc->bAMPDUEnable = true; tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity; tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor; break; case HT_AGG_FORCE_DISABLE: tcb_desc->bAMPDUEnable = false; tcb_desc->ampdu_density = 0; tcb_desc->ampdu_factor = 0; break; } return; } static void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device *ieee, struct cb_desc *tcb_desc) { tcb_desc->bUseShortPreamble = false; if (tcb_desc->data_rate == 2) {//// 1M can only use Long Preamble. 11B spec return; } else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) { tcb_desc->bUseShortPreamble = true; } return; } static void ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, struct cb_desc *tcb_desc) { PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo; tcb_desc->bUseShortGI = false; if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT) return; if (pHTInfo->bForcedShortGI) { tcb_desc->bUseShortGI = true; return; } if ((pHTInfo->bCurBW40MHz==true) && pHTInfo->bCurShortGI40MHz) tcb_desc->bUseShortGI = true; else if ((pHTInfo->bCurBW40MHz==false) && pHTInfo->bCurShortGI20MHz) tcb_desc->bUseShortGI = true; } static void ieee80211_query_BandwidthMode(struct ieee80211_device *ieee, struct cb_desc *tcb_desc) { PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo; tcb_desc->bPacketBW = false; if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT) return; if (tcb_desc->bMulticast || tcb_desc->bBroadcast) return; if ((tcb_desc->data_rate & 0x80)==0) // If using legacy rate, it shall use 20MHz channel. return; //BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance if(pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz) tcb_desc->bPacketBW = true; return; } static void ieee80211_query_protectionmode(struct ieee80211_device *ieee, struct cb_desc *tcb_desc, struct sk_buff *skb) { // Common Settings tcb_desc->bRTSSTBC = false; tcb_desc->bRTSUseShortGI = false; // Since protection frames are always sent by legacy rate, ShortGI will never be used. tcb_desc->bCTSEnable = false; // Most of protection using RTS/CTS tcb_desc->RTSSC = 0; // 20MHz: Don't care; 40MHz: Duplicate. tcb_desc->bRTSBW = false; // RTS frame bandwidth is always 20MHz if(tcb_desc->bBroadcast || tcb_desc->bMulticast)//only unicast frame will use rts/cts return; if (is_broadcast_ether_addr(skb->data+16)) //check addr3 as infrastructure add3 is DA. return; if (ieee->mode < IEEE_N_24G) //b, g mode { // (1) RTS_Threshold is compared to the MPDU, not MSDU. // (2) If there are more than one frag in this MSDU, only the first frag uses protection frame. // Other fragments are protected by previous fragment. // So we only need to check the length of first fragment. if (skb->len > ieee->rts) { tcb_desc->bRTSEnable = true; tcb_desc->rts_rate = MGN_24M; } else if (ieee->current_network.buseprotection) { // Use CTS-to-SELF in protection mode. tcb_desc->bRTSEnable = true; tcb_desc->bCTSEnable = true; tcb_desc->rts_rate = MGN_24M; } //otherwise return; return; } else {// 11n High throughput case. PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo; while (true) { //check ERP protection if (ieee->current_network.buseprotection) {// CTS-to-SELF tcb_desc->bRTSEnable = true; tcb_desc->bCTSEnable = true; tcb_desc->rts_rate = MGN_24M; break; } //check HT op mode if(pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT) { u8 HTOpMode = pHTInfo->CurrentOpMode; if((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) || (!pHTInfo->bCurBW40MHz && HTOpMode == 3) ) { tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps. tcb_desc->bRTSEnable = true; break; } } //check rts if (skb->len > ieee->rts) { tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps. tcb_desc->bRTSEnable = true; break; } //to do list: check MIMO power save condition. //check AMPDU aggregation for TXOP if(tcb_desc->bAMPDUEnable) { tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps. // According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads // throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily tcb_desc->bRTSEnable = false; break; } //check IOT action if(pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF) { tcb_desc->bCTSEnable = true; tcb_desc->rts_rate = MGN_24M; tcb_desc->bRTSEnable = true; break; } // Totally no protection case!! goto NO_PROTECTION; } } // For test , CTS replace with RTS if (0) { tcb_desc->bCTSEnable = true; tcb_desc->rts_rate = MGN_24M; tcb_desc->bRTSEnable = true; } if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) tcb_desc->bUseShortPreamble = true; if (ieee->mode == IW_MODE_MASTER) goto NO_PROTECTION; return; NO_PROTECTION: tcb_desc->bRTSEnable = false; tcb_desc->bCTSEnable = false; tcb_desc->rts_rate = 0; tcb_desc->RTSSC = 0; tcb_desc->bRTSBW = false; } static void ieee80211_txrate_selectmode(struct ieee80211_device *ieee, struct cb_desc *tcb_desc) { #ifdef TO_DO_LIST if(!IsDataFrame(pFrame)) { pTcb->bTxDisableRateFallBack = true; pTcb->bTxUseDriverAssingedRate = true; pTcb->RATRIndex = 7; return; } if(pMgntInfo->ForcedDataRate!= 0) { pTcb->bTxDisableRateFallBack = true; pTcb->bTxUseDriverAssingedRate = true; return; } #endif if(ieee->bTxDisableRateFallBack) tcb_desc->bTxDisableRateFallBack = true; if(ieee->bTxUseDriverAssingedRate) tcb_desc->bTxUseDriverAssingedRate = true; if(!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate) { if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC) tcb_desc->RATRIndex = 0; } } static void ieee80211_query_seqnum(struct ieee80211_device *ieee, struct sk_buff *skb, u8 *dst) { if (is_multicast_ether_addr(dst)) return; if (IsQoSDataFrame(skb->data)) //we deal qos data only { struct tx_ts_record *pTS = NULL; if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst, skb->priority, TX_DIR, true)) { return; } pTS->tx_cur_seq = (pTS->tx_cur_seq + 1) % 4096; } } int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_device *ieee = netdev_priv(dev); struct ieee80211_txb *txb = NULL; struct rtl_80211_hdr_3addrqos *frag_hdr; int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size; unsigned long flags; struct net_device_stats *stats = &ieee->stats; int ether_type = 0, encrypt; int bytes, fc, qos_ctl = 0, hdr_len; struct sk_buff *skb_frag; struct rtl_80211_hdr_3addrqos header = { /* Ensure zero initialized */ .duration_id = 0, .seq_ctl = 0, .qos_ctl = 0 }; u8 dest[ETH_ALEN], src[ETH_ALEN]; int qos_actived = ieee->current_network.qos_data.active; struct ieee80211_crypt_data *crypt; struct cb_desc *tcb_desc; spin_lock_irqsave(&ieee->lock, flags); /* If there is no driver handler to take the TXB, dont' bother * creating it... */ if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE))|| ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) { printk(KERN_WARNING "%s: No xmit handler.\n", ieee->dev->name); goto success; } if(likely(ieee->raw_tx == 0)){ if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) { printk(KERN_WARNING "%s: skb too small (%d).\n", ieee->dev->name, skb->len); goto success; } memset(skb->cb, 0, sizeof(skb->cb)); ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto); crypt = ieee->crypt[ieee->tx_keyidx]; encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) && ieee->host_encrypt && crypt && crypt->ops; if (!encrypt && ieee->ieee802_1x && ieee->drop_unencrypted && ether_type != ETH_P_PAE) { stats->tx_dropped++; goto success; } #ifdef CONFIG_IEEE80211_DEBUG if (crypt && !encrypt && ether_type == ETH_P_PAE) { struct eapol *eap = (struct eapol *)(skb->data + sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16)); IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n", eap_get_type(eap->type)); } #endif /* Save source and destination addresses */ memcpy(&dest, skb->data, ETH_ALEN); memcpy(&src, skb->data+ETH_ALEN, ETH_ALEN); /* Advance the SKB to the start of the payload */ skb_pull(skb, sizeof(struct ethhdr)); /* Determine total amount of storage required for TXB packets */ bytes = skb->len + SNAP_SIZE + sizeof(u16); if (encrypt) fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP; else fc = IEEE80211_FTYPE_DATA; //if(ieee->current_network.QoS_Enable) if(qos_actived) fc |= IEEE80211_STYPE_QOS_DATA; else fc |= IEEE80211_STYPE_DATA; if (ieee->iw_mode == IW_MODE_INFRA) { fc |= IEEE80211_FCTL_TODS; /* To DS: Addr1 = BSSID, Addr2 = SA, * Addr3 = DA */ memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN); memcpy(&header.addr2, &src, ETH_ALEN); memcpy(&header.addr3, &dest, ETH_ALEN); } else if (ieee->iw_mode == IW_MODE_ADHOC) { /* not From/To DS: Addr1 = DA, Addr2 = SA, * Addr3 = BSSID */ memcpy(&header.addr1, dest, ETH_ALEN); memcpy(&header.addr2, src, ETH_ALEN); memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN); } header.frame_ctl = cpu_to_le16(fc); /* Determine fragmentation size based on destination (multicast * and broadcast are not fragmented) */ if (is_multicast_ether_addr(header.addr1)) { frag_size = MAX_FRAG_THRESHOLD; qos_ctl |= QOS_CTL_NOTCONTAIN_ACK; } else { frag_size = ieee->fts;//default:392 qos_ctl = 0; } //if (ieee->current_network.QoS_Enable) if(qos_actived) { hdr_len = IEEE80211_3ADDR_LEN + 2; skb->priority = ieee80211_classify(skb, &ieee->current_network); qos_ctl |= skb->priority; //set in the ieee80211_classify header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID); } else { hdr_len = IEEE80211_3ADDR_LEN; } /* Determine amount of payload per fragment. Regardless of if * this stack is providing the full 802.11 header, one will * eventually be affixed to this fragment -- so we must account for * it when determining the amount of payload space. */ bytes_per_frag = frag_size - hdr_len; if (ieee->config & (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS)) bytes_per_frag -= IEEE80211_FCS_LEN; /* Each fragment may need to have room for encryption pre/postfix */ if (encrypt) bytes_per_frag -= crypt->ops->extra_prefix_len + crypt->ops->extra_postfix_len; /* Number of fragments is the total bytes_per_frag / * payload_per_fragment */ nr_frags = bytes / bytes_per_frag; bytes_last_frag = bytes % bytes_per_frag; if (bytes_last_frag) nr_frags++; else bytes_last_frag = bytes_per_frag; /* When we allocate the TXB we allocate enough space for the reserve * and full fragment bytes (bytes_per_frag doesn't include prefix, * postfix, header, FCS, etc.) */ txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC); if (unlikely(!txb)) { printk(KERN_WARNING "%s: Could not allocate TXB\n", ieee->dev->name); goto failed; } txb->encrypted = encrypt; txb->payload_size = __cpu_to_le16(bytes); //if (ieee->current_network.QoS_Enable) if(qos_actived) { txb->queue_index = UP2AC(skb->priority); } else { txb->queue_index = WME_AC_BK; } for (i = 0; i < nr_frags; i++) { skb_frag = txb->fragments[i]; tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE); if(qos_actived){ skb_frag->priority = skb->priority;//UP2AC(skb->priority); tcb_desc->queue_index = UP2AC(skb->priority); } else { skb_frag->priority = WME_AC_BK; tcb_desc->queue_index = WME_AC_BK; } skb_reserve(skb_frag, ieee->tx_headroom); if (encrypt){ if (ieee->hwsec_active) tcb_desc->bHwSec = 1; else tcb_desc->bHwSec = 0; skb_reserve(skb_frag, crypt->ops->extra_prefix_len); } else { tcb_desc->bHwSec = 0; } frag_hdr = skb_put_data(skb_frag, &header, hdr_len); /* If this is not the last fragment, then add the MOREFRAGS * bit to the frame control */ if (i != nr_frags - 1) { frag_hdr->frame_ctl = cpu_to_le16( fc | IEEE80211_FCTL_MOREFRAGS); bytes = bytes_per_frag; } else { /* The last fragment takes the remaining length */ bytes = bytes_last_frag; } //if(ieee->current_network.QoS_Enable) if(qos_actived) { // add 1 only indicate to corresponding seq number control 2006/7/12 frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority)+1]<<4 | i); } else { frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0]<<4 | i); } /* Put a SNAP header on the first fragment */ if (i == 0) { ieee80211_put_snap( skb_put(skb_frag, SNAP_SIZE + sizeof(u16)), ether_type); bytes -= SNAP_SIZE + sizeof(u16); } skb_put_data(skb_frag, skb->data, bytes); /* Advance the SKB... */ skb_pull(skb, bytes); /* Encryption routine will move the header forward in order * to insert the IV between the header and the payload */ if (encrypt) ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len); if (ieee->config & (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS)) skb_put(skb_frag, 4); } if(qos_actived) { if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF) ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0; else ieee->seq_ctrl[UP2AC(skb->priority) + 1]++; } else { if (ieee->seq_ctrl[0] == 0xFFF) ieee->seq_ctrl[0] = 0; else ieee->seq_ctrl[0]++; } } else { if (unlikely(skb->len < sizeof(struct rtl_80211_hdr_3addr))) { printk(KERN_WARNING "%s: skb too small (%d).\n", ieee->dev->name, skb->len); goto success; } txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC); if(!txb){ printk(KERN_WARNING "%s: Could not allocate TXB\n", ieee->dev->name); goto failed; } txb->encrypted = 0; txb->payload_size = __cpu_to_le16(skb->len); skb_put_data(txb->fragments[0], skb->data, skb->len); } success: //WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place. if (txb) { struct cb_desc *tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE); tcb_desc->bTxEnableFwCalcDur = 1; if (is_multicast_ether_addr(header.addr1)) tcb_desc->bMulticast = 1; if (is_broadcast_ether_addr(header.addr1)) tcb_desc->bBroadcast = 1; ieee80211_txrate_selectmode(ieee, tcb_desc); if (tcb_desc->bMulticast || tcb_desc->bBroadcast) tcb_desc->data_rate = ieee->basic_rate; else tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate); ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc); ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc); ieee80211_query_HTCapShortGI(ieee, tcb_desc); ieee80211_query_BandwidthMode(ieee, tcb_desc); ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]); ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1); } spin_unlock_irqrestore(&ieee->lock, flags); dev_kfree_skb_any(skb); if (txb) { if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE){ ieee80211_softmac_xmit(txb, ieee); }else{ if ((*ieee->hard_start_xmit)(txb, dev) == 0) { stats->tx_packets++; stats->tx_bytes += __le16_to_cpu(txb->payload_size); return 0; } ieee80211_txb_free(txb); } } return 0; failed: spin_unlock_irqrestore(&ieee->lock, flags); netif_stop_queue(dev); stats->tx_errors++; return 1; }