/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * ******************************************************************************/ #define _IEEE80211_C #include #include #include #include #include #include u8 RTW_WPA_OUI23A_TYPE[] = { 0x00, 0x50, 0xf2, 1 }; u16 RTW_WPA_VERSION23A = 1; u8 WPA_AUTH_KEY_MGMT_NONE23A[] = { 0x00, 0x50, 0xf2, 0 }; u8 WPA_AUTH_KEY_MGMT_UNSPEC_802_1X23A[] = { 0x00, 0x50, 0xf2, 1 }; u8 WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X23A[] = { 0x00, 0x50, 0xf2, 2 }; u8 WPA_CIPHER_SUITE_NONE23A[] = { 0x00, 0x50, 0xf2, 0 }; u8 WPA_CIPHER_SUITE_WEP4023A[] = { 0x00, 0x50, 0xf2, 1 }; u8 WPA_CIPHER_SUITE_TKIP23A[] = { 0x00, 0x50, 0xf2, 2 }; u8 WPA_CIPHER_SUITE_WRAP23A[] = { 0x00, 0x50, 0xf2, 3 }; u8 WPA_CIPHER_SUITE_CCMP23A[] = { 0x00, 0x50, 0xf2, 4 }; u8 WPA_CIPHER_SUITE_WEP10423A[] = { 0x00, 0x50, 0xf2, 5 }; u8 RSN_AUTH_KEY_MGMT_UNSPEC_802_1X23A[] = { 0x00, 0x0f, 0xac, 1 }; u8 RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X23A[] = { 0x00, 0x0f, 0xac, 2 }; u8 RSN_CIPHER_SUITE_NONE23A[] = { 0x00, 0x0f, 0xac, 0 }; u8 RSN_CIPHER_SUITE_WEP4023A[] = { 0x00, 0x0f, 0xac, 1 }; u8 RSN_CIPHER_SUITE_TKIP23A[] = { 0x00, 0x0f, 0xac, 2 }; u8 RSN_CIPHER_SUITE_WRAP23A[] = { 0x00, 0x0f, 0xac, 3 }; u8 RSN_CIPHER_SUITE_CCMP23A[] = { 0x00, 0x0f, 0xac, 4 }; u8 RSN_CIPHER_SUITE_WEP10423A[] = { 0x00, 0x0f, 0xac, 5 }; /* */ /* for adhoc-master to generate ie and provide supported-rate to fw */ /* */ static u8 WIFI_CCKRATES[] = { IEEE80211_CCK_RATE_1MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_2MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_5MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_11MB | IEEE80211_BASIC_RATE_MASK }; static u8 WIFI_OFDMRATES[] = { IEEE80211_OFDM_RATE_6MB, IEEE80211_OFDM_RATE_9MB, IEEE80211_OFDM_RATE_12MB, IEEE80211_OFDM_RATE_18MB, IEEE80211_OFDM_RATE_24MB, IEEE80211_OFDM_RATE_36MB, IEEE80211_OFDM_RATE_48MB, IEEE80211_OFDM_RATE_54MB }; int rtw_get_bit_value_from_ieee_value23a(u8 val) { unsigned char dot11_rate_table[]= {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108, 0}; int i = 0; while (dot11_rate_table[i] != 0) { if (dot11_rate_table[i] == val) return BIT(i); i++; } return 0; } static bool rtw_is_cckrates_included(u8 *rate) { u32 i = 0; while (rate[i]) { if ((rate[i] & 0x7f) == 2 || (rate[i] & 0x7f) == 4 || (rate[i] & 0x7f) == 11 || (rate[i] & 0x7f) == 22) return true; i++; } return false; } static bool rtw_is_cckratesonly_included(u8 *rate) { u32 i = 0; while (rate[i]) { if ((rate[i] & 0x7f) != 2 && (rate[i] & 0x7f) != 4 && (rate[i] & 0x7f) != 11 && (rate[i] & 0x7f) != 22) return false; i++; } return true; } int rtw_check_network_type23a(unsigned char *rate, int ratelen, int channel) { if (channel > 14) { if (rtw_is_cckrates_included(rate)) return WIRELESS_INVALID; else return WIRELESS_11A; } else { /* could be pure B, pure G, or B/G */ if (rtw_is_cckratesonly_included(rate)) return WIRELESS_11B; else if (rtw_is_cckrates_included(rate)) return WIRELESS_11BG; else return WIRELESS_11G; } } /* rtw_set_ie23a will update frame length */ u8 *rtw_set_ie23a(u8 *pbuf, int index, uint len, const u8 *source, uint *frlen) { *pbuf = (u8)index; *(pbuf + 1) = (u8)len; if (len > 0) memcpy((void *)(pbuf + 2), (void *)source, len); *frlen = *frlen + (len + 2); return pbuf + len + 2; } inline u8 *rtw_set_ie23a_ch_switch (u8 *buf, u32 *buf_len, u8 ch_switch_mode, u8 new_ch, u8 ch_switch_cnt) { u8 ie_data[3]; ie_data[0] = ch_switch_mode; ie_data[1] = new_ch; ie_data[2] = ch_switch_cnt; return rtw_set_ie23a(buf, WLAN_EID_CHANNEL_SWITCH, 3, ie_data, buf_len); } inline u8 hal_ch_offset_to_secondary_ch_offset23a(u8 ch_offset) { if (ch_offset == HAL_PRIME_CHNL_OFFSET_LOWER) return IEEE80211_HT_PARAM_CHA_SEC_BELOW; else if (ch_offset == HAL_PRIME_CHNL_OFFSET_UPPER) return IEEE80211_HT_PARAM_CHA_SEC_ABOVE; return IEEE80211_HT_PARAM_CHA_SEC_NONE; } inline u8 *rtw_set_ie23a_secondary_ch_offset(u8 *buf, u32 *buf_len, u8 secondary_ch_offset) { return rtw_set_ie23a(buf, WLAN_EID_SECONDARY_CHANNEL_OFFSET, 1, &secondary_ch_offset, buf_len); } /*---------------------------------------------------------------------------- index: the information element id index, limit is the limit for search -----------------------------------------------------------------------------*/ u8 *rtw_get_ie23a(u8 *pbuf, int index, int *len, int limit) { int tmp, i; u8 *p; if (limit < 1) { return NULL; } p = pbuf; i = 0; *len = 0; while (1) { if (*p == index) { *len = *(p + 1); return p; } else { tmp = *(p + 1); p += (tmp + 2); i += (tmp + 2); } if (i >= limit) break; } return NULL; } /** * rtw_get_ie23a_ex - Search specific IE from a series of IEs * @in_ie: Address of IEs to search * @in_len: Length limit from in_ie * @eid: Element ID to match * @oui: OUI to match * @oui_len: OUI length * @ie: If not NULL and the specific IE is found, the IE will be copied * to the buf starting from the specific IE * @ielen: If not NULL and the specific IE is found, will set to the length * of the entire IE * * Returns: The address of the specific IE found, or NULL */ u8 *rtw_get_ie23a_ex(u8 *in_ie, uint in_len, u8 eid, u8 *oui, u8 oui_len, u8 *ie, uint *ielen) { uint cnt; u8 *target_ie = NULL; if (ielen) *ielen = 0; if (!in_ie || in_len <= 0) return target_ie; cnt = 0; while (cnt < in_len) { if (eid == in_ie[cnt] && (!oui || !memcmp(&in_ie[cnt+2], oui, oui_len))) { target_ie = &in_ie[cnt]; if (ie) memcpy(ie, &in_ie[cnt], in_ie[cnt+1]+2); if (ielen) *ielen = in_ie[cnt+1]+2; break; } else { cnt += in_ie[cnt + 1] + 2; /* goto next */ } } return target_ie; } /** * rtw_ies_remove_ie23a - Find matching IEs and remove * @ies: Address of IEs to search * @ies_len: Pointer of length of ies, will update to new length * @offset: The offset to start search * @eid: Element ID to match * @oui: OUI to match * @oui_len: OUI length * * Returns: _SUCCESS: ies is updated, _FAIL: not updated */ int rtw_ies_remove_ie23a(u8 *ies, uint *ies_len, uint offset, u8 eid, u8 *oui, u8 oui_len) { int ret = _FAIL; u8 *target_ie; u32 target_ielen; u8 *start; uint search_len; if (!ies || !ies_len || *ies_len <= offset) goto exit; start = ies + offset; search_len = *ies_len - offset; while (1) { target_ie = rtw_get_ie23a_ex(start, search_len, eid, oui, oui_len, NULL, &target_ielen); if (target_ie && target_ielen) { u8 buf[MAX_IE_SZ] = {0}; u8 *remain_ies = target_ie + target_ielen; uint remain_len = search_len - (remain_ies - start); memcpy(buf, remain_ies, remain_len); memcpy(target_ie, buf, remain_len); *ies_len = *ies_len - target_ielen; ret = _SUCCESS; start = target_ie; search_len = remain_len; } else { break; } } exit: return ret; } void rtw_set_supported_rate23a(u8 *SupportedRates, uint mode) { memset(SupportedRates, 0, NDIS_802_11_LENGTH_RATES_EX); switch (mode) { case WIRELESS_11B: memcpy(SupportedRates, WIFI_CCKRATES, IEEE80211_CCK_RATE_LEN); break; case WIRELESS_11G: case WIRELESS_11A: case WIRELESS_11_5N: case WIRELESS_11A_5N:/* Todo: no basic rate for ofdm ? */ memcpy(SupportedRates, WIFI_OFDMRATES, IEEE80211_NUM_OFDM_RATESLEN); break; case WIRELESS_11BG: case WIRELESS_11G_24N: case WIRELESS_11_24N: case WIRELESS_11BG_24N: memcpy(SupportedRates, WIFI_CCKRATES, IEEE80211_CCK_RATE_LEN); memcpy(SupportedRates + IEEE80211_CCK_RATE_LEN, WIFI_OFDMRATES, IEEE80211_NUM_OFDM_RATESLEN); break; } } uint rtw_get_rateset_len23a(u8 *rateset) { uint i = 0; while(1) { if (rateset[i] == 0) break; if (i > 12) break; i++; } return i; } int rtw_generate_ie23a(struct registry_priv *pregistrypriv) { u8 wireless_mode; int sz = 0, rateLen; struct wlan_bssid_ex* pdev_network = &pregistrypriv->dev_network; u8* ie = pdev_network->IEs; u16 cap; pdev_network->tsf = 0; cap = WLAN_CAPABILITY_IBSS; if (pregistrypriv->preamble == PREAMBLE_SHORT) cap |= WLAN_CAPABILITY_SHORT_PREAMBLE; if (pdev_network->Privacy) cap |= WLAN_CAPABILITY_PRIVACY; pdev_network->capability = cap; /* SSID */ ie = rtw_set_ie23a(ie, WLAN_EID_SSID, pdev_network->Ssid.ssid_len, pdev_network->Ssid.ssid, &sz); /* supported rates */ if (pregistrypriv->wireless_mode == WIRELESS_11ABGN) { if (pdev_network->DSConfig > 14) wireless_mode = WIRELESS_11A_5N; else wireless_mode = WIRELESS_11BG_24N; } else { wireless_mode = pregistrypriv->wireless_mode; } rtw_set_supported_rate23a(pdev_network->SupportedRates, wireless_mode) ; rateLen = rtw_get_rateset_len23a(pdev_network->SupportedRates); if (rateLen > 8) { ie = rtw_set_ie23a(ie, WLAN_EID_SUPP_RATES, 8, pdev_network->SupportedRates, &sz); /* ie = rtw_set_ie23a(ie, _EXT_SUPPORTEDRATES_IE_, (rateLen - 8), (pdev_network->SupportedRates + 8), &sz); */ } else { ie = rtw_set_ie23a(ie, WLAN_EID_SUPP_RATES, rateLen, pdev_network->SupportedRates, &sz); } /* DS parameter set */ ie = rtw_set_ie23a(ie, WLAN_EID_DS_PARAMS, 1, (u8 *)&pdev_network->DSConfig, &sz); /* IBSS Parameter Set */ ie = rtw_set_ie23a(ie, WLAN_EID_IBSS_PARAMS, 2, (u8 *)&pdev_network->ATIMWindow, &sz); if (rateLen > 8) { ie = rtw_set_ie23a(ie, WLAN_EID_EXT_SUPP_RATES, (rateLen - 8), (pdev_network->SupportedRates + 8), &sz); } /* return _SUCCESS; */ return sz; } static int rtw_get_wpa_cipher_suite(const u8 *s) { if (!memcmp(s, WPA_CIPHER_SUITE_NONE23A, WPA_SELECTOR_LEN)) return WPA_CIPHER_NONE; if (!memcmp(s, WPA_CIPHER_SUITE_WEP4023A, WPA_SELECTOR_LEN)) return WPA_CIPHER_WEP40; if (!memcmp(s, WPA_CIPHER_SUITE_TKIP23A, WPA_SELECTOR_LEN)) return WPA_CIPHER_TKIP; if (!memcmp(s, WPA_CIPHER_SUITE_CCMP23A, WPA_SELECTOR_LEN)) return WPA_CIPHER_CCMP; if (!memcmp(s, WPA_CIPHER_SUITE_WEP10423A, WPA_SELECTOR_LEN)) return WPA_CIPHER_WEP104; return 0; } static int rtw_get_wpa2_cipher_suite(const u8 *s) { if (!memcmp(s, RSN_CIPHER_SUITE_NONE23A, RSN_SELECTOR_LEN)) return WPA_CIPHER_NONE; if (!memcmp(s, RSN_CIPHER_SUITE_WEP4023A, RSN_SELECTOR_LEN)) return WPA_CIPHER_WEP40; if (!memcmp(s, RSN_CIPHER_SUITE_TKIP23A, RSN_SELECTOR_LEN)) return WPA_CIPHER_TKIP; if (!memcmp(s, RSN_CIPHER_SUITE_CCMP23A, RSN_SELECTOR_LEN)) return WPA_CIPHER_CCMP; if (!memcmp(s, RSN_CIPHER_SUITE_WEP10423A, RSN_SELECTOR_LEN)) return WPA_CIPHER_WEP104; return 0; } int rtw_parse_wpa_ie23a(const u8* wpa_ie, int wpa_ie_len, int *group_cipher, int *pairwise_cipher, int *is_8021x) { int i, ret = _SUCCESS; int left, count; const u8 *pos; if (wpa_ie_len <= 0) { /* No WPA IE - fail silently */ return _FAIL; } if (wpa_ie[1] != (u8)(wpa_ie_len - 2)) return _FAIL; pos = wpa_ie; pos += 8; left = wpa_ie_len - 8; /* group_cipher */ if (left >= WPA_SELECTOR_LEN) { *group_cipher = rtw_get_wpa_cipher_suite(pos); pos += WPA_SELECTOR_LEN; left -= WPA_SELECTOR_LEN; } else if (left > 0) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_, "%s: ie length mismatch, %u too much\n", __func__, left); return _FAIL; } /* pairwise_cipher */ if (left >= 2) { /* count = le16_to_cpu(*(u16*)pos); */ count = get_unaligned_le16(pos); pos += 2; left -= 2; if (count == 0 || left < count * WPA_SELECTOR_LEN) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_, "%s: ie count botch (pairwise), count %u left %u\n", __func__, count, left); return _FAIL; } for (i = 0; i < count; i++) { *pairwise_cipher |= rtw_get_wpa_cipher_suite(pos); pos += WPA_SELECTOR_LEN; left -= WPA_SELECTOR_LEN; } } else if (left == 1) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_, "%s: ie too short (for key mgmt)\n", __func__); return _FAIL; } if (is_8021x) { if (left >= 6) { pos += 2; if (!memcmp(pos, RTW_WPA_OUI23A_TYPE, 4)) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "%s : there has 802.1x auth\n", __func__); *is_8021x = 1; } } } return ret; } int rtw_parse_wpa2_ie23a(const u8 *rsn_ie, int rsn_ie_len, int *group_cipher, int *pairwise_cipher, int *is_8021x) { int i, ret = _SUCCESS; int left, count; const u8 *pos; u8 SUITE_1X[4] = {0x00, 0x0f, 0xac, 0x01}; if (rsn_ie_len <= 0) { /* No RSN IE - fail silently */ return _FAIL; } if (*rsn_ie != WLAN_EID_RSN || *(rsn_ie+1) != (u8)(rsn_ie_len - 2)) { return _FAIL; } pos = rsn_ie; pos += 4; left = rsn_ie_len - 4; /* group_cipher */ if (left >= RSN_SELECTOR_LEN) { *group_cipher = rtw_get_wpa2_cipher_suite(pos); pos += RSN_SELECTOR_LEN; left -= RSN_SELECTOR_LEN; } else if (left > 0) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_, "%s: ie length mismatch, %u too much\n", __func__, left); return _FAIL; } /* pairwise_cipher */ if (left >= 2) { /* count = le16_to_cpu(*(u16*)pos); */ count = get_unaligned_le16(pos); pos += 2; left -= 2; if (count == 0 || left < count * RSN_SELECTOR_LEN) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_, "%s: ie count botch (pairwise), count %u left %u\n", __func__, count, left); return _FAIL; } for (i = 0; i < count; i++) { *pairwise_cipher |= rtw_get_wpa2_cipher_suite(pos); pos += RSN_SELECTOR_LEN; left -= RSN_SELECTOR_LEN; } } else if (left == 1) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_, "%s: ie too short (for key mgmt)\n", __func__); return _FAIL; } if (is_8021x) { if (left >= 6) { pos += 2; if (!memcmp(pos, SUITE_1X, 4)) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "%s (): there has 802.1x auth\n", __func__); *is_8021x = 1; } } } return ret; } /** * rtw_get_wps_attr23a - Search a specific WPS attribute from a given WPS IE * @wps_ie: Address of WPS IE to search * @wps_ielen: Length limit from wps_ie * @target_attr_id: The attribute ID of WPS attribute to search * @buf_attr: If not NULL and the WPS attribute is found, WPS attribute * will be copied to the buf starting from buf_attr * @len_attr: If not NULL and the WPS attribute is found, will set to the * length of the entire WPS attribute * * Returns: the address of the specific WPS attribute found, or NULL */ const u8 *rtw_get_wps_attr23a(const u8 *wps_ie, uint wps_ielen, u16 target_attr_id, u8 *buf_attr, u32 *len_attr) { const u8 *attr_ptr = NULL; const u8 *target_attr_ptr = NULL; u8 wps_oui[4] = {0x00, 0x50, 0xF2, 0x04}; if (len_attr) *len_attr = 0; if (wps_ie[0] != WLAN_EID_VENDOR_SPECIFIC || memcmp(wps_ie + 2, wps_oui, 4)) { return attr_ptr; } /* 6 = 1(Element ID) + 1(Length) + 4(WPS OUI) */ attr_ptr = wps_ie + 6; /* goto first attr */ while (attr_ptr - wps_ie < wps_ielen) { /* 4 = 2(Attribute ID) + 2(Length) */ u16 attr_id = get_unaligned_be16(attr_ptr); u16 attr_data_len = get_unaligned_be16(attr_ptr + 2); u16 attr_len = attr_data_len + 4; /* DBG_8723A("%s attr_ptr:%p, id:%u, length:%u\n", __func__, attr_ptr, attr_id, attr_data_len); */ if (attr_id == target_attr_id) { target_attr_ptr = attr_ptr; if (buf_attr) memcpy(buf_attr, attr_ptr, attr_len); if (len_attr) *len_attr = attr_len; break; } else { attr_ptr += attr_len; /* goto next */ } } return target_attr_ptr; } /** * rtw_get_wps_attr_content23a - Search a specific WPS attribute content * from a given WPS IE * @wps_ie: Address of WPS IE to search * @wps_ielen: Length limit from wps_ie * @target_attr_id: The attribute ID of WPS attribute to search * @buf_content: If not NULL and the WPS attribute is found, WPS attribute * content will be copied to the buf starting from buf_content * @len_content: If not NULL and the WPS attribute is found, will set to the * length of the WPS attribute content * * Returns: the address of the specific WPS attribute content found, or NULL */ const u8 *rtw_get_wps_attr_content23a(const u8 *wps_ie, uint wps_ielen, u16 target_attr_id, u8 *buf_content) { const u8 *attr_ptr; u32 attr_len; attr_ptr = rtw_get_wps_attr23a(wps_ie, wps_ielen, target_attr_id, NULL, &attr_len); if (attr_ptr && attr_len) { if (buf_content) memcpy(buf_content, attr_ptr + 4, attr_len - 4); return attr_ptr + 4; } return NULL; } static int rtw_get_cipher_info(struct wlan_network *pnetwork) { const u8 *pbuf; int group_cipher = 0, pairwise_cipher = 0, is8021x = 0; int ret = _FAIL; int r, plen; char *pie; pie = pnetwork->network.IEs; plen = pnetwork->network.IELength; pbuf = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, WLAN_OUI_TYPE_MICROSOFT_WPA, pie, plen); if (pbuf && pbuf[1] > 0) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "rtw_get_cipher_info: wpa_ielen: %d\n", pbuf[1]); r = rtw_parse_wpa_ie23a(pbuf, pbuf[1] + 2, &group_cipher, &pairwise_cipher, &is8021x); if (r == _SUCCESS) { pnetwork->BcnInfo.pairwise_cipher = pairwise_cipher; pnetwork->BcnInfo.group_cipher = group_cipher; pnetwork->BcnInfo.is_8021x = is8021x; RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "%s: pnetwork->pairwise_cipher: %d, is_8021x is %d\n", __func__, pnetwork->BcnInfo.pairwise_cipher, pnetwork->BcnInfo.is_8021x); ret = _SUCCESS; } } else { pbuf = cfg80211_find_ie(WLAN_EID_RSN, pie, plen); if (pbuf && pbuf[1] > 0) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "get RSN IE\n"); r = rtw_parse_wpa2_ie23a(pbuf, pbuf[1] + 2, &group_cipher, &pairwise_cipher, &is8021x); if (r == _SUCCESS) { RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "get RSN IE OK!!!\n"); pnetwork->BcnInfo.pairwise_cipher = pairwise_cipher; pnetwork->BcnInfo.group_cipher = group_cipher; pnetwork->BcnInfo.is_8021x = is8021x; RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "%s: pnetwork->pairwise_cipher: %d,pnetwork->group_cipher is %d, is_8021x is %d\n", __func__, pnetwork->BcnInfo.pairwise_cipher, pnetwork->BcnInfo.group_cipher, pnetwork->BcnInfo.is_8021x); ret = _SUCCESS; } } } return ret; } void rtw_get_bcn_info23a(struct wlan_network *pnetwork) { u8 bencrypt = 0; int pie_len; u8 *pie; const u8 *p; if (pnetwork->network.capability & WLAN_CAPABILITY_PRIVACY) { bencrypt = 1; pnetwork->network.Privacy = 1; } else pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_OPENSYS; RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "%s: ssid =%s\n", __func__, pnetwork->network.Ssid.ssid); pie = pnetwork->network.IEs; pie_len = pnetwork->network.IELength; p = cfg80211_find_ie(WLAN_EID_RSN, pie, pie_len); if (p && p[1]) { pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WPA2; } else if (cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, WLAN_OUI_TYPE_MICROSOFT_WPA, pie, pie_len)) { pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WPA; } else { if (bencrypt) pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WEP; } RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "%s: pnetwork->encryp_protocol is %x\n", __func__, pnetwork->BcnInfo.encryp_protocol); RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_, "%s: pnetwork->encryp_protocol is %x\n", __func__, pnetwork->BcnInfo.encryp_protocol); rtw_get_cipher_info(pnetwork); /* get bwmode and ch_offset */ } /* show MCS rate, unit: 100Kbps */ u16 rtw_mcs_rate23a(u8 rf_type, u8 bw_40MHz, u8 short_GI_20, u8 short_GI_40, struct ieee80211_mcs_info *mcs) { u16 max_rate = 0; if (rf_type == RF_1T1R) { if (mcs->rx_mask[0] & BIT(7)) max_rate = (bw_40MHz) ? ((short_GI_40)?1500:1350): ((short_GI_20)?722:650); else if (mcs->rx_mask[0] & BIT(6)) max_rate = (bw_40MHz) ? ((short_GI_40)?1350:1215): ((short_GI_20)?650:585); else if (mcs->rx_mask[0] & BIT(5)) max_rate = (bw_40MHz) ? ((short_GI_40)?1200:1080): ((short_GI_20)?578:520); else if (mcs->rx_mask[0] & BIT(4)) max_rate = (bw_40MHz) ? ((short_GI_40)?900:810): ((short_GI_20)?433:390); else if (mcs->rx_mask[0] & BIT(3)) max_rate = (bw_40MHz) ? ((short_GI_40)?600:540): ((short_GI_20)?289:260); else if (mcs->rx_mask[0] & BIT(2)) max_rate = (bw_40MHz) ? ((short_GI_40)?450:405): ((short_GI_20)?217:195); else if (mcs->rx_mask[0] & BIT(1)) max_rate = (bw_40MHz) ? ((short_GI_40)?300:270): ((short_GI_20)?144:130); else if (mcs->rx_mask[0] & BIT(0)) max_rate = (bw_40MHz) ? ((short_GI_40)?150:135): ((short_GI_20)?72:65); } else { if (mcs->rx_mask[1]) { if (mcs->rx_mask[1] & BIT(7)) max_rate = (bw_40MHz) ? ((short_GI_40)?3000:2700):((short_GI_20)?1444:1300); else if (mcs->rx_mask[1] & BIT(6)) max_rate = (bw_40MHz) ? ((short_GI_40)?2700:2430):((short_GI_20)?1300:1170); else if (mcs->rx_mask[1] & BIT(5)) max_rate = (bw_40MHz) ? ((short_GI_40)?2400:2160):((short_GI_20)?1156:1040); else if (mcs->rx_mask[1] & BIT(4)) max_rate = (bw_40MHz) ? ((short_GI_40)?1800:1620):((short_GI_20)?867:780); else if (mcs->rx_mask[1] & BIT(3)) max_rate = (bw_40MHz) ? ((short_GI_40)?1200:1080):((short_GI_20)?578:520); else if (mcs->rx_mask[1] & BIT(2)) max_rate = (bw_40MHz) ? ((short_GI_40)?900:810):((short_GI_20)?433:390); else if (mcs->rx_mask[1] & BIT(1)) max_rate = (bw_40MHz) ? ((short_GI_40)?600:540):((short_GI_20)?289:260); else if (mcs->rx_mask[1] & BIT(0)) max_rate = (bw_40MHz) ? ((short_GI_40)?300:270):((short_GI_20)?144:130); } else { if (mcs->rx_mask[0] & BIT(7)) max_rate = (bw_40MHz) ? ((short_GI_40)?1500:1350):((short_GI_20)?722:650); else if (mcs->rx_mask[0] & BIT(6)) max_rate = (bw_40MHz) ? ((short_GI_40)?1350:1215):((short_GI_20)?650:585); else if (mcs->rx_mask[0] & BIT(5)) max_rate = (bw_40MHz) ? ((short_GI_40)?1200:1080):((short_GI_20)?578:520); else if (mcs->rx_mask[0] & BIT(4)) max_rate = (bw_40MHz) ? ((short_GI_40)?900:810):((short_GI_20)?433:390); else if (mcs->rx_mask[0] & BIT(3)) max_rate = (bw_40MHz) ? ((short_GI_40)?600:540):((short_GI_20)?289:260); else if (mcs->rx_mask[0] & BIT(2)) max_rate = (bw_40MHz) ? ((short_GI_40)?450:405):((short_GI_20)?217:195); else if (mcs->rx_mask[0] & BIT(1)) max_rate = (bw_40MHz) ? ((short_GI_40)?300:270):((short_GI_20)?144:130); else if (mcs->rx_mask[0] & BIT(0)) max_rate = (bw_40MHz) ? ((short_GI_40)?150:135):((short_GI_20)?72:65); } } return max_rate; }