// SPDX-License-Identifier: GPL-2.0 /****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * ******************************************************************************/ #define _HAL_COM_PHYCFG_C_ #include #include #include #include u8 PHY_GetTxPowerByRateBase(struct adapter *Adapter, u8 Band, u8 RfPath, u8 TxNum, enum RATE_SECTION RateSection) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); u8 value = 0; if (RfPath > ODM_RF_PATH_D) { DBG_871X("Invalid Rf Path %d in PHY_GetTxPowerByRateBase()\n", RfPath); return 0; } if (Band == BAND_ON_2_4G) { switch (RateSection) { case CCK: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][0]; break; case OFDM: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][1]; break; case HT_MCS0_MCS7: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][2]; break; case HT_MCS8_MCS15: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][3]; break; case HT_MCS16_MCS23: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][4]; break; case HT_MCS24_MCS31: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][5]; break; case VHT_1SSMCS0_1SSMCS9: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][6]; break; case VHT_2SSMCS0_2SSMCS9: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][7]; break; case VHT_3SSMCS0_3SSMCS9: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][8]; break; case VHT_4SSMCS0_4SSMCS9: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][9]; break; default: DBG_871X("Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in PHY_GetTxPowerByRateBase()\n", RateSection, RfPath, TxNum); break; } } else if (Band == BAND_ON_5G) { switch (RateSection) { case OFDM: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][0]; break; case HT_MCS0_MCS7: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][1]; break; case HT_MCS8_MCS15: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][2]; break; case HT_MCS16_MCS23: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][3]; break; case HT_MCS24_MCS31: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][4]; break; case VHT_1SSMCS0_1SSMCS9: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][5]; break; case VHT_2SSMCS0_2SSMCS9: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][6]; break; case VHT_3SSMCS0_3SSMCS9: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][7]; break; case VHT_4SSMCS0_4SSMCS9: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][8]; break; default: DBG_871X("Invalid RateSection %d in Band 5G, Rf Path %d, %dTx in PHY_GetTxPowerByRateBase()\n", RateSection, RfPath, TxNum); break; } } else DBG_871X("Invalid Band %d in PHY_GetTxPowerByRateBase()\n", Band); return value; } static void phy_SetTxPowerByRateBase( struct adapter *Adapter, u8 Band, u8 RfPath, enum RATE_SECTION RateSection, u8 TxNum, u8 Value ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); if (RfPath > ODM_RF_PATH_D) { DBG_871X("Invalid Rf Path %d in phy_SetTxPowerByRatBase()\n", RfPath); return; } if (Band == BAND_ON_2_4G) { switch (RateSection) { case CCK: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][0] = Value; break; case OFDM: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][1] = Value; break; case HT_MCS0_MCS7: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][2] = Value; break; case HT_MCS8_MCS15: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][3] = Value; break; case HT_MCS16_MCS23: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][4] = Value; break; case HT_MCS24_MCS31: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][5] = Value; break; case VHT_1SSMCS0_1SSMCS9: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][6] = Value; break; case VHT_2SSMCS0_2SSMCS9: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][7] = Value; break; case VHT_3SSMCS0_3SSMCS9: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][8] = Value; break; case VHT_4SSMCS0_4SSMCS9: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][9] = Value; break; default: DBG_871X("Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in phy_SetTxPowerByRateBase()\n", RateSection, RfPath, TxNum); break; } } else if (Band == BAND_ON_5G) { switch (RateSection) { case OFDM: pHalData->TxPwrByRateBase5G[RfPath][TxNum][0] = Value; break; case HT_MCS0_MCS7: pHalData->TxPwrByRateBase5G[RfPath][TxNum][1] = Value; break; case HT_MCS8_MCS15: pHalData->TxPwrByRateBase5G[RfPath][TxNum][2] = Value; break; case HT_MCS16_MCS23: pHalData->TxPwrByRateBase5G[RfPath][TxNum][3] = Value; break; case HT_MCS24_MCS31: pHalData->TxPwrByRateBase5G[RfPath][TxNum][4] = Value; break; case VHT_1SSMCS0_1SSMCS9: pHalData->TxPwrByRateBase5G[RfPath][TxNum][5] = Value; break; case VHT_2SSMCS0_2SSMCS9: pHalData->TxPwrByRateBase5G[RfPath][TxNum][6] = Value; break; case VHT_3SSMCS0_3SSMCS9: pHalData->TxPwrByRateBase5G[RfPath][TxNum][7] = Value; break; case VHT_4SSMCS0_4SSMCS9: pHalData->TxPwrByRateBase5G[RfPath][TxNum][8] = Value; break; default: DBG_871X("Invalid RateSection %d in Band 5G, Rf Path %d, %dTx in phy_SetTxPowerByRateBase()\n", RateSection, RfPath, TxNum); break; } } else DBG_871X("Invalid Band %d in phy_SetTxPowerByRateBase()\n", Band); } static void phy_StoreTxPowerByRateBase( struct adapter *padapter ) { u8 path, base; /* DBG_871X("===>%s\n", __func__); */ for (path = ODM_RF_PATH_A; path <= ODM_RF_PATH_B; ++path) { base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_1TX, MGN_11M); phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, CCK, RF_1TX, base); /* DBG_871X("Power index base of 2.4G path %d 1Tx CCK = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_1TX, MGN_54M); phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, OFDM, RF_1TX, base); /* DBG_871X("Power index base of 2.4G path %d 1Tx OFDM = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_1TX, MGN_MCS7); phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, HT_MCS0_MCS7, RF_1TX, base); /* DBG_871X("Power index base of 2.4G path %d 1Tx MCS0-7 = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_2TX, MGN_MCS15); phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, HT_MCS8_MCS15, RF_2TX, base); /* DBG_871X("Power index base of 2.4G path %d 2Tx MCS8-15 = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_3TX, MGN_MCS23); phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, HT_MCS16_MCS23, RF_3TX, base); /* DBG_871X("Power index base of 2.4G path %d 3Tx MCS16-23 = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_1TX, MGN_VHT1SS_MCS7); phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, VHT_1SSMCS0_1SSMCS9, RF_1TX, base); /* DBG_871X("Power index base of 2.4G path %d 1Tx VHT1SS = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_2TX, MGN_VHT2SS_MCS7); phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, VHT_2SSMCS0_2SSMCS9, RF_2TX, base); /* DBG_871X("Power index base of 2.4G path %d 2Tx VHT2SS = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_3TX, MGN_VHT3SS_MCS7); phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, VHT_3SSMCS0_3SSMCS9, RF_3TX, base); /* DBG_871X("Power index base of 2.4G path %d 3Tx VHT3SS = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_1TX, MGN_54M); phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, OFDM, RF_1TX, base); /* DBG_871X("Power index base of 5G path %d 1Tx OFDM = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_1TX, MGN_MCS7); phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, HT_MCS0_MCS7, RF_1TX, base); /* DBG_871X("Power index base of 5G path %d 1Tx MCS0~7 = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_2TX, MGN_MCS15); phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, HT_MCS8_MCS15, RF_2TX, base); /* DBG_871X("Power index base of 5G path %d 2Tx MCS8~15 = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_3TX, MGN_MCS23); phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, HT_MCS16_MCS23, RF_3TX, base); /* DBG_871X("Power index base of 5G path %d 3Tx MCS16~23 = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_1TX, MGN_VHT1SS_MCS7); phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, VHT_1SSMCS0_1SSMCS9, RF_1TX, base); /* DBG_871X("Power index base of 5G path %d 1Tx VHT1SS = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_2TX, MGN_VHT2SS_MCS7); phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, VHT_2SSMCS0_2SSMCS9, RF_2TX, base); /* DBG_871X("Power index base of 5G path %d 2Tx VHT2SS = > 0x%x\n", path, base); */ base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_3TX, MGN_VHT2SS_MCS7); phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, VHT_3SSMCS0_3SSMCS9, RF_3TX, base); /* DBG_871X("Power index base of 5G path %d 3Tx VHT3SS = > 0x%x\n", path, base); */ } /* DBG_871X("<===%s\n", __func__); */ } u8 PHY_GetRateSectionIndexOfTxPowerByRate( struct adapter *padapter, u32 RegAddr, u32 BitMask ) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; u8 index = 0; if (pDM_Odm->PhyRegPgVersion == 0) { switch (RegAddr) { case rTxAGC_A_Rate18_06: index = 0; break; case rTxAGC_A_Rate54_24: index = 1; break; case rTxAGC_A_CCK1_Mcs32: index = 6; break; case rTxAGC_B_CCK11_A_CCK2_11: if (BitMask == bMaskH3Bytes) index = 7; else if (BitMask == 0x000000ff) index = 15; break; case rTxAGC_A_Mcs03_Mcs00: index = 2; break; case rTxAGC_A_Mcs07_Mcs04: index = 3; break; case rTxAGC_A_Mcs11_Mcs08: index = 4; break; case rTxAGC_A_Mcs15_Mcs12: index = 5; break; case rTxAGC_B_Rate18_06: index = 8; break; case rTxAGC_B_Rate54_24: index = 9; break; case rTxAGC_B_CCK1_55_Mcs32: index = 14; break; case rTxAGC_B_Mcs03_Mcs00: index = 10; break; case rTxAGC_B_Mcs07_Mcs04: index = 11; break; case rTxAGC_B_Mcs11_Mcs08: index = 12; break; case rTxAGC_B_Mcs15_Mcs12: index = 13; break; default: DBG_871X("Invalid RegAddr 0x3%x in PHY_GetRateSectionIndexOfTxPowerByRate()", RegAddr); break; } } return index; } void PHY_GetRateValuesOfTxPowerByRate( struct adapter *padapter, u32 RegAddr, u32 BitMask, u32 Value, u8 *RateIndex, s8 *PwrByRateVal, u8 *RateNum ) { u8 i = 0; switch (RegAddr) { case rTxAGC_A_Rate18_06: case rTxAGC_B_Rate18_06: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_6M); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_9M); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_12M); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_18M); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_Rate54_24: case rTxAGC_B_Rate54_24: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_24M); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_36M); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_48M); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_54M); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_CCK1_Mcs32: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_1M); PwrByRateVal[0] = (s8) ((((Value >> (8 + 4)) & 0xF)) * 10 + ((Value >> 8) & 0xF)); *RateNum = 1; break; case rTxAGC_B_CCK11_A_CCK2_11: if (BitMask == 0xffffff00) { RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_2M); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_5_5M); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_11M); for (i = 1; i < 4; ++i) { PwrByRateVal[i - 1] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 3; } else if (BitMask == 0x000000ff) { RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_11M); PwrByRateVal[0] = (s8) ((((Value >> 4) & 0xF)) * 10 + (Value & 0xF)); *RateNum = 1; } break; case rTxAGC_A_Mcs03_Mcs00: case rTxAGC_B_Mcs03_Mcs00: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS0); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS1); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS2); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS3); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_Mcs07_Mcs04: case rTxAGC_B_Mcs07_Mcs04: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS4); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS5); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS6); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS7); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_Mcs11_Mcs08: case rTxAGC_B_Mcs11_Mcs08: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS8); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS9); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS10); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS11); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_Mcs15_Mcs12: case rTxAGC_B_Mcs15_Mcs12: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS12); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS13); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS14); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS15); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_B_CCK1_55_Mcs32: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_1M); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_2M); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_5_5M); for (i = 1; i < 4; ++i) { PwrByRateVal[i - 1] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 3; break; case 0xC20: case 0xE20: case 0x1820: case 0x1a20: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_1M); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_2M); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_5_5M); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_11M); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC24: case 0xE24: case 0x1824: case 0x1a24: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_6M); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_9M); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_12M); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_18M); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC28: case 0xE28: case 0x1828: case 0x1a28: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_24M); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_36M); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_48M); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_54M); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC2C: case 0xE2C: case 0x182C: case 0x1a2C: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS0); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS1); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS2); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS3); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC30: case 0xE30: case 0x1830: case 0x1a30: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS4); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS5); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS6); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS7); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC34: case 0xE34: case 0x1834: case 0x1a34: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS8); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS9); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS10); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS11); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC38: case 0xE38: case 0x1838: case 0x1a38: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS12); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS13); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS14); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS15); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC3C: case 0xE3C: case 0x183C: case 0x1a3C: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS0); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS1); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS2); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS3); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC40: case 0xE40: case 0x1840: case 0x1a40: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS4); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS5); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS6); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS7); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC44: case 0xE44: case 0x1844: case 0x1a44: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS8); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS9); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS0); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS1); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC48: case 0xE48: case 0x1848: case 0x1a48: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS2); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS3); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS4); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS5); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC4C: case 0xE4C: case 0x184C: case 0x1a4C: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS6); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS7); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS8); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS9); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCD8: case 0xED8: case 0x18D8: case 0x1aD8: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS16); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS17); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS18); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS19); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCDC: case 0xEDC: case 0x18DC: case 0x1aDC: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS20); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS21); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS22); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS23); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCE0: case 0xEE0: case 0x18E0: case 0x1aE0: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS0); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS1); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS2); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS3); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCE4: case 0xEE4: case 0x18E4: case 0x1aE4: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS4); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS5); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS6); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS7); for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCE8: case 0xEE8: case 0x18E8: case 0x1aE8: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS8); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS9); for (i = 0; i < 2; ++i) { PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; default: DBG_871X("Invalid RegAddr 0x%x in %s()\n", RegAddr, __func__); break; } } static void PHY_StoreTxPowerByRateNew( struct adapter *padapter, u32 Band, u32 RfPath, u32 TxNum, u32 RegAddr, u32 BitMask, u32 Data ) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); u8 i = 0, rateIndex[4] = {0}, rateNum = 0; s8 PwrByRateVal[4] = {0}; PHY_GetRateValuesOfTxPowerByRate(padapter, RegAddr, BitMask, Data, rateIndex, PwrByRateVal, &rateNum); if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { DBG_871X("Invalid Band %d\n", Band); return; } if (RfPath > ODM_RF_PATH_D) { DBG_871X("Invalid RfPath %d\n", RfPath); return; } if (TxNum > ODM_RF_PATH_D) { DBG_871X("Invalid TxNum %d\n", TxNum); return; } for (i = 0; i < rateNum; ++i) { if (rateIndex[i] == PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS0) || rateIndex[i] == PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS1)) TxNum = RF_2TX; pHalData->TxPwrByRateOffset[Band][RfPath][TxNum][rateIndex[i]] = PwrByRateVal[i]; } } static void PHY_StoreTxPowerByRateOld( struct adapter *padapter, u32 RegAddr, u32 BitMask, u32 Data ) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); u8 index = PHY_GetRateSectionIndexOfTxPowerByRate(padapter, RegAddr, BitMask); pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][index] = Data; /* DBG_871X("MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n", pHalData->pwrGroupCnt, */ /* pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0]); */ } void PHY_InitTxPowerByRate(struct adapter *padapter) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); u8 band, rfPath, TxNum, rate; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band) for (rfPath = 0; rfPath < TX_PWR_BY_RATE_NUM_RF; ++rfPath) for (TxNum = 0; TxNum < TX_PWR_BY_RATE_NUM_RF; ++TxNum) for (rate = 0; rate < TX_PWR_BY_RATE_NUM_RATE; ++rate) pHalData->TxPwrByRateOffset[band][rfPath][TxNum][rate] = 0; } void PHY_StoreTxPowerByRate( struct adapter *padapter, u32 Band, u32 RfPath, u32 TxNum, u32 RegAddr, u32 BitMask, u32 Data ) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; if (pDM_Odm->PhyRegPgVersion > 0) PHY_StoreTxPowerByRateNew(padapter, Band, RfPath, TxNum, RegAddr, BitMask, Data); else if (pDM_Odm->PhyRegPgVersion == 0) { PHY_StoreTxPowerByRateOld(padapter, RegAddr, BitMask, Data); if (RegAddr == rTxAGC_A_Mcs15_Mcs12 && pHalData->rf_type == RF_1T1R) pHalData->pwrGroupCnt++; else if (RegAddr == rTxAGC_B_Mcs15_Mcs12 && pHalData->rf_type != RF_1T1R) pHalData->pwrGroupCnt++; } else DBG_871X("Invalid PHY_REG_PG.txt version %d\n", pDM_Odm->PhyRegPgVersion); } static void phy_ConvertTxPowerByRateInDbmToRelativeValues( struct adapter *padapter ) { u8 base = 0, i = 0, value = 0, band = 0, path = 0, txNum = 0; u8 cckRates[4] = { MGN_1M, MGN_2M, MGN_5_5M, MGN_11M }; u8 ofdmRates[8] = { MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M }; u8 mcs0_7Rates[8] = { MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7 }; u8 mcs8_15Rates[8] = { MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15 }; u8 mcs16_23Rates[8] = { MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23 }; u8 vht1ssRates[10] = { MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9 }; u8 vht2ssRates[10] = { MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4, MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9 }; u8 vht3ssRates[10] = { MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9 }; /* DBG_871X("===>PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n"); */ for (band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band) { for (path = ODM_RF_PATH_A; path <= ODM_RF_PATH_D; ++path) { for (txNum = RF_1TX; txNum < RF_MAX_TX_NUM; ++txNum) { /* CCK */ base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_11M); for (i = 0; i < ARRAY_SIZE(cckRates); ++i) { value = PHY_GetTxPowerByRate(padapter, band, path, txNum, cckRates[i]); PHY_SetTxPowerByRate(padapter, band, path, txNum, cckRates[i], value - base); } /* OFDM */ base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_54M); for (i = 0; i < sizeof(ofdmRates); ++i) { value = PHY_GetTxPowerByRate(padapter, band, path, txNum, ofdmRates[i]); PHY_SetTxPowerByRate(padapter, band, path, txNum, ofdmRates[i], value - base); } /* HT MCS0~7 */ base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_MCS7); for (i = 0; i < sizeof(mcs0_7Rates); ++i) { value = PHY_GetTxPowerByRate(padapter, band, path, txNum, mcs0_7Rates[i]); PHY_SetTxPowerByRate(padapter, band, path, txNum, mcs0_7Rates[i], value - base); } /* HT MCS8~15 */ base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_MCS15); for (i = 0; i < sizeof(mcs8_15Rates); ++i) { value = PHY_GetTxPowerByRate(padapter, band, path, txNum, mcs8_15Rates[i]); PHY_SetTxPowerByRate(padapter, band, path, txNum, mcs8_15Rates[i], value - base); } /* HT MCS16~23 */ base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_MCS23); for (i = 0; i < sizeof(mcs16_23Rates); ++i) { value = PHY_GetTxPowerByRate(padapter, band, path, txNum, mcs16_23Rates[i]); PHY_SetTxPowerByRate(padapter, band, path, txNum, mcs16_23Rates[i], value - base); } /* VHT 1SS */ base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_VHT1SS_MCS7); for (i = 0; i < sizeof(vht1ssRates); ++i) { value = PHY_GetTxPowerByRate(padapter, band, path, txNum, vht1ssRates[i]); PHY_SetTxPowerByRate(padapter, band, path, txNum, vht1ssRates[i], value - base); } /* VHT 2SS */ base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_VHT2SS_MCS7); for (i = 0; i < sizeof(vht2ssRates); ++i) { value = PHY_GetTxPowerByRate(padapter, band, path, txNum, vht2ssRates[i]); PHY_SetTxPowerByRate(padapter, band, path, txNum, vht2ssRates[i], value - base); } /* VHT 3SS */ base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_VHT3SS_MCS7); for (i = 0; i < sizeof(vht3ssRates); ++i) { value = PHY_GetTxPowerByRate(padapter, band, path, txNum, vht3ssRates[i]); PHY_SetTxPowerByRate(padapter, band, path, txNum, vht3ssRates[i], value - base); } } } } /* DBG_871X("<===PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n"); */ } /* * This function must be called if the value in the PHY_REG_PG.txt(or header) * is exact dBm values */ void PHY_TxPowerByRateConfiguration(struct adapter *padapter) { phy_StoreTxPowerByRateBase(padapter); phy_ConvertTxPowerByRateInDbmToRelativeValues(padapter); } void PHY_SetTxPowerIndexByRateSection( struct adapter *padapter, u8 RFPath, u8 Channel, u8 RateSection ) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); if (RateSection == CCK) { u8 cckRates[] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M}; if (pHalData->CurrentBandType == BAND_ON_2_4G) PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, cckRates, ARRAY_SIZE(cckRates)); } else if (RateSection == OFDM) { u8 ofdmRates[] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M}; PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, ofdmRates, ARRAY_SIZE(ofdmRates)); } else if (RateSection == HT_MCS0_MCS7) { u8 htRates1T[] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7}; PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates1T, ARRAY_SIZE(htRates1T)); } else if (RateSection == HT_MCS8_MCS15) { u8 htRates2T[] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15}; PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates2T, ARRAY_SIZE(htRates2T)); } else if (RateSection == HT_MCS16_MCS23) { u8 htRates3T[] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23}; PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates3T, ARRAY_SIZE(htRates3T)); } else if (RateSection == HT_MCS24_MCS31) { u8 htRates4T[] = {MGN_MCS24, MGN_MCS25, MGN_MCS26, MGN_MCS27, MGN_MCS28, MGN_MCS29, MGN_MCS30, MGN_MCS31}; PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates4T, ARRAY_SIZE(htRates4T)); } else if (RateSection == VHT_1SSMCS0_1SSMCS9) { u8 vhtRates1T[] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9}; PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates1T, ARRAY_SIZE(vhtRates1T)); } else if (RateSection == VHT_2SSMCS0_2SSMCS9) { u8 vhtRates2T[] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4, MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9}; PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates2T, ARRAY_SIZE(vhtRates2T)); } else if (RateSection == VHT_3SSMCS0_3SSMCS9) { u8 vhtRates3T[] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9}; PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates3T, ARRAY_SIZE(vhtRates3T)); } else if (RateSection == VHT_4SSMCS0_4SSMCS9) { u8 vhtRates4T[] = {MGN_VHT4SS_MCS0, MGN_VHT4SS_MCS1, MGN_VHT4SS_MCS2, MGN_VHT4SS_MCS3, MGN_VHT4SS_MCS4, MGN_VHT4SS_MCS5, MGN_VHT4SS_MCS6, MGN_VHT4SS_MCS7, MGN_VHT4SS_MCS8, MGN_VHT4SS_MCS9}; PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates4T, ARRAY_SIZE(vhtRates4T)); } else DBG_871X("Invalid RateSection %d in %s", RateSection, __func__); } static bool phy_GetChnlIndex(u8 Channel, u8 *ChannelIdx) { u8 channel5G[CHANNEL_MAX_NUMBER_5G] = { 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 168, 169, 171, 173, 175, 177 }; u8 i = 0; bool bIn24G = true; if (Channel <= 14) { bIn24G = true; *ChannelIdx = Channel-1; } else { bIn24G = false; for (i = 0; i < ARRAY_SIZE(channel5G); ++i) { if (channel5G[i] == Channel) { *ChannelIdx = i; return bIn24G; } } } return bIn24G; } u8 PHY_GetTxPowerIndexBase( struct adapter *padapter, u8 RFPath, u8 Rate, enum CHANNEL_WIDTH BandWidth, u8 Channel, bool *bIn24G ) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); u8 i = 0; /* default set to 1S */ u8 txPower = 0; u8 chnlIdx = (Channel-1); if (HAL_IsLegalChannel(padapter, Channel) == false) { chnlIdx = 0; DBG_871X("Illegal channel!!\n"); } *bIn24G = phy_GetChnlIndex(Channel, &chnlIdx); /* DBG_871X("[%s] Channel Index: %d\n", (*bIn24G?"2.4G":"5G"), chnlIdx); */ if (*bIn24G) { /* 3 ============================== 2.4 G ============================== */ if (IS_CCK_RATE(Rate)) txPower = pHalData->Index24G_CCK_Base[RFPath][chnlIdx]; else if (MGN_6M <= Rate) txPower = pHalData->Index24G_BW40_Base[RFPath][chnlIdx]; else DBG_871X("PHY_GetTxPowerIndexBase: INVALID Rate.\n"); /* DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n", */ /* ((RFPath == 0)?'A':'B'), Rate, chnlIdx, txPower); */ /* OFDM-1T */ if ((MGN_6M <= Rate && Rate <= MGN_54M) && !IS_CCK_RATE(Rate)) { txPower += pHalData->OFDM_24G_Diff[RFPath][TX_1S]; /* DBG_871X("+PowerDiff 2.4G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath == 0)?'A':'B'), pHalData->OFDM_24G_Diff[RFPath][TX_1S]); */ } if (BandWidth == CHANNEL_WIDTH_20) { /* BW20-1S, BW20-2S */ if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_1S]; if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_2S]; if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_3S]; if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_4S]; /* DBG_871X("+PowerDiff 2.4G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */ /* pHalData->BW20_24G_Diff[RFPath][TX_1S], pHalData->BW20_24G_Diff[RFPath][TX_2S], */ /* pHalData->BW20_24G_Diff[RFPath][TX_3S], pHalData->BW20_24G_Diff[RFPath][TX_4S]); */ } else if (BandWidth == CHANNEL_WIDTH_40) { /* BW40-1S, BW40-2S */ if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S]; if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S]; if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S]; if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S]; /* DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */ /* pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S], */ /* pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]); */ } /* Willis suggest adopt BW 40M power index while in BW 80 mode */ else if (BandWidth == CHANNEL_WIDTH_80) { if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S]; if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S]; if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S]; if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S]; /* DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4T) = (%d, %d, %d, %d) P.S. Current is in BW 80MHz\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */ /* pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S], */ /* pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]); */ } } else {/* 3 ============================== 5 G ============================== */ if (MGN_6M <= Rate) txPower = pHalData->Index5G_BW40_Base[RFPath][chnlIdx]; else DBG_871X("===> mpt_ProQueryCalTxPower_Jaguar: INVALID Rate.\n"); /* DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n", */ /* ((RFPath == 0)?'A':'B'), Rate, chnlIdx, txPower); */ /* OFDM-1T */ if ((MGN_6M <= Rate && Rate <= MGN_54M) && !IS_CCK_RATE(Rate)) { txPower += pHalData->OFDM_5G_Diff[RFPath][TX_1S]; /* DBG_871X("+PowerDiff 5G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath == 0)?'A':'B'), pHalData->OFDM_5G_Diff[RFPath][TX_1S]); */ } /* BW20-1S, BW20-2S */ if (BandWidth == CHANNEL_WIDTH_20) { if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_1S]; if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_2S]; if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_3S]; if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_4S]; /* DBG_871X("+PowerDiff 5G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */ /* pHalData->BW20_5G_Diff[RFPath][TX_1S], pHalData->BW20_5G_Diff[RFPath][TX_2S], */ /* pHalData->BW20_5G_Diff[RFPath][TX_3S], pHalData->BW20_5G_Diff[RFPath][TX_4S]); */ } else if (BandWidth == CHANNEL_WIDTH_40) { /* BW40-1S, BW40-2S */ if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_1S]; if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_2S]; if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_3S]; if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_4S]; /* DBG_871X("+PowerDiff 5G(RF-%c): (BW40-1S, BW40-2S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */ /* pHalData->BW40_5G_Diff[RFPath][TX_1S], pHalData->BW40_5G_Diff[RFPath][TX_2S], */ /* pHalData->BW40_5G_Diff[RFPath][TX_3S], pHalData->BW40_5G_Diff[RFPath][TX_4S]); */ } else if (BandWidth == CHANNEL_WIDTH_80) { /* BW80-1S, BW80-2S */ /* <20121220, Kordan> Get the index of array "Index5G_BW80_Base". */ u8 channel5G_80M[CHANNEL_MAX_NUMBER_5G_80M] = {42, 58, 106, 122, 138, 155, 171}; for (i = 0; i < ARRAY_SIZE(channel5G_80M); ++i) if (channel5G_80M[i] == Channel) chnlIdx = i; txPower = pHalData->Index5G_BW80_Base[RFPath][chnlIdx]; if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += + pHalData->BW80_5G_Diff[RFPath][TX_1S]; if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW80_5G_Diff[RFPath][TX_2S]; if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW80_5G_Diff[RFPath][TX_3S]; if ((MGN_MCS23 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW80_5G_Diff[RFPath][TX_4S]; /* DBG_871X("+PowerDiff 5G(RF-%c): (BW80-1S, BW80-2S, BW80-3S, BW80-4S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */ /* pHalData->BW80_5G_Diff[RFPath][TX_1S], pHalData->BW80_5G_Diff[RFPath][TX_2S], */ /* pHalData->BW80_5G_Diff[RFPath][TX_3S], pHalData->BW80_5G_Diff[RFPath][TX_4S]); */ } } return txPower; } s8 PHY_GetTxPowerTrackingOffset(struct adapter *padapter, u8 RFPath, u8 Rate) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; s8 offset = 0; if (pDM_Odm->RFCalibrateInfo.TxPowerTrackControl == false) return offset; if ((Rate == MGN_1M) || (Rate == MGN_2M) || (Rate == MGN_5_5M) || (Rate == MGN_11M)) { offset = pDM_Odm->Remnant_CCKSwingIdx; /* DBG_871X("+Remnant_CCKSwingIdx = 0x%x\n", RFPath, Rate, pDM_Odm->Remnant_CCKSwingIdx); */ } else { offset = pDM_Odm->Remnant_OFDMSwingIdx[RFPath]; /* DBG_871X("+Remanant_OFDMSwingIdx[RFPath %u][Rate 0x%x] = 0x%x\n", RFPath, Rate, pDM_Odm->Remnant_OFDMSwingIdx[RFPath]); */ } return offset; } u8 PHY_GetRateIndexOfTxPowerByRate(u8 Rate) { u8 index = 0; switch (Rate) { case MGN_1M: index = 0; break; case MGN_2M: index = 1; break; case MGN_5_5M: index = 2; break; case MGN_11M: index = 3; break; case MGN_6M: index = 4; break; case MGN_9M: index = 5; break; case MGN_12M: index = 6; break; case MGN_18M: index = 7; break; case MGN_24M: index = 8; break; case MGN_36M: index = 9; break; case MGN_48M: index = 10; break; case MGN_54M: index = 11; break; case MGN_MCS0: index = 12; break; case MGN_MCS1: index = 13; break; case MGN_MCS2: index = 14; break; case MGN_MCS3: index = 15; break; case MGN_MCS4: index = 16; break; case MGN_MCS5: index = 17; break; case MGN_MCS6: index = 18; break; case MGN_MCS7: index = 19; break; case MGN_MCS8: index = 20; break; case MGN_MCS9: index = 21; break; case MGN_MCS10: index = 22; break; case MGN_MCS11: index = 23; break; case MGN_MCS12: index = 24; break; case MGN_MCS13: index = 25; break; case MGN_MCS14: index = 26; break; case MGN_MCS15: index = 27; break; case MGN_MCS16: index = 28; break; case MGN_MCS17: index = 29; break; case MGN_MCS18: index = 30; break; case MGN_MCS19: index = 31; break; case MGN_MCS20: index = 32; break; case MGN_MCS21: index = 33; break; case MGN_MCS22: index = 34; break; case MGN_MCS23: index = 35; break; case MGN_MCS24: index = 36; break; case MGN_MCS25: index = 37; break; case MGN_MCS26: index = 38; break; case MGN_MCS27: index = 39; break; case MGN_MCS28: index = 40; break; case MGN_MCS29: index = 41; break; case MGN_MCS30: index = 42; break; case MGN_MCS31: index = 43; break; case MGN_VHT1SS_MCS0: index = 44; break; case MGN_VHT1SS_MCS1: index = 45; break; case MGN_VHT1SS_MCS2: index = 46; break; case MGN_VHT1SS_MCS3: index = 47; break; case MGN_VHT1SS_MCS4: index = 48; break; case MGN_VHT1SS_MCS5: index = 49; break; case MGN_VHT1SS_MCS6: index = 50; break; case MGN_VHT1SS_MCS7: index = 51; break; case MGN_VHT1SS_MCS8: index = 52; break; case MGN_VHT1SS_MCS9: index = 53; break; case MGN_VHT2SS_MCS0: index = 54; break; case MGN_VHT2SS_MCS1: index = 55; break; case MGN_VHT2SS_MCS2: index = 56; break; case MGN_VHT2SS_MCS3: index = 57; break; case MGN_VHT2SS_MCS4: index = 58; break; case MGN_VHT2SS_MCS5: index = 59; break; case MGN_VHT2SS_MCS6: index = 60; break; case MGN_VHT2SS_MCS7: index = 61; break; case MGN_VHT2SS_MCS8: index = 62; break; case MGN_VHT2SS_MCS9: index = 63; break; case MGN_VHT3SS_MCS0: index = 64; break; case MGN_VHT3SS_MCS1: index = 65; break; case MGN_VHT3SS_MCS2: index = 66; break; case MGN_VHT3SS_MCS3: index = 67; break; case MGN_VHT3SS_MCS4: index = 68; break; case MGN_VHT3SS_MCS5: index = 69; break; case MGN_VHT3SS_MCS6: index = 70; break; case MGN_VHT3SS_MCS7: index = 71; break; case MGN_VHT3SS_MCS8: index = 72; break; case MGN_VHT3SS_MCS9: index = 73; break; case MGN_VHT4SS_MCS0: index = 74; break; case MGN_VHT4SS_MCS1: index = 75; break; case MGN_VHT4SS_MCS2: index = 76; break; case MGN_VHT4SS_MCS3: index = 77; break; case MGN_VHT4SS_MCS4: index = 78; break; case MGN_VHT4SS_MCS5: index = 79; break; case MGN_VHT4SS_MCS6: index = 80; break; case MGN_VHT4SS_MCS7: index = 81; break; case MGN_VHT4SS_MCS8: index = 82; break; case MGN_VHT4SS_MCS9: index = 83; break; default: DBG_871X("Invalid rate 0x%x in %s\n", Rate, __func__); break; } return index; } s8 PHY_GetTxPowerByRate( struct adapter *padapter, u8 Band, u8 RFPath, u8 TxNum, u8 Rate ) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); s8 value = 0; u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate); if ((padapter->registrypriv.RegEnableTxPowerByRate == 2 && pHalData->EEPROMRegulatory == 2) || padapter->registrypriv.RegEnableTxPowerByRate == 0) return 0; if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { DBG_871X("Invalid band %d in %s\n", Band, __func__); return value; } if (RFPath > ODM_RF_PATH_D) { DBG_871X("Invalid RfPath %d in %s\n", RFPath, __func__); return value; } if (TxNum >= RF_MAX_TX_NUM) { DBG_871X("Invalid TxNum %d in %s\n", TxNum, __func__); return value; } if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) { DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __func__); return value; } value = pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex]; return value; } void PHY_SetTxPowerByRate( struct adapter *padapter, u8 Band, u8 RFPath, u8 TxNum, u8 Rate, s8 Value ) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate); if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { DBG_871X("Invalid band %d in %s\n", Band, __func__); return; } if (RFPath > ODM_RF_PATH_D) { DBG_871X("Invalid RfPath %d in %s\n", RFPath, __func__); return; } if (TxNum >= RF_MAX_TX_NUM) { DBG_871X("Invalid TxNum %d in %s\n", TxNum, __func__); return; } if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) { DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __func__); return; } pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex] = Value; } void PHY_SetTxPowerLevelByPath(struct adapter *Adapter, u8 channel, u8 path) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); bool bIsIn24G = (pHalData->CurrentBandType == BAND_ON_2_4G); /* if (pMgntInfo->RegNByteAccess == 0) */ { if (bIsIn24G) PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, CCK); PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, OFDM); PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, HT_MCS0_MCS7); if (pHalData->NumTotalRFPath >= 2) PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, HT_MCS8_MCS15); } } void PHY_SetTxPowerIndexByRateArray( struct adapter *padapter, u8 RFPath, enum CHANNEL_WIDTH BandWidth, u8 Channel, u8 *Rates, u8 RateArraySize ) { u32 powerIndex = 0; int i = 0; for (i = 0; i < RateArraySize; ++i) { powerIndex = PHY_GetTxPowerIndex(padapter, RFPath, Rates[i], BandWidth, Channel); PHY_SetTxPowerIndex(padapter, powerIndex, RFPath, Rates[i]); } } static s8 phy_GetWorldWideLimit(s8 *LimitTable) { s8 min = LimitTable[0]; u8 i = 0; for (i = 0; i < MAX_REGULATION_NUM; ++i) { if (LimitTable[i] < min) min = LimitTable[i]; } return min; } static s8 phy_GetChannelIndexOfTxPowerLimit(u8 Band, u8 Channel) { s8 channelIndex = -1; u8 channel5G[CHANNEL_MAX_NUMBER_5G] = { 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 168, 169, 171, 173, 175, 177 }; u8 i = 0; if (Band == BAND_ON_2_4G) channelIndex = Channel - 1; else if (Band == BAND_ON_5G) { for (i = 0; i < ARRAY_SIZE(channel5G); ++i) { if (channel5G[i] == Channel) channelIndex = i; } } else DBG_871X("Invalid Band %d in %s", Band, __func__); if (channelIndex == -1) DBG_871X("Invalid Channel %d of Band %d in %s", Channel, Band, __func__); return channelIndex; } static s16 get_bandwidth_idx(const enum CHANNEL_WIDTH bandwidth) { switch (bandwidth) { case CHANNEL_WIDTH_20: return 0; case CHANNEL_WIDTH_40: return 1; case CHANNEL_WIDTH_80: return 2; case CHANNEL_WIDTH_160: return 3; default: return -1; } } static s16 get_rate_sctn_idx(const u8 rate) { switch (rate) { case MGN_1M: case MGN_2M: case MGN_5_5M: case MGN_11M: return 0; case MGN_6M: case MGN_9M: case MGN_12M: case MGN_18M: case MGN_24M: case MGN_36M: case MGN_48M: case MGN_54M: return 1; case MGN_MCS0: case MGN_MCS1: case MGN_MCS2: case MGN_MCS3: case MGN_MCS4: case MGN_MCS5: case MGN_MCS6: case MGN_MCS7: return 2; case MGN_MCS8: case MGN_MCS9: case MGN_MCS10: case MGN_MCS11: case MGN_MCS12: case MGN_MCS13: case MGN_MCS14: case MGN_MCS15: return 3; case MGN_MCS16: case MGN_MCS17: case MGN_MCS18: case MGN_MCS19: case MGN_MCS20: case MGN_MCS21: case MGN_MCS22: case MGN_MCS23: return 4; case MGN_MCS24: case MGN_MCS25: case MGN_MCS26: case MGN_MCS27: case MGN_MCS28: case MGN_MCS29: case MGN_MCS30: case MGN_MCS31: return 5; case MGN_VHT1SS_MCS0: case MGN_VHT1SS_MCS1: case MGN_VHT1SS_MCS2: case MGN_VHT1SS_MCS3: case MGN_VHT1SS_MCS4: case MGN_VHT1SS_MCS5: case MGN_VHT1SS_MCS6: case MGN_VHT1SS_MCS7: case MGN_VHT1SS_MCS8: case MGN_VHT1SS_MCS9: return 6; case MGN_VHT2SS_MCS0: case MGN_VHT2SS_MCS1: case MGN_VHT2SS_MCS2: case MGN_VHT2SS_MCS3: case MGN_VHT2SS_MCS4: case MGN_VHT2SS_MCS5: case MGN_VHT2SS_MCS6: case MGN_VHT2SS_MCS7: case MGN_VHT2SS_MCS8: case MGN_VHT2SS_MCS9: return 7; case MGN_VHT3SS_MCS0: case MGN_VHT3SS_MCS1: case MGN_VHT3SS_MCS2: case MGN_VHT3SS_MCS3: case MGN_VHT3SS_MCS4: case MGN_VHT3SS_MCS5: case MGN_VHT3SS_MCS6: case MGN_VHT3SS_MCS7: case MGN_VHT3SS_MCS8: case MGN_VHT3SS_MCS9: return 8; case MGN_VHT4SS_MCS0: case MGN_VHT4SS_MCS1: case MGN_VHT4SS_MCS2: case MGN_VHT4SS_MCS3: case MGN_VHT4SS_MCS4: case MGN_VHT4SS_MCS5: case MGN_VHT4SS_MCS6: case MGN_VHT4SS_MCS7: case MGN_VHT4SS_MCS8: case MGN_VHT4SS_MCS9: return 9; default: DBG_871X("Wrong rate 0x%x\n", rate); return -1; } } s8 phy_get_tx_pwr_lmt(struct adapter *adapter, u32 reg_pwr_tbl_sel, enum BAND_TYPE band_type, enum CHANNEL_WIDTH bandwidth, u8 rf_path, u8 data_rate, u8 channel) { s16 idx_band = -1; s16 idx_regulation = -1; s16 idx_bandwidth = -1; s16 idx_rate_sctn = -1; s16 idx_channel = -1; s8 pwr_lmt = MAX_POWER_INDEX; struct hal_com_data *hal_data = GET_HAL_DATA(adapter); if (((adapter->registrypriv.RegEnableTxPowerLimit == 2) && (hal_data->EEPROMRegulatory != 1)) || (adapter->registrypriv.RegEnableTxPowerLimit == 0)) return MAX_POWER_INDEX; switch (adapter->registrypriv.RegPwrTblSel) { case 1: idx_regulation = TXPWR_LMT_ETSI; break; case 2: idx_regulation = TXPWR_LMT_MKK; break; case 3: idx_regulation = TXPWR_LMT_FCC; break; case 4: idx_regulation = TXPWR_LMT_WW; break; default: idx_regulation = (band_type == BAND_ON_2_4G) ? hal_data->Regulation2_4G : hal_data->Regulation5G; break; } /* DBG_871X("pMgntInfo->RegPwrTblSel %d, final regulation %d\n", */ /* adapter->registrypriv.RegPwrTblSel, idx_regulation); */ if (band_type == BAND_ON_2_4G) idx_band = 0; else if (band_type == BAND_ON_5G) idx_band = 1; idx_bandwidth = get_bandwidth_idx(bandwidth); idx_rate_sctn = get_rate_sctn_idx(data_rate); if (band_type == BAND_ON_5G && idx_rate_sctn == 0) DBG_871X("Wrong rate 0x%x: No CCK in 5G Band\n", DataRate); /* workaround for wrong index combination to obtain tx power limit, */ /* OFDM only exists in BW 20M */ /* CCK table will only be given in BW 20M */ /* HT on 80M will reference to HT on 40M */ if (idx_rate_sctn == 0 || idx_rate_sctn == 1) idx_bandwidth = 0; else if ((idx_rate_sctn == 2 || idx_rate_sctn == 3) && (band_type == BAND_ON_5G) && (idx_bandwidth == 2)) idx_bandwidth = 1; if (band_type == BAND_ON_2_4G || band_type == BAND_ON_5G) channel = phy_GetChannelIndexOfTxPowerLimit(band_type, channel); if (idx_band == -1 || idx_regulation == -1 || idx_bandwidth == -1 || idx_rate_sctn == -1 || idx_channel == -1) { /* DBG_871X("Wrong index value to access power limit table [band %d][regulation %d][bandwidth %d][rf_path %d][rate_section %d][chnlGroup %d]\n", */ /* idx_band, idx_regulation, idx_bandwidth, rf_path, */ /* idx_rate_sctn, channel); */ return MAX_POWER_INDEX; } if (band_type == BAND_ON_2_4G) { s8 limits[10] = {0}; u8 i = 0; for (i = 0; i < MAX_REGULATION_NUM; i++) limits[i] = hal_data->TxPwrLimit_2_4G[i] [idx_bandwidth] [idx_rate_sctn] [idx_channel] [rf_path]; pwr_lmt = (idx_regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) : hal_data->TxPwrLimit_2_4G[idx_regulation] [idx_bandwidth] [idx_rate_sctn] [idx_channel] [rf_path]; } else if (band_type == BAND_ON_5G) { s8 limits[10] = {0}; u8 i = 0; for (i = 0; i < MAX_REGULATION_NUM; ++i) limits[i] = hal_data->TxPwrLimit_5G[i] [idx_bandwidth] [idx_rate_sctn] [idx_channel] [rf_path]; pwr_lmt = (idx_regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) : hal_data->TxPwrLimit_5G[idx_regulation] [idx_bandwidth] [idx_rate_sctn] [idx_channel] [rf_path]; } else { DBG_871X("No power limit table of the specified band\n"); } /* combine 5G VHT & HT rate */ /* 5G 20M and 40M HT and VHT can cross reference */ /* if (band_type == BAND_ON_5G && pwr_lmt == MAX_POWER_INDEX) { if (idx_bandwidth == 0 || idx_bandwidth == 1) { RT_TRACE(COMP_INIT, DBG_LOUD, ("No power limit table of the specified band %d, bandwidth %d, ratesection %d, rf path %d\n", idx_band, idx_bandwidth, idx_rate_sctn, rf_path)); if (idx_rate_sctn == 2) pwr_lmt = hal_data->TxPwrLimit_5G[idx_regulation][idx_bandwidth][4][idx_channel][rf_path]; else if (idx_rate_sctn == 4) pwr_lmt = hal_data->TxPwrLimit_5G[idx_regulation][idx_bandwidth][2][idx_channel][rf_path]; else if (idx_rate_sctn == 3) pwr_lmt = hal_data->TxPwrLimit_5G[idx_regulation][idx_bandwidth][5][idx_channel][rf_path]; else if (idx_rate_sctn == 5) pwr_lmt = hal_data->TxPwrLimit_5G[idx_regulation][idx_bandwidth][3][idx_channel][rf_path]; } } */ /* DBG_871X("TxPwrLmt[Regulation %d][Band %d][BW %d][RFPath %d][Rate 0x%x][Chnl %d] = %d\n", */ /* idx_regulation, hal_data->CurrentBandType, bandwidth, rf_path, data_rate, channel, pwr_lmt); */ return pwr_lmt; } static void phy_CrossReferenceHTAndVHTTxPowerLimit(struct adapter *padapter) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); u8 regulation, bw, channel, rateSection; s8 tempPwrLmt = 0; for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) { for (bw = 0; bw < MAX_5G_BANDWITH_NUM; ++bw) { for (channel = 0; channel < CHANNEL_MAX_NUMBER_5G; ++channel) { for (rateSection = 0; rateSection < MAX_RATE_SECTION_NUM; ++rateSection) { tempPwrLmt = pHalData->TxPwrLimit_5G[regulation][bw][rateSection][channel][ODM_RF_PATH_A]; if (tempPwrLmt == MAX_POWER_INDEX) { u8 baseSection = 2, refSection = 6; if (bw == 0 || bw == 1) { /* 5G 20M 40M VHT and HT can cross reference */ /* DBG_871X("No power limit table of the specified band %d, bandwidth %d, ratesection %d, channel %d, rf path %d\n", */ /* 1, bw, rateSection, channel, ODM_RF_PATH_A); */ if (rateSection >= 2 && rateSection <= 9) { if (rateSection == 2) { baseSection = 2; refSection = 6; } else if (rateSection == 3) { baseSection = 3; refSection = 7; } else if (rateSection == 4) { baseSection = 4; refSection = 8; } else if (rateSection == 5) { baseSection = 5; refSection = 9; } else if (rateSection == 6) { baseSection = 6; refSection = 2; } else if (rateSection == 7) { baseSection = 7; refSection = 3; } else if (rateSection == 8) { baseSection = 8; refSection = 4; } else if (rateSection == 9) { baseSection = 9; refSection = 5; } pHalData->TxPwrLimit_5G[regulation][bw][baseSection][channel][ODM_RF_PATH_A] = pHalData->TxPwrLimit_5G[regulation][bw][refSection][channel][ODM_RF_PATH_A]; } /* DBG_871X("use other value %d", tempPwrLmt); */ } } } } } } } void PHY_ConvertTxPowerLimitToPowerIndex(struct adapter *Adapter) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); u8 BW40PwrBasedBm2_4G = 0x2E; u8 regulation, bw, channel, rateSection; s8 tempValue = 0, tempPwrLmt = 0; u8 rfPath = 0; /* DBG_871X("=====> PHY_ConvertTxPowerLimitToPowerIndex()\n"); */ phy_CrossReferenceHTAndVHTTxPowerLimit(Adapter); for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) { for (bw = 0; bw < MAX_2_4G_BANDWITH_NUM; ++bw) { for (channel = 0; channel < CHANNEL_MAX_NUMBER_2G; ++channel) { for (rateSection = 0; rateSection < MAX_RATE_SECTION_NUM; ++rateSection) { tempPwrLmt = pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][ODM_RF_PATH_A]; for (rfPath = ODM_RF_PATH_A; rfPath < MAX_RF_PATH_NUM; ++rfPath) { if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE) { if (rateSection == 5) /* HT 4T */ BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_4TX, HT_MCS24_MCS31); else if (rateSection == 4) /* HT 3T */ BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_3TX, HT_MCS16_MCS23); else if (rateSection == 3) /* HT 2T */ BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_2TX, HT_MCS8_MCS15); else if (rateSection == 2) /* HT 1T */ BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_1TX, HT_MCS0_MCS7); else if (rateSection == 1) /* OFDM */ BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_1TX, OFDM); else if (rateSection == 0) /* CCK */ BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_1TX, CCK); } else BW40PwrBasedBm2_4G = Adapter->registrypriv.RegPowerBase * 2; if (tempPwrLmt != MAX_POWER_INDEX) { tempValue = tempPwrLmt - BW40PwrBasedBm2_4G; pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][rfPath] = tempValue; } } } } } } /* DBG_871X("<===== PHY_ConvertTxPowerLimitToPowerIndex()\n"); */ } void PHY_InitTxPowerLimit(struct adapter *Adapter) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); u8 i, j, k, l, m; /* DBG_871X("=====> PHY_InitTxPowerLimit()!\n"); */ for (i = 0; i < MAX_REGULATION_NUM; ++i) { for (j = 0; j < MAX_2_4G_BANDWITH_NUM; ++j) for (k = 0; k < MAX_RATE_SECTION_NUM; ++k) for (m = 0; m < CHANNEL_MAX_NUMBER_2G; ++m) for (l = 0; l < MAX_RF_PATH_NUM; ++l) pHalData->TxPwrLimit_2_4G[i][j][k][m][l] = MAX_POWER_INDEX; } for (i = 0; i < MAX_REGULATION_NUM; ++i) { for (j = 0; j < MAX_5G_BANDWITH_NUM; ++j) for (k = 0; k < MAX_RATE_SECTION_NUM; ++k) for (m = 0; m < CHANNEL_MAX_NUMBER_5G; ++m) for (l = 0; l < MAX_RF_PATH_NUM; ++l) pHalData->TxPwrLimit_5G[i][j][k][m][l] = MAX_POWER_INDEX; } /* DBG_871X("<===== PHY_InitTxPowerLimit()!\n"); */ } void PHY_SetTxPowerLimit( struct adapter *Adapter, u8 *Regulation, u8 *Band, u8 *Bandwidth, u8 *RateSection, u8 *RfPath, u8 *Channel, u8 *PowerLimit ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); u8 regulation = 0, bandwidth = 0, rateSection = 0, channel; s8 powerLimit = 0, prevPowerLimit, channelIndex; /* DBG_871X("Index of power limit table [band %s][regulation %s][bw %s][rate section %s][rf path %s][chnl %s][val %s]\n", */ /* Band, Regulation, Bandwidth, RateSection, RfPath, Channel, PowerLimit); */ if (!GetU1ByteIntegerFromStringInDecimal((s8 *)Channel, &channel) || !GetU1ByteIntegerFromStringInDecimal((s8 *)PowerLimit, &powerLimit)) DBG_871X("Illegal index of power limit table [chnl %s][val %s]\n", Channel, PowerLimit); powerLimit = powerLimit > MAX_POWER_INDEX ? MAX_POWER_INDEX : powerLimit; if (eqNByte(Regulation, (u8 *)("FCC"), 3)) regulation = 0; else if (eqNByte(Regulation, (u8 *)("MKK"), 3)) regulation = 1; else if (eqNByte(Regulation, (u8 *)("ETSI"), 4)) regulation = 2; else if (eqNByte(Regulation, (u8 *)("WW13"), 4)) regulation = 3; if (eqNByte(RateSection, (u8 *)("CCK"), 3) && eqNByte(RfPath, (u8 *)("1T"), 2)) rateSection = 0; else if (eqNByte(RateSection, (u8 *)("OFDM"), 4) && eqNByte(RfPath, (u8 *)("1T"), 2)) rateSection = 1; else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("1T"), 2)) rateSection = 2; else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("2T"), 2)) rateSection = 3; else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("3T"), 2)) rateSection = 4; else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("4T"), 2)) rateSection = 5; else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("1T"), 2)) rateSection = 6; else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("2T"), 2)) rateSection = 7; else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("3T"), 2)) rateSection = 8; else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("4T"), 2)) rateSection = 9; else { DBG_871X("Wrong rate section!\n"); return; } if (eqNByte(Bandwidth, (u8 *)("20M"), 3)) bandwidth = 0; else if (eqNByte(Bandwidth, (u8 *)("40M"), 3)) bandwidth = 1; else if (eqNByte(Bandwidth, (u8 *)("80M"), 3)) bandwidth = 2; else if (eqNByte(Bandwidth, (u8 *)("160M"), 4)) bandwidth = 3; if (eqNByte(Band, (u8 *)("2.4G"), 4)) { channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_2_4G, channel); if (channelIndex == -1) return; prevPowerLimit = pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]; if (powerLimit < prevPowerLimit) pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A] = powerLimit; /* DBG_871X("2.4G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n", */ /* regulation, bandwidth, rateSection, channelIndex, pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]); */ } else if (eqNByte(Band, (u8 *)("5G"), 2)) { channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_5G, channel); if (channelIndex == -1) return; prevPowerLimit = pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]; if (powerLimit < prevPowerLimit) pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A] = powerLimit; /* DBG_871X("5G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n", */ /* regulation, bandwidth, rateSection, channel, pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]); */ } else { DBG_871X("Cannot recognize the band info in %s\n", Band); return; } } u8 PHY_GetTxPowerIndex( struct adapter *padapter, u8 RFPath, u8 Rate, enum CHANNEL_WIDTH BandWidth, u8 Channel ) { return PHY_GetTxPowerIndex_8723B(padapter, RFPath, Rate, BandWidth, Channel); } void PHY_SetTxPowerIndex( struct adapter *padapter, u32 PowerIndex, u8 RFPath, u8 Rate ) { PHY_SetTxPowerIndex_8723B(padapter, PowerIndex, RFPath, Rate); } void Hal_ChannelPlanToRegulation(struct adapter *Adapter, u16 ChannelPlan) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); pHalData->Regulation2_4G = TXPWR_LMT_WW; pHalData->Regulation5G = TXPWR_LMT_WW; switch (ChannelPlan) { case RT_CHANNEL_DOMAIN_WORLD_NULL: pHalData->Regulation2_4G = TXPWR_LMT_WW; break; case RT_CHANNEL_DOMAIN_ETSI1_NULL: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_NULL: pHalData->Regulation2_4G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_MKK1_NULL: pHalData->Regulation2_4G = TXPWR_LMT_MKK; break; case RT_CHANNEL_DOMAIN_ETSI2_NULL: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC1: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI1: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_MKK1_MKK1: pHalData->Regulation2_4G = TXPWR_LMT_MKK; pHalData->Regulation5G = TXPWR_LMT_MKK; break; case RT_CHANNEL_DOMAIN_WORLD_KCC1: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_MKK; break; case RT_CHANNEL_DOMAIN_WORLD_FCC2: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_FCC3: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_FCC4: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_FCC5: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_FCC6: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_FCC1_FCC7: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI2: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI3: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_MKK1_MKK2: pHalData->Regulation2_4G = TXPWR_LMT_MKK; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_MKK1_MKK3: pHalData->Regulation2_4G = TXPWR_LMT_MKK; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_FCC1_NCC1: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_FCC1_NCC2: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_GLOBAL_NULL: pHalData->Regulation2_4G = TXPWR_LMT_WW; pHalData->Regulation5G = TXPWR_LMT_WW; break; case RT_CHANNEL_DOMAIN_ETSI1_ETSI4: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC2: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_FCC1_NCC3: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI5: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC8: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI6: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI7: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI8: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI9: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI10: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI11: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_NCC4: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI12: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC9: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI13: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC10: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_REALTEK_DEFINE: /* Realtek Reserve */ pHalData->Regulation2_4G = TXPWR_LMT_WW; pHalData->Regulation5G = TXPWR_LMT_WW; break; default: break; } } static char file_path_bs[PATH_MAX]; #define GetLineFromBuffer(buffer) strsep(&buffer, "\n") int phy_ConfigMACWithParaFile(struct adapter *Adapter, char *pFileName) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; if (!(Adapter->registrypriv.load_phy_file & LOAD_MAC_PARA_FILE)) return rtStatus; memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->mac_reg_len == 0) && !pHalData->mac_reg) { rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == true) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->mac_reg = vzalloc(rlen); if (pHalData->mac_reg) { memcpy(pHalData->mac_reg, pHalData->para_file_buf, rlen); pHalData->mac_reg_len = rlen; } else DBG_871X("%s mac_reg alloc fail !\n", __func__); } } } else { if ((pHalData->mac_reg_len != 0) && (pHalData->mac_reg != NULL)) { memcpy(pHalData->para_file_buf, pHalData->mac_reg, pHalData->mac_reg_len); rtStatus = _SUCCESS; } else DBG_871X("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { /* Get 1st hex value as register offset */ if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if (u4bRegOffset == 0xffff) /* Ending. */ break; /* Get 2nd hex value as register value. */ szLine += u4bMove; if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) rtw_write8(Adapter, u4bRegOffset, (u8)u4bRegValue); } } } } else DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } int phy_ConfigBBWithParaFile( struct adapter *Adapter, char *pFileName, u32 ConfigType ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; char *pBuf = NULL; u32 *pBufLen = NULL; if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_PARA_FILE)) return rtStatus; switch (ConfigType) { case CONFIG_BB_PHY_REG: pBuf = pHalData->bb_phy_reg; pBufLen = &pHalData->bb_phy_reg_len; break; case CONFIG_BB_AGC_TAB: pBuf = pHalData->bb_agc_tab; pBufLen = &pHalData->bb_agc_tab_len; break; default: DBG_871X("Unknown ConfigType!! %d\r\n", ConfigType); break; } memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if (pBufLen && (*pBufLen == 0) && !pBuf) { rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == true) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pBuf = vzalloc(rlen); if (pBuf) { memcpy(pBuf, pHalData->para_file_buf, rlen); *pBufLen = rlen; switch (ConfigType) { case CONFIG_BB_PHY_REG: pHalData->bb_phy_reg = pBuf; break; case CONFIG_BB_AGC_TAB: pHalData->bb_agc_tab = pBuf; break; } } else DBG_871X("%s(): ConfigType %d alloc fail !\n", __func__, ConfigType); } } } else { if (pBufLen && (*pBufLen == 0) && !pBuf) { memcpy(pHalData->para_file_buf, pBuf, *pBufLen); rtStatus = _SUCCESS; } else DBG_871X("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { /* Get 1st hex value as register offset. */ if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if (u4bRegOffset == 0xffff) /* Ending. */ break; else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) msleep(50); else if (u4bRegOffset == 0xfd) mdelay(5); else if (u4bRegOffset == 0xfc) mdelay(1); else if (u4bRegOffset == 0xfb) udelay(50); else if (u4bRegOffset == 0xfa) udelay(5); else if (u4bRegOffset == 0xf9) udelay(1); /* Get 2nd hex value as register value. */ szLine += u4bMove; if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { /* DBG_871X("[BB-ADDR]%03lX =%08lX\n", u4bRegOffset, u4bRegValue); */ PHY_SetBBReg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue); if (u4bRegOffset == 0xa24) pHalData->odmpriv.RFCalibrateInfo.RegA24 = u4bRegValue; /* Add 1us delay between BB/RF register setting. */ udelay(1); } } } } } else DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } static void phy_DecryptBBPgParaFile(struct adapter *Adapter, char *buffer) { u32 i = 0, j = 0; u8 map[95] = {0}; u8 currentChar; char *BufOfLines, *ptmp; /* DBG_871X("=====>phy_DecryptBBPgParaFile()\n"); */ /* 32 the ascii code of the first visable char, 126 the last one */ for (i = 0; i < 95; ++i) map[i] = (u8) (94 - i); ptmp = buffer; i = 0; for (BufOfLines = GetLineFromBuffer(ptmp); BufOfLines != NULL; BufOfLines = GetLineFromBuffer(ptmp)) { /* DBG_871X("Encrypted Line: %s\n", BufOfLines); */ for (j = 0; j < strlen(BufOfLines); ++j) { currentChar = BufOfLines[j]; if (currentChar == '\0') break; currentChar -= (u8) ((((i + j) * 3) % 128)); BufOfLines[j] = map[currentChar - 32] + 32; } /* DBG_871X("Decrypted Line: %s\n", BufOfLines); */ if (strlen(BufOfLines) != 0) i++; BufOfLines[strlen(BufOfLines)] = '\n'; } } static int phy_ParseBBPgParaFile(struct adapter *Adapter, char *buffer) { int rtStatus = _SUCCESS; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); char *szLine, *ptmp; u32 u4bRegOffset, u4bRegMask, u4bRegValue; u32 u4bMove; bool firstLine = true; u8 tx_num = 0; u8 band = 0, rf_path = 0; /* DBG_871X("=====>phy_ParseBBPgParaFile()\n"); */ if (Adapter->registrypriv.RegDecryptCustomFile == 1) phy_DecryptBBPgParaFile(Adapter, buffer); ptmp = buffer; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { if (isAllSpaceOrTab(szLine, sizeof(*szLine))) continue; /* Get header info (relative value or exact value) */ if (firstLine) { if (eqNByte(szLine, (u8 *)("#[v1]"), 5)) { pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0'; /* DBG_871X("This is a new format PHY_REG_PG.txt\n"); */ } else if (eqNByte(szLine, (u8 *)("#[v0]"), 5)) { pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0'; /* DBG_871X("This is a old format PHY_REG_PG.txt ok\n"); */ } else { DBG_871X("The format in PHY_REG_PG are invalid %s\n", szLine); return _FAIL; } if (eqNByte(szLine + 5, (u8 *)("[Exact]#"), 8)) { pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_EXACT_VALUE; /* DBG_871X("The values in PHY_REG_PG are exact values ok\n"); */ firstLine = false; continue; } else if (eqNByte(szLine + 5, (u8 *)("[Relative]#"), 11)) { pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_RELATIVE_VALUE; /* DBG_871X("The values in PHY_REG_PG are relative values ok\n"); */ firstLine = false; continue; } else { DBG_871X("The values in PHY_REG_PG are invalid %s\n", szLine); return _FAIL; } } if (pHalData->odmpriv.PhyRegPgVersion == 0) { /* Get 1st hex value as register offset. */ if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { szLine += u4bMove; if (u4bRegOffset == 0xffff) /* Ending. */ break; /* Get 2nd hex value as register mask. */ if (GetHexValueFromString(szLine, &u4bRegMask, &u4bMove)) szLine += u4bMove; else return _FAIL; if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE) { /* Get 3rd hex value as register value. */ if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, u4bRegValue); /* DBG_871X("[ADDR] %03X =%08X Mask =%08x\n", u4bRegOffset, u4bRegValue, u4bRegMask); */ } else return _FAIL; } else if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE) { u32 combineValue = 0; u8 integer = 0, fraction = 0; if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* DBG_871X(" %d", integer); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* DBG_871X(" %d", integer); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* DBG_871X(" %d", integer); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* DBG_871X(" %d", integer); */ PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, combineValue); /* DBG_871X("[ADDR] 0x%3x = 0x%4x\n", u4bRegOffset, combineValue); */ } } } else if (pHalData->odmpriv.PhyRegPgVersion > 0) { u32 index = 0; if (eqNByte(szLine, "0xffff", 6)) break; if (!eqNByte("#[END]#", szLine, 7)) { /* load the table label info */ if (szLine[0] == '#') { index = 0; if (eqNByte(szLine, "#[2.4G]", 7)) { band = BAND_ON_2_4G; index += 8; } else if (eqNByte(szLine, "#[5G]", 5)) { band = BAND_ON_5G; index += 6; } else { DBG_871X("Invalid band %s in PHY_REG_PG.txt\n", szLine); return _FAIL; } rf_path = szLine[index] - 'A'; /* DBG_871X(" Table label Band %d, RfPath %d\n", band, rf_path); */ } else { /* load rows of tables */ if (szLine[1] == '1') tx_num = RF_1TX; else if (szLine[1] == '2') tx_num = RF_2TX; else if (szLine[1] == '3') tx_num = RF_3TX; else if (szLine[1] == '4') tx_num = RF_4TX; else { DBG_871X("Invalid row in PHY_REG_PG.txt %c\n", szLine[1]); return _FAIL; } while (szLine[index] != ']') ++index; ++index;/* skip ] */ /* Get 2nd hex value as register offset. */ szLine += index; if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) szLine += u4bMove; else return _FAIL; /* Get 2nd hex value as register mask. */ if (GetHexValueFromString(szLine, &u4bRegMask, &u4bMove)) szLine += u4bMove; else return _FAIL; if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE) { /* Get 3rd hex value as register value. */ if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, u4bRegValue); /* DBG_871X("[ADDR] %03X (tx_num %d) =%08X Mask =%08x\n", u4bRegOffset, tx_num, u4bRegValue, u4bRegMask); */ } else return _FAIL; } else if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE) { u32 combineValue = 0; u8 integer = 0, fraction = 0; if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* DBG_871X(" %d", integer); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* DBG_871X(" %d", integer); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* DBG_871X(" %d", integer); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* DBG_871X(" %d", integer); */ PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, combineValue); /* DBG_871X("[ADDR] 0x%3x (tx_num %d) = 0x%4x\n", u4bRegOffset, tx_num, combineValue); */ } } } } } } /* DBG_871X("<=====phy_ParseBBPgParaFile()\n"); */ return rtStatus; } int phy_ConfigBBWithPgParaFile(struct adapter *Adapter, char *pFileName) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_PG_PARA_FILE)) return rtStatus; memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->bb_phy_reg_pg_len == 0) && !pHalData->bb_phy_reg_pg) { rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == true) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->bb_phy_reg_pg = vzalloc(rlen); if (pHalData->bb_phy_reg_pg) { memcpy(pHalData->bb_phy_reg_pg, pHalData->para_file_buf, rlen); pHalData->bb_phy_reg_pg_len = rlen; } else DBG_871X("%s bb_phy_reg_pg alloc fail !\n", __func__); } } } else { if ((pHalData->bb_phy_reg_pg_len != 0) && (pHalData->bb_phy_reg_pg != NULL)) { memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len); rtStatus = _SUCCESS; } else DBG_871X("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { /* DBG_871X("phy_ConfigBBWithPgParaFile(): read %s ok\n", pFileName); */ phy_ParseBBPgParaFile(Adapter, pHalData->para_file_buf); } else DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } int PHY_ConfigRFWithParaFile( struct adapter *Adapter, char *pFileName, u8 eRFPath ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; u16 i; char *pBuf = NULL; u32 *pBufLen = NULL; if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_PARA_FILE)) return rtStatus; switch (eRFPath) { case ODM_RF_PATH_A: pBuf = pHalData->rf_radio_a; pBufLen = &pHalData->rf_radio_a_len; break; case ODM_RF_PATH_B: pBuf = pHalData->rf_radio_b; pBufLen = &pHalData->rf_radio_b_len; break; default: DBG_871X("Unknown RF path!! %d\r\n", eRFPath); break; } memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if (pBufLen && (*pBufLen == 0) && !pBuf) { rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == true) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pBuf = vzalloc(rlen); if (pBuf) { memcpy(pBuf, pHalData->para_file_buf, rlen); *pBufLen = rlen; switch (eRFPath) { case ODM_RF_PATH_A: pHalData->rf_radio_a = pBuf; break; case ODM_RF_PATH_B: pHalData->rf_radio_b = pBuf; break; } } else DBG_871X("%s(): eRFPath =%d alloc fail !\n", __func__, eRFPath); } } } else { if (pBufLen && (*pBufLen == 0) && !pBuf) { memcpy(pHalData->para_file_buf, pBuf, *pBufLen); rtStatus = _SUCCESS; } else DBG_871X("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { /* DBG_871X("%s(): read %s successfully\n", __func__, pFileName); */ ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { /* Get 1st hex value as register offset. */ if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) /* Deay specific ms. Only RF configuration require delay. */ msleep(50); else if (u4bRegOffset == 0xfd) { /* mdelay(5); */ for (i = 0; i < 100; i++) udelay(MAX_STALL_TIME); } else if (u4bRegOffset == 0xfc) { /* mdelay(1); */ for (i = 0; i < 20; i++) udelay(MAX_STALL_TIME); } else if (u4bRegOffset == 0xfb) udelay(50); else if (u4bRegOffset == 0xfa) udelay(5); else if (u4bRegOffset == 0xf9) udelay(1); else if (u4bRegOffset == 0xffff) break; /* Get 2nd hex value as register value. */ szLine += u4bMove; if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { PHY_SetRFReg(Adapter, eRFPath, u4bRegOffset, bRFRegOffsetMask, u4bRegValue); /* Temp add, for frequency lock, if no delay, that may cause */ /* frequency shift, ex: 2412MHz => 2417MHz */ /* If frequency shift, the following action may works. */ /* Fractional-N table in radio_a.txt */ /* 0x2a 0x00001 channel 1 */ /* 0x2b 0x00808 frequency divider. */ /* 0x2b 0x53333 */ /* 0x2c 0x0000c */ udelay(1); } } } } } else DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } static void initDeltaSwingIndexTables( struct adapter *Adapter, char *Band, char *Path, char *Sign, char *Channel, char *Rate, char *Data ) { #define STR_EQUAL_5G(_band, _path, _sign, _rate, _chnl) \ ((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\ (strcmp(Rate, _rate) == 0) && (strcmp(Channel, _chnl) == 0)\ ) #define STR_EQUAL_2G(_band, _path, _sign, _rate) \ ((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\ (strcmp(Rate, _rate) == 0)\ ) #define STORE_SWING_TABLE(_array, _iteratedIdx) \ for (token = strsep(&Data, delim); token != NULL; token = strsep(&Data, delim)) {\ sscanf(token, "%d", &idx);\ _array[_iteratedIdx++] = (u8)idx;\ } \ struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo); u32 j = 0; char *token; char delim[] = ","; u32 idx = 0; /* DBG_871X("===>initDeltaSwingIndexTables(): Band: %s;\nPath: %s;\nSign: %s;\nChannel: %s;\nRate: %s;\n, Data: %s;\n", */ /* Band, Path, Sign, Channel, Rate, Data); */ if (STR_EQUAL_2G("2G", "A", "+", "CCK")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P, j); } else if (STR_EQUAL_2G("2G", "A", "-", "CCK")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N, j); } else if (STR_EQUAL_2G("2G", "B", "+", "CCK")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P, j); } else if (STR_EQUAL_2G("2G", "B", "-", "CCK")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N, j); } else if (STR_EQUAL_2G("2G", "A", "+", "ALL")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P, j); } else if (STR_EQUAL_2G("2G", "A", "-", "ALL")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N, j); } else if (STR_EQUAL_2G("2G", "B", "+", "ALL")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P, j); } else if (STR_EQUAL_2G("2G", "B", "-", "ALL")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N, j); } else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "0")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[0], j); } else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "0")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[0], j); } else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "0")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[0], j); } else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "0")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[0], j); } else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "1")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[1], j); } else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "1")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[1], j); } else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "1")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[1], j); } else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "1")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[1], j); } else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "2")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[2], j); } else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "2")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[2], j); } else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "2")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[2], j); } else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "2")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[2], j); } else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "3")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[3], j); } else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "3")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[3], j); } else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "3")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[3], j); } else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "3")) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[3], j); } else DBG_871X("===>initDeltaSwingIndexTables(): The input is invalid!!\n"); } int PHY_ConfigRFWithTxPwrTrackParaFile(struct adapter *Adapter, char *pFileName) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_TRACK_PARA_FILE)) return rtStatus; memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->rf_tx_pwr_track_len == 0) && !pHalData->rf_tx_pwr_track) { rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == true) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->rf_tx_pwr_track = vzalloc(rlen); if (pHalData->rf_tx_pwr_track) { memcpy(pHalData->rf_tx_pwr_track, pHalData->para_file_buf, rlen); pHalData->rf_tx_pwr_track_len = rlen; } else DBG_871X("%s rf_tx_pwr_track alloc fail !\n", __func__); } } } else { if ((pHalData->rf_tx_pwr_track_len != 0) && (pHalData->rf_tx_pwr_track != NULL)) { memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len); rtStatus = _SUCCESS; } else DBG_871X("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { /* DBG_871X("%s(): read %s successfully\n", __func__, pFileName); */ ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { char band[5] = "", path[5] = "", sign[5] = ""; char chnl[5] = "", rate[10] = ""; char data[300] = ""; /* 100 is too small */ const int len = strlen(szLine); int i; if (len < 10 || szLine[0] != '[') continue; strncpy(band, szLine+1, 2); strncpy(path, szLine+5, 1); strncpy(sign, szLine+8, 1); i = 10; /* szLine+10 */ if (!ParseQualifiedString(szLine, &i, rate, '[', ']')) { /* DBG_871X("Fail to parse rate!\n"); */ } if (!ParseQualifiedString(szLine, &i, chnl, '[', ']')) { /* DBG_871X("Fail to parse channel group!\n"); */ } while (i < len && szLine[i] != '{') i++; if (!ParseQualifiedString(szLine, &i, data, '{', '}')) { /* DBG_871X("Fail to parse data!\n"); */ } initDeltaSwingIndexTables(Adapter, band, path, sign, chnl, rate, data); } } } else DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } static int phy_ParsePowerLimitTableFile(struct adapter *Adapter, char *buffer) { u32 i = 0, forCnt = 0; u8 loadingStage = 0, limitValue = 0, fraction = 0; char *szLine, *ptmp; int rtStatus = _SUCCESS; char band[10], bandwidth[10], rateSection[10], regulation[TXPWR_LMT_MAX_REGULATION_NUM][10], rfPath[10], colNumBuf[10]; u8 colNum = 0; DBG_871X("===>phy_ParsePowerLimitTableFile()\n"); if (Adapter->registrypriv.RegDecryptCustomFile == 1) phy_DecryptBBPgParaFile(Adapter, buffer); ptmp = buffer; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { /* skip comment */ if (IsCommentString(szLine)) { continue; } if (loadingStage == 0) { for (forCnt = 0; forCnt < TXPWR_LMT_MAX_REGULATION_NUM; ++forCnt) memset((void *) regulation[forCnt], 0, 10); memset((void *) band, 0, 10); memset((void *) bandwidth, 0, 10); memset((void *) rateSection, 0, 10); memset((void *) rfPath, 0, 10); memset((void *) colNumBuf, 0, 10); if (szLine[0] != '#' || szLine[1] != '#') continue; /* skip the space */ i = 2; while (szLine[i] == ' ' || szLine[i] == '\t') ++i; szLine[--i] = ' '; /* return the space in front of the regulation info */ /* Parse the label of the table */ if (!ParseQualifiedString(szLine, &i, band, ' ', ',')) { DBG_871X("Fail to parse band!\n"); return _FAIL; } if (!ParseQualifiedString(szLine, &i, bandwidth, ' ', ',')) { DBG_871X("Fail to parse bandwidth!\n"); return _FAIL; } if (!ParseQualifiedString(szLine, &i, rfPath, ' ', ',')) { DBG_871X("Fail to parse rf path!\n"); return _FAIL; } if (!ParseQualifiedString(szLine, &i, rateSection, ' ', ',')) { DBG_871X("Fail to parse rate!\n"); return _FAIL; } loadingStage = 1; } else if (loadingStage == 1) { if (szLine[0] != '#' || szLine[1] != '#') continue; /* skip the space */ i = 2; while (szLine[i] == ' ' || szLine[i] == '\t') ++i; if (!eqNByte((u8 *)(szLine + i), (u8 *)("START"), 5)) { DBG_871X("Lost \"## START\" label\n"); return _FAIL; } loadingStage = 2; } else if (loadingStage == 2) { if (szLine[0] != '#' || szLine[1] != '#') continue; /* skip the space */ i = 2; while (szLine[i] == ' ' || szLine[i] == '\t') ++i; if (!ParseQualifiedString(szLine, &i, colNumBuf, '#', '#')) { DBG_871X("Fail to parse column number!\n"); return _FAIL; } if (!GetU1ByteIntegerFromStringInDecimal(colNumBuf, &colNum)) return _FAIL; if (colNum > TXPWR_LMT_MAX_REGULATION_NUM) { DBG_871X( "invalid col number %d (greater than max %d)\n", colNum, TXPWR_LMT_MAX_REGULATION_NUM ); return _FAIL; } for (forCnt = 0; forCnt < colNum; ++forCnt) { u8 regulation_name_cnt = 0; /* skip the space */ while (szLine[i] == ' ' || szLine[i] == '\t') ++i; while (szLine[i] != ' ' && szLine[i] != '\t' && szLine[i] != '\0') regulation[forCnt][regulation_name_cnt++] = szLine[i++]; /* DBG_871X("regulation %s!\n", regulation[forCnt]); */ if (regulation_name_cnt == 0) { DBG_871X("invalid number of regulation!\n"); return _FAIL; } } loadingStage = 3; } else if (loadingStage == 3) { char channel[10] = {0}, powerLimit[10] = {0}; u8 cnt = 0; /* the table ends */ if (szLine[0] == '#' && szLine[1] == '#') { i = 2; while (szLine[i] == ' ' || szLine[i] == '\t') ++i; if (eqNByte((u8 *)(szLine + i), (u8 *)("END"), 3)) { loadingStage = 0; continue; } else { DBG_871X("Wrong format\n"); DBG_871X("<===== phy_ParsePowerLimitTableFile()\n"); return _FAIL; } } if ((szLine[0] != 'c' && szLine[0] != 'C') || (szLine[1] != 'h' && szLine[1] != 'H')) { DBG_871X("Meet wrong channel => power limt pair\n"); continue; } i = 2;/* move to the location behind 'h' */ /* load the channel number */ cnt = 0; while (szLine[i] >= '0' && szLine[i] <= '9') { channel[cnt] = szLine[i]; ++cnt; ++i; } /* DBG_871X("chnl %s!\n", channel); */ for (forCnt = 0; forCnt < colNum; ++forCnt) { /* skip the space between channel number and the power limit value */ while (szLine[i] == ' ' || szLine[i] == '\t') ++i; /* load the power limit value */ cnt = 0; fraction = 0; memset((void *) powerLimit, 0, 10); while ((szLine[i] >= '0' && szLine[i] <= '9') || szLine[i] == '.') { if (szLine[i] == '.') { if ((szLine[i+1] >= '0' && szLine[i+1] <= '9')) { fraction = szLine[i+1]; i += 2; } else { DBG_871X("Wrong fraction in TXPWR_LMT.txt\n"); return _FAIL; } break; } powerLimit[cnt] = szLine[i]; ++cnt; ++i; } if (powerLimit[0] == '\0') { powerLimit[0] = '6'; powerLimit[1] = '3'; i += 2; } else { if (!GetU1ByteIntegerFromStringInDecimal(powerLimit, &limitValue)) return _FAIL; limitValue *= 2; cnt = 0; if (fraction == '5') ++limitValue; /* the value is greater or equal to 100 */ if (limitValue >= 100) { powerLimit[cnt++] = limitValue/100 + '0'; limitValue %= 100; if (limitValue >= 10) { powerLimit[cnt++] = limitValue/10 + '0'; limitValue %= 10; } else powerLimit[cnt++] = '0'; powerLimit[cnt++] = limitValue + '0'; } else if (limitValue >= 10) { /* the value is greater or equal to 10 */ powerLimit[cnt++] = limitValue/10 + '0'; limitValue %= 10; powerLimit[cnt++] = limitValue + '0'; } /* the value is less than 10 */ else powerLimit[cnt++] = limitValue + '0'; powerLimit[cnt] = '\0'; } /* DBG_871X("ch%s => %s\n", channel, powerLimit); */ /* store the power limit value */ PHY_SetTxPowerLimit(Adapter, (u8 *)regulation[forCnt], (u8 *)band, (u8 *)bandwidth, (u8 *)rateSection, (u8 *)rfPath, (u8 *)channel, (u8 *)powerLimit); } } else { DBG_871X("Abnormal loading stage in phy_ParsePowerLimitTableFile()!\n"); rtStatus = _FAIL; break; } } DBG_871X("<===phy_ParsePowerLimitTableFile()\n"); return rtStatus; } int PHY_ConfigRFWithPowerLimitTableParaFile( struct adapter *Adapter, char *pFileName ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_LMT_PARA_FILE)) return rtStatus; memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->rf_tx_pwr_lmt_len == 0) && !pHalData->rf_tx_pwr_lmt) { rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == true) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->rf_tx_pwr_lmt = vzalloc(rlen); if (pHalData->rf_tx_pwr_lmt) { memcpy(pHalData->rf_tx_pwr_lmt, pHalData->para_file_buf, rlen); pHalData->rf_tx_pwr_lmt_len = rlen; } else DBG_871X("%s rf_tx_pwr_lmt alloc fail !\n", __func__); } } } else { if ((pHalData->rf_tx_pwr_lmt_len != 0) && (pHalData->rf_tx_pwr_lmt != NULL)) { memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len); rtStatus = _SUCCESS; } else DBG_871X("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { /* DBG_871X("%s(): read %s ok\n", __func__, pFileName); */ rtStatus = phy_ParsePowerLimitTableFile(Adapter, pHalData->para_file_buf); } else DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } void phy_free_filebuf(struct adapter *padapter) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); if (pHalData->mac_reg) vfree(pHalData->mac_reg); if (pHalData->bb_phy_reg) vfree(pHalData->bb_phy_reg); if (pHalData->bb_agc_tab) vfree(pHalData->bb_agc_tab); if (pHalData->bb_phy_reg_pg) vfree(pHalData->bb_phy_reg_pg); if (pHalData->bb_phy_reg_mp) vfree(pHalData->bb_phy_reg_mp); if (pHalData->rf_radio_a) vfree(pHalData->rf_radio_a); if (pHalData->rf_radio_b) vfree(pHalData->rf_radio_b); if (pHalData->rf_tx_pwr_track) vfree(pHalData->rf_tx_pwr_track); if (pHalData->rf_tx_pwr_lmt) vfree(pHalData->rf_tx_pwr_lmt); }