/* *********************************************************************** * * Implementation of the Skein block functions. * * Source code author: Doug Whiting, 2008. * * This algorithm and source code is released to the public domain. * * Compile-time switches: * * SKEIN_USE_ASM -- set bits (256/512/1024) to select which * versions use ASM code for block processing * [default: use C for all block sizes] * *********************************************************************** */ #include #include #include "skein_base.h" #include "skein_block.h" /***************************** SKEIN_256 ******************************/ #if !(SKEIN_USE_ASM & 256) void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr, size_t blk_cnt, size_t byte_cnt_add) { /* do it in C */ enum { WCNT = SKEIN_256_STATE_WORDS }; size_t r; #if SKEIN_UNROLL_256 /* key schedule: chaining vars + tweak + "rot"*/ u64 kw[WCNT + 4 + (RCNT * 2)]; #else /* key schedule words : chaining vars + tweak */ u64 kw[WCNT + 4]; #endif u64 X0, X1, X2, X3; /* local copy of context vars, for speed */ u64 w[WCNT]; /* local copy of input block */ #ifdef SKEIN_DEBUG const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */ X_ptr[0] = &X0; X_ptr[1] = &X1; X_ptr[2] = &X2; X_ptr[3] = &X3; #endif skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ ts[0] = ctx->h.tweak[0]; ts[1] = ctx->h.tweak[1]; do { /* * this implementation only supports 2**64 input bytes * (no carry out here) */ ts[0] += byte_cnt_add; /* update processed length */ /* precompute the key schedule for this block */ ks[0] = ctx->x[0]; ks[1] = ctx->x[1]; ks[2] = ctx->x[2]; ks[3] = ctx->x[3]; ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY; ts[2] = ts[0] ^ ts[1]; /* get input block in little-endian format */ skein_get64_lsb_first(w, blk_ptr, WCNT); debug_save_tweak(ctx); /* do the first full key injection */ X0 = w[0] + ks[0]; X1 = w[1] + ks[1] + ts[0]; X2 = w[2] + ks[2] + ts[1]; X3 = w[3] + ks[3]; blk_ptr += SKEIN_256_BLOCK_BYTES; /* run the rounds */ for (r = 1; r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2); r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) { R256_8_ROUNDS(0); #if R256_UNROLL_R(1) R256_8_ROUNDS(1); #endif #if R256_UNROLL_R(2) R256_8_ROUNDS(2); #endif #if R256_UNROLL_R(3) R256_8_ROUNDS(3); #endif #if R256_UNROLL_R(4) R256_8_ROUNDS(4); #endif #if R256_UNROLL_R(5) R256_8_ROUNDS(5); #endif #if R256_UNROLL_R(6) R256_8_ROUNDS(6); #endif #if R256_UNROLL_R(7) R256_8_ROUNDS(7); #endif #if R256_UNROLL_R(8) R256_8_ROUNDS(8); #endif #if R256_UNROLL_R(9) R256_8_ROUNDS(9); #endif #if R256_UNROLL_R(10) R256_8_ROUNDS(10); #endif #if R256_UNROLL_R(11) R256_8_ROUNDS(11); #endif #if R256_UNROLL_R(12) R256_8_ROUNDS(12); #endif #if R256_UNROLL_R(13) R256_8_ROUNDS(13); #endif #if R256_UNROLL_R(14) R256_8_ROUNDS(14); #endif } /* do the final "feedforward" xor, update context chaining */ ctx->x[0] = X0 ^ w[0]; ctx->x[1] = X1 ^ w[1]; ctx->x[2] = X2 ^ w[2]; ctx->x[3] = X3 ^ w[3]; ts[1] &= ~SKEIN_T1_FLAG_FIRST; } while (--blk_cnt); ctx->h.tweak[0] = ts[0]; ctx->h.tweak[1] = ts[1]; } #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF) size_t skein_256_process_block_code_size(void) { return ((u8 *)skein_256_process_block_code_size) - ((u8 *)skein_256_process_block); } unsigned int skein_256_unroll_cnt(void) { return SKEIN_UNROLL_256; } #endif #endif /***************************** SKEIN_512 ******************************/ #if !(SKEIN_USE_ASM & 512) void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr, size_t blk_cnt, size_t byte_cnt_add) { /* do it in C */ enum { WCNT = SKEIN_512_STATE_WORDS }; size_t r; #if SKEIN_UNROLL_512 /* key sched: chaining vars + tweak + "rot"*/ u64 kw[WCNT + 4 + RCNT * 2]; #else /* key schedule words : chaining vars + tweak */ u64 kw[WCNT + 4]; #endif u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */ u64 w[WCNT]; /* local copy of input block */ #ifdef SKEIN_DEBUG const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */ X_ptr[0] = &X0; X_ptr[1] = &X1; X_ptr[2] = &X2; X_ptr[3] = &X3; X_ptr[4] = &X4; X_ptr[5] = &X5; X_ptr[6] = &X6; X_ptr[7] = &X7; #endif skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ ts[0] = ctx->h.tweak[0]; ts[1] = ctx->h.tweak[1]; do { /* * this implementation only supports 2**64 input bytes * (no carry out here) */ ts[0] += byte_cnt_add; /* update processed length */ /* precompute the key schedule for this block */ ks[0] = ctx->x[0]; ks[1] = ctx->x[1]; ks[2] = ctx->x[2]; ks[3] = ctx->x[3]; ks[4] = ctx->x[4]; ks[5] = ctx->x[5]; ks[6] = ctx->x[6]; ks[7] = ctx->x[7]; ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY; ts[2] = ts[0] ^ ts[1]; /* get input block in little-endian format */ skein_get64_lsb_first(w, blk_ptr, WCNT); debug_save_tweak(ctx); /* do the first full key injection */ X0 = w[0] + ks[0]; X1 = w[1] + ks[1]; X2 = w[2] + ks[2]; X3 = w[3] + ks[3]; X4 = w[4] + ks[4]; X5 = w[5] + ks[5] + ts[0]; X6 = w[6] + ks[6] + ts[1]; X7 = w[7] + ks[7]; blk_ptr += SKEIN_512_BLOCK_BYTES; /* run the rounds */ for (r = 1; r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2); r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) { R512_8_ROUNDS(0); #if R512_UNROLL_R(1) R512_8_ROUNDS(1); #endif #if R512_UNROLL_R(2) R512_8_ROUNDS(2); #endif #if R512_UNROLL_R(3) R512_8_ROUNDS(3); #endif #if R512_UNROLL_R(4) R512_8_ROUNDS(4); #endif #if R512_UNROLL_R(5) R512_8_ROUNDS(5); #endif #if R512_UNROLL_R(6) R512_8_ROUNDS(6); #endif #if R512_UNROLL_R(7) R512_8_ROUNDS(7); #endif #if R512_UNROLL_R(8) R512_8_ROUNDS(8); #endif #if R512_UNROLL_R(9) R512_8_ROUNDS(9); #endif #if R512_UNROLL_R(10) R512_8_ROUNDS(10); #endif #if R512_UNROLL_R(11) R512_8_ROUNDS(11); #endif #if R512_UNROLL_R(12) R512_8_ROUNDS(12); #endif #if R512_UNROLL_R(13) R512_8_ROUNDS(13); #endif #if R512_UNROLL_R(14) R512_8_ROUNDS(14); #endif } /* do the final "feedforward" xor, update context chaining */ ctx->x[0] = X0 ^ w[0]; ctx->x[1] = X1 ^ w[1]; ctx->x[2] = X2 ^ w[2]; ctx->x[3] = X3 ^ w[3]; ctx->x[4] = X4 ^ w[4]; ctx->x[5] = X5 ^ w[5]; ctx->x[6] = X6 ^ w[6]; ctx->x[7] = X7 ^ w[7]; ts[1] &= ~SKEIN_T1_FLAG_FIRST; } while (--blk_cnt); ctx->h.tweak[0] = ts[0]; ctx->h.tweak[1] = ts[1]; } #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF) size_t skein_512_process_block_code_size(void) { return ((u8 *)skein_512_process_block_code_size) - ((u8 *)skein_512_process_block); } unsigned int skein_512_unroll_cnt(void) { return SKEIN_UNROLL_512; } #endif #endif /***************************** SKEIN_1024 ******************************/ #if !(SKEIN_USE_ASM & 1024) void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr, size_t blk_cnt, size_t byte_cnt_add) { /* do it in C, always looping (unrolled is bigger AND slower!) */ enum { WCNT = SKEIN_1024_STATE_WORDS }; size_t r; #if (SKEIN_UNROLL_1024 != 0) /* key sched: chaining vars + tweak + "rot" */ u64 kw[WCNT + 4 + (RCNT * 2)]; #else /* key schedule words : chaining vars + tweak */ u64 kw[WCNT + 4]; #endif /* local copy of vars, for speed */ u64 X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11, X12, X13, X14, X15; u64 w[WCNT]; /* local copy of input block */ skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ ts[0] = ctx->h.tweak[0]; ts[1] = ctx->h.tweak[1]; do { /* * this implementation only supports 2**64 input bytes * (no carry out here) */ ts[0] += byte_cnt_add; /* update processed length */ /* precompute the key schedule for this block */ ks[0] = ctx->x[0]; ks[1] = ctx->x[1]; ks[2] = ctx->x[2]; ks[3] = ctx->x[3]; ks[4] = ctx->x[4]; ks[5] = ctx->x[5]; ks[6] = ctx->x[6]; ks[7] = ctx->x[7]; ks[8] = ctx->x[8]; ks[9] = ctx->x[9]; ks[10] = ctx->x[10]; ks[11] = ctx->x[11]; ks[12] = ctx->x[12]; ks[13] = ctx->x[13]; ks[14] = ctx->x[14]; ks[15] = ctx->x[15]; ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^ ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY; ts[2] = ts[0] ^ ts[1]; /* get input block in little-endian format */ skein_get64_lsb_first(w, blk_ptr, WCNT); debug_save_tweak(ctx); /* do the first full key injection */ X00 = w[0] + ks[0]; X01 = w[1] + ks[1]; X02 = w[2] + ks[2]; X03 = w[3] + ks[3]; X04 = w[4] + ks[4]; X05 = w[5] + ks[5]; X06 = w[6] + ks[6]; X07 = w[7] + ks[7]; X08 = w[8] + ks[8]; X09 = w[9] + ks[9]; X10 = w[10] + ks[10]; X11 = w[11] + ks[11]; X12 = w[12] + ks[12]; X13 = w[13] + ks[13] + ts[0]; X14 = w[14] + ks[14] + ts[1]; X15 = w[15] + ks[15]; for (r = 1; r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2); r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) { R1024_8_ROUNDS(0); #if R1024_UNROLL_R(1) R1024_8_ROUNDS(1); #endif #if R1024_UNROLL_R(2) R1024_8_ROUNDS(2); #endif #if R1024_UNROLL_R(3) R1024_8_ROUNDS(3); #endif #if R1024_UNROLL_R(4) R1024_8_ROUNDS(4); #endif #if R1024_UNROLL_R(5) R1024_8_ROUNDS(5); #endif #if R1024_UNROLL_R(6) R1024_8_ROUNDS(6); #endif #if R1024_UNROLL_R(7) R1024_8_ROUNDS(7); #endif #if R1024_UNROLL_R(8) R1024_8_ROUNDS(8); #endif #if R1024_UNROLL_R(9) R1024_8_ROUNDS(9); #endif #if R1024_UNROLL_R(10) R1024_8_ROUNDS(10); #endif #if R1024_UNROLL_R(11) R1024_8_ROUNDS(11); #endif #if R1024_UNROLL_R(12) R1024_8_ROUNDS(12); #endif #if R1024_UNROLL_R(13) R1024_8_ROUNDS(13); #endif #if R1024_UNROLL_R(14) R1024_8_ROUNDS(14); #endif } /* do the final "feedforward" xor, update context chaining */ ctx->x[0] = X00 ^ w[0]; ctx->x[1] = X01 ^ w[1]; ctx->x[2] = X02 ^ w[2]; ctx->x[3] = X03 ^ w[3]; ctx->x[4] = X04 ^ w[4]; ctx->x[5] = X05 ^ w[5]; ctx->x[6] = X06 ^ w[6]; ctx->x[7] = X07 ^ w[7]; ctx->x[8] = X08 ^ w[8]; ctx->x[9] = X09 ^ w[9]; ctx->x[10] = X10 ^ w[10]; ctx->x[11] = X11 ^ w[11]; ctx->x[12] = X12 ^ w[12]; ctx->x[13] = X13 ^ w[13]; ctx->x[14] = X14 ^ w[14]; ctx->x[15] = X15 ^ w[15]; ts[1] &= ~SKEIN_T1_FLAG_FIRST; blk_ptr += SKEIN_1024_BLOCK_BYTES; } while (--blk_cnt); ctx->h.tweak[0] = ts[0]; ctx->h.tweak[1] = ts[1]; } #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF) size_t skein_1024_process_block_code_size(void) { return ((u8 *)skein_1024_process_block_code_size) - ((u8 *)skein_1024_process_block); } unsigned int skein_1024_unroll_cnt(void) { return SKEIN_UNROLL_1024; } #endif #endif