/* uislib.c * * Copyright (C) 2010 - 2013 UNISYS CORPORATION * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. */ /* @ALL_INSPECTED */ #define EXPORT_SYMTAB #include #include #ifdef CONFIG_MODVERSIONS #include #endif #include #include #include #include #include #include "uniklog.h" #include "diagnostics/appos_subsystems.h" #include "uisutils.h" #include "vbuschannel.h" #include #include /* for copy_from_user */ #include /* for toupper */ #include #include "sparstop.h" #include "visorchipset.h" #include "chanstub.h" #include "version.h" #include "guestlinuxdebug.h" #define SET_PROC_OWNER(x, y) #define POLLJIFFIES_NORMAL 1 /* Choose whether or not you want to wakeup the request-polling thread * after an IO termination: * this is shorter than using __FILE__ (full path name) in * debug/info/error messages */ #define CURRENT_FILE_PC UISLIB_PC_uislib_c #define __MYFILE__ "uislib.c" /* global function pointers that act as callback functions into virtpcimod */ int (*virt_control_chan_func)(struct guest_msgs *); static int ProcReadBufferValid; static char *ProcReadBuffer; /* Note this MUST be global, * because the contents must */ static unsigned int chipset_inited; #define WAIT_ON_CALLBACK(handle) \ do { \ if (handle) \ break; \ UIS_THREAD_WAIT; \ } while (1) static struct bus_info *BusListHead; static rwlock_t BusListLock; static int BusListCount; /* number of buses in the list */ static int MaxBusCount; /* maximum number of buses expected */ static u64 PhysicalDataChan; static int PlatformNumber; static struct uisthread_info Incoming_ThreadInfo; static BOOL Incoming_Thread_Started = FALSE; static LIST_HEAD(List_Polling_Device_Channels); static unsigned long long tot_moved_to_tail_cnt; static unsigned long long tot_wait_cnt; static unsigned long long tot_wakeup_cnt; static unsigned long long tot_schedule_cnt; static int en_smart_wakeup = 1; static DEFINE_SEMAPHORE(Lock_Polling_Device_Channels); /* unlocked */ static DECLARE_WAIT_QUEUE_HEAD(Wakeup_Polling_Device_Channels); static int Go_Polling_Device_Channels; #define CALLHOME_PROC_ENTRY_FN "callhome" #define CALLHOME_THROTTLED_PROC_ENTRY_FN "callhome_throttled" #define DIR_DEBUGFS_ENTRY "uislib" static struct dentry *dir_debugfs; #define PLATFORMNUMBER_DEBUGFS_ENTRY_FN "platform" static struct dentry *platformnumber_debugfs_read; #define CYCLES_BEFORE_WAIT_DEBUGFS_ENTRY_FN "cycles_before_wait" static struct dentry *cycles_before_wait_debugfs_read; #define SMART_WAKEUP_DEBUGFS_ENTRY_FN "smart_wakeup" static struct dentry *smart_wakeup_debugfs_entry; #define INFO_DEBUGFS_ENTRY_FN "info" static struct dentry *info_debugfs_entry; static unsigned long long cycles_before_wait, wait_cycles; /*****************************************************/ /* local functions */ /*****************************************************/ static ssize_t info_debugfs_read(struct file *file, char __user *buf, size_t len, loff_t *offset); static const struct file_operations debugfs_info_fops = { .read = info_debugfs_read, }; static void init_msg_header(struct controlvm_message *msg, u32 id, uint rsp, uint svr) { memset(msg, 0, sizeof(struct controlvm_message)); msg->hdr.id = id; msg->hdr.flags.response_expected = rsp; msg->hdr.flags.server = svr; } static __iomem void * init_vbus_channel(u64 channelAddr, u32 channelBytes) { void __iomem *rc = NULL; void __iomem *pChan = uislib_ioremap_cache(channelAddr, channelBytes); if (!pChan) { LOGERR("CONTROLVM_BUS_CREATE error: ioremap_cache of channelAddr:%Lx for channelBytes:%llu failed", (unsigned long long) channelAddr, (unsigned long long) channelBytes); rc = NULL; goto Away; } if (!SPAR_VBUS_CHANNEL_OK_CLIENT(pChan)) { ERRDRV("%s channel cannot be used", __func__); uislib_iounmap(pChan); rc = NULL; goto Away; } rc = pChan; Away: return rc; } static int create_bus(struct controlvm_message *msg, char *buf) { u32 busNo, deviceCount; struct bus_info *tmp, *bus; size_t size; if (MaxBusCount == BusListCount) { LOGERR("CONTROLVM_BUS_CREATE Failed: max buses:%d already created\n", MaxBusCount); POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, MaxBusCount, POSTCODE_SEVERITY_ERR); return CONTROLVM_RESP_ERROR_MAX_BUSES; } busNo = msg->cmd.create_bus.bus_no; deviceCount = msg->cmd.create_bus.dev_count; POSTCODE_LINUX_4(BUS_CREATE_ENTRY_PC, busNo, deviceCount, POSTCODE_SEVERITY_INFO); size = sizeof(struct bus_info) + (deviceCount * sizeof(struct device_info *)); bus = kzalloc(size, GFP_ATOMIC); if (!bus) { LOGERR("CONTROLVM_BUS_CREATE Failed: kmalloc for bus failed.\n"); POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, busNo, POSTCODE_SEVERITY_ERR); return CONTROLVM_RESP_ERROR_KMALLOC_FAILED; } /* Currently by default, the bus Number is the GuestHandle. * Configure Bus message can override this. */ if (msg->hdr.flags.test_message) { /* This implies we're the IOVM so set guest handle to 0... */ bus->guest_handle = 0; bus->bus_no = busNo; bus->local_vnic = 1; } else bus->bus_no = bus->guest_handle = busNo; sprintf(bus->name, "%d", (int) bus->bus_no); bus->device_count = deviceCount; bus->device = (struct device_info **) ((char *) bus + sizeof(struct bus_info)); bus->bus_inst_uuid = msg->cmd.create_bus.bus_inst_uuid; bus->bus_channel_bytes = 0; bus->bus_channel = NULL; /* add bus to our bus list - but check for duplicates first */ read_lock(&BusListLock); for (tmp = BusListHead; tmp; tmp = tmp->next) { if (tmp->bus_no == bus->bus_no) break; } read_unlock(&BusListLock); if (tmp) { /* found a bus already in the list with same busNo - * reject add */ LOGERR("CONTROLVM_BUS_CREATE Failed: bus %d already exists.\n", bus->bus_no); POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus->bus_no, POSTCODE_SEVERITY_ERR); kfree(bus); return CONTROLVM_RESP_ERROR_ALREADY_DONE; } if ((msg->cmd.create_bus.channel_addr != 0) && (msg->cmd.create_bus.channel_bytes != 0)) { bus->bus_channel_bytes = msg->cmd.create_bus.channel_bytes; bus->bus_channel = init_vbus_channel(msg->cmd.create_bus.channel_addr, msg->cmd.create_bus.channel_bytes); } /* the msg is bound for virtpci; send guest_msgs struct to callback */ if (!msg->hdr.flags.server) { struct guest_msgs cmd; cmd.msgtype = GUEST_ADD_VBUS; cmd.add_vbus.bus_no = busNo; cmd.add_vbus.chanptr = bus->bus_channel; cmd.add_vbus.dev_count = deviceCount; cmd.add_vbus.bus_uuid = msg->cmd.create_bus.bus_data_type_uuid; cmd.add_vbus.instance_uuid = msg->cmd.create_bus.bus_inst_uuid; if (!virt_control_chan_func) { LOGERR("CONTROLVM_BUS_CREATE Failed: virtpci callback not registered."); POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus->bus_no, POSTCODE_SEVERITY_ERR); kfree(bus); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_FAILURE; } if (!virt_control_chan_func(&cmd)) { LOGERR("CONTROLVM_BUS_CREATE Failed: virtpci GUEST_ADD_VBUS returned error."); POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus->bus_no, POSTCODE_SEVERITY_ERR); kfree(bus); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_CALLBACK_ERROR; } } /* add bus at the head of our list */ write_lock(&BusListLock); if (!BusListHead) BusListHead = bus; else { bus->next = BusListHead; BusListHead = bus; } BusListCount++; write_unlock(&BusListLock); POSTCODE_LINUX_3(BUS_CREATE_EXIT_PC, bus->bus_no, POSTCODE_SEVERITY_INFO); return CONTROLVM_RESP_SUCCESS; } static int destroy_bus(struct controlvm_message *msg, char *buf) { int i; struct bus_info *bus, *prev = NULL; struct guest_msgs cmd; u32 busNo; busNo = msg->cmd.destroy_bus.bus_no; read_lock(&BusListLock); bus = BusListHead; while (bus) { if (bus->bus_no == busNo) break; prev = bus; bus = bus->next; } if (!bus) { LOGERR("CONTROLVM_BUS_DESTROY Failed: failed to find bus %d.\n", busNo); read_unlock(&BusListLock); return CONTROLVM_RESP_ERROR_ALREADY_DONE; } /* verify that this bus has no devices. */ for (i = 0; i < bus->device_count; i++) { if (bus->device[i] != NULL) { LOGERR("CONTROLVM_BUS_DESTROY Failed: device %i attached to bus %d.", i, busNo); read_unlock(&BusListLock); return CONTROLVM_RESP_ERROR_BUS_DEVICE_ATTACHED; } } read_unlock(&BusListLock); if (msg->hdr.flags.server) goto remove; /* client messages require us to call the virtpci callback associated with this bus. */ cmd.msgtype = GUEST_DEL_VBUS; cmd.del_vbus.bus_no = busNo; if (!virt_control_chan_func) { LOGERR("CONTROLVM_BUS_DESTROY Failed: virtpci callback not registered."); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_FAILURE; } if (!virt_control_chan_func(&cmd)) { LOGERR("CONTROLVM_BUS_DESTROY Failed: virtpci GUEST_DEL_VBUS returned error."); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_CALLBACK_ERROR; } /* finally, remove the bus from the list */ remove: write_lock(&BusListLock); if (prev) /* not at head */ prev->next = bus->next; else BusListHead = bus->next; BusListCount--; write_unlock(&BusListLock); if (bus->bus_channel) { uislib_iounmap(bus->bus_channel); bus->bus_channel = NULL; } kfree(bus); return CONTROLVM_RESP_SUCCESS; } static int create_device(struct controlvm_message *msg, char *buf) { struct device_info *dev; struct bus_info *bus; u32 busNo, devNo; int result = CONTROLVM_RESP_SUCCESS; u64 minSize = MIN_IO_CHANNEL_SIZE; struct req_handler_info *pReqHandler; busNo = msg->cmd.create_device.bus_no; devNo = msg->cmd.create_device.dev_no; POSTCODE_LINUX_4(DEVICE_CREATE_ENTRY_PC, devNo, busNo, POSTCODE_SEVERITY_INFO); dev = kzalloc(sizeof(struct device_info), GFP_ATOMIC); if (!dev) { LOGERR("CONTROLVM_DEVICE_CREATE Failed: kmalloc for dev failed.\n"); POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); return CONTROLVM_RESP_ERROR_KMALLOC_FAILED; } dev->channel_uuid = msg->cmd.create_device.data_type_uuid; dev->intr = msg->cmd.create_device.intr; dev->channel_addr = msg->cmd.create_device.channel_addr; dev->bus_no = busNo; dev->dev_no = devNo; sema_init(&dev->interrupt_callback_lock, 1); /* unlocked */ sprintf(dev->devid, "vbus%u:dev%u", (unsigned) busNo, (unsigned) devNo); /* map the channel memory for the device. */ if (msg->hdr.flags.test_message) dev->chanptr = (void __iomem *)__va(dev->channel_addr); else { pReqHandler = req_handler_find(dev->channel_uuid); if (pReqHandler) /* generic service handler registered for this * channel */ minSize = pReqHandler->min_channel_bytes; if (minSize > msg->cmd.create_device.channel_bytes) { LOGERR("CONTROLVM_DEVICE_CREATE Failed: channel size is too small, channel size:0x%lx, required size:0x%lx", (ulong) msg->cmd.create_device.channel_bytes, (ulong) minSize); POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); result = CONTROLVM_RESP_ERROR_CHANNEL_SIZE_TOO_SMALL; goto Away; } dev->chanptr = uislib_ioremap_cache(dev->channel_addr, msg->cmd.create_device.channel_bytes); if (!dev->chanptr) { LOGERR("CONTROLVM_DEVICE_CREATE Failed: ioremap_cache of channelAddr:%Lx for channelBytes:%llu failed", dev->channel_addr, msg->cmd.create_device.channel_bytes); result = CONTROLVM_RESP_ERROR_IOREMAP_FAILED; POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); goto Away; } } dev->instance_uuid = msg->cmd.create_device.dev_inst_uuid; dev->channel_bytes = msg->cmd.create_device.channel_bytes; read_lock(&BusListLock); for (bus = BusListHead; bus; bus = bus->next) { if (bus->bus_no == busNo) { /* make sure the device number is valid */ if (devNo >= bus->device_count) { LOGERR("CONTROLVM_DEVICE_CREATE Failed: device (%d) >= deviceCount (%d).", devNo, bus->device_count); result = CONTROLVM_RESP_ERROR_MAX_DEVICES; POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); read_unlock(&BusListLock); goto Away; } /* make sure this device is not already set */ if (bus->device[devNo]) { LOGERR("CONTROLVM_DEVICE_CREATE Failed: device %d is already exists.", devNo); POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); result = CONTROLVM_RESP_ERROR_ALREADY_DONE; read_unlock(&BusListLock); goto Away; } read_unlock(&BusListLock); /* the msg is bound for virtpci; send * guest_msgs struct to callback */ if (!msg->hdr.flags.server) { struct guest_msgs cmd; if (!uuid_le_cmp(dev->channel_uuid, spar_vhba_channel_protocol_uuid)) { wait_for_valid_guid(&(( struct channel_header __iomem *) (dev-> chanptr))-> chtype); if (!SPAR_VHBA_CHANNEL_OK_CLIENT (dev->chanptr)) { LOGERR("CONTROLVM_DEVICE_CREATE Failed:[CLIENT]VHBA dev %d chan invalid.", devNo); POSTCODE_LINUX_4 (DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); result = CONTROLVM_RESP_ERROR_CHANNEL_INVALID; goto Away; } cmd.msgtype = GUEST_ADD_VHBA; cmd.add_vhba.chanptr = dev->chanptr; cmd.add_vhba.bus_no = busNo; cmd.add_vhba.device_no = devNo; cmd.add_vhba.instance_uuid = dev->instance_uuid; cmd.add_vhba.intr = dev->intr; } else if (!uuid_le_cmp(dev->channel_uuid, spar_vnic_channel_protocol_uuid)) { wait_for_valid_guid(&(( struct channel_header __iomem *) (dev-> chanptr))-> chtype); if (!SPAR_VNIC_CHANNEL_OK_CLIENT (dev->chanptr)) { LOGERR("CONTROLVM_DEVICE_CREATE Failed: VNIC[CLIENT] dev %d chan invalid.", devNo); POSTCODE_LINUX_4 (DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); result = CONTROLVM_RESP_ERROR_CHANNEL_INVALID; goto Away; } cmd.msgtype = GUEST_ADD_VNIC; cmd.add_vnic.chanptr = dev->chanptr; cmd.add_vnic.bus_no = busNo; cmd.add_vnic.device_no = devNo; cmd.add_vnic.instance_uuid = dev->instance_uuid; cmd.add_vhba.intr = dev->intr; } else { LOGERR("CONTROLVM_DEVICE_CREATE Failed: unknown channelTypeGuid.\n"); POSTCODE_LINUX_4 (DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); result = CONTROLVM_RESP_ERROR_CHANNEL_TYPE_UNKNOWN; goto Away; } if (!virt_control_chan_func) { LOGERR("CONTROLVM_DEVICE_CREATE Failed: virtpci callback not registered."); POSTCODE_LINUX_4 (DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); result = CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_FAILURE; goto Away; } if (!virt_control_chan_func(&cmd)) { LOGERR("CONTROLVM_DEVICE_CREATE Failed: virtpci GUEST_ADD_[VHBA||VNIC] returned error."); POSTCODE_LINUX_4 (DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); result = CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_CALLBACK_ERROR; goto Away; } } bus->device[devNo] = dev; POSTCODE_LINUX_4(DEVICE_CREATE_SUCCESS_PC, devNo, busNo, POSTCODE_SEVERITY_INFO); return CONTROLVM_RESP_SUCCESS; } } read_unlock(&BusListLock); LOGERR("CONTROLVM_DEVICE_CREATE Failed: failed to find bus %d.", busNo); POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, devNo, busNo, POSTCODE_SEVERITY_ERR); result = CONTROLVM_RESP_ERROR_BUS_INVALID; Away: if (!msg->hdr.flags.test_message) { uislib_iounmap(dev->chanptr); dev->chanptr = NULL; } kfree(dev); return result; } static int pause_device(struct controlvm_message *msg) { u32 busNo, devNo; struct bus_info *bus; struct device_info *dev; struct guest_msgs cmd; int retval = CONTROLVM_RESP_SUCCESS; busNo = msg->cmd.device_change_state.bus_no; devNo = msg->cmd.device_change_state.dev_no; read_lock(&BusListLock); for (bus = BusListHead; bus; bus = bus->next) { if (bus->bus_no == busNo) { /* make sure the device number is valid */ if (devNo >= bus->device_count) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:pause Failed: device(%d) >= deviceCount(%d).", devNo, bus->device_count); retval = CONTROLVM_RESP_ERROR_DEVICE_INVALID; } else { /* make sure this device exists */ dev = bus->device[devNo]; if (!dev) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:pause Failed: device %d does not exist.", devNo); retval = CONTROLVM_RESP_ERROR_ALREADY_DONE; } } break; } } if (!bus) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:pause Failed: bus %d does not exist", busNo); retval = CONTROLVM_RESP_ERROR_BUS_INVALID; } read_unlock(&BusListLock); if (retval == CONTROLVM_RESP_SUCCESS) { /* the msg is bound for virtpci; send * guest_msgs struct to callback */ if (!uuid_le_cmp(dev->channel_uuid, spar_vhba_channel_protocol_uuid)) { cmd.msgtype = GUEST_PAUSE_VHBA; cmd.pause_vhba.chanptr = dev->chanptr; } else if (!uuid_le_cmp(dev->channel_uuid, spar_vnic_channel_protocol_uuid)) { cmd.msgtype = GUEST_PAUSE_VNIC; cmd.pause_vnic.chanptr = dev->chanptr; } else { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:pause Failed: unknown channelTypeGuid.\n"); return CONTROLVM_RESP_ERROR_CHANNEL_TYPE_UNKNOWN; } if (!virt_control_chan_func) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE Failed: virtpci callback not registered."); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_FAILURE; } if (!virt_control_chan_func(&cmd)) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:pause Failed: virtpci GUEST_PAUSE_[VHBA||VNIC] returned error."); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_CALLBACK_ERROR; } } return retval; } static int resume_device(struct controlvm_message *msg) { u32 busNo, devNo; struct bus_info *bus; struct device_info *dev; struct guest_msgs cmd; int retval = CONTROLVM_RESP_SUCCESS; busNo = msg->cmd.device_change_state.bus_no; devNo = msg->cmd.device_change_state.dev_no; read_lock(&BusListLock); for (bus = BusListHead; bus; bus = bus->next) { if (bus->bus_no == busNo) { /* make sure the device number is valid */ if (devNo >= bus->device_count) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:resume Failed: device(%d) >= deviceCount(%d).", devNo, bus->device_count); retval = CONTROLVM_RESP_ERROR_DEVICE_INVALID; } else { /* make sure this device exists */ dev = bus->device[devNo]; if (!dev) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:resume Failed: device %d does not exist.", devNo); retval = CONTROLVM_RESP_ERROR_ALREADY_DONE; } } break; } } if (!bus) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:resume Failed: bus %d does not exist", busNo); retval = CONTROLVM_RESP_ERROR_BUS_INVALID; } read_unlock(&BusListLock); /* the msg is bound for virtpci; send * guest_msgs struct to callback */ if (retval == CONTROLVM_RESP_SUCCESS) { if (!uuid_le_cmp(dev->channel_uuid, spar_vhba_channel_protocol_uuid)) { cmd.msgtype = GUEST_RESUME_VHBA; cmd.resume_vhba.chanptr = dev->chanptr; } else if (!uuid_le_cmp(dev->channel_uuid, spar_vnic_channel_protocol_uuid)) { cmd.msgtype = GUEST_RESUME_VNIC; cmd.resume_vnic.chanptr = dev->chanptr; } else { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:resume Failed: unknown channelTypeGuid.\n"); return CONTROLVM_RESP_ERROR_CHANNEL_TYPE_UNKNOWN; } if (!virt_control_chan_func) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE Failed: virtpci callback not registered."); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_FAILURE; } if (!virt_control_chan_func(&cmd)) { LOGERR("CONTROLVM_DEVICE_CHANGESTATE:resume Failed: virtpci GUEST_RESUME_[VHBA||VNIC] returned error."); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_CALLBACK_ERROR; } } return retval; } static int destroy_device(struct controlvm_message *msg, char *buf) { u32 busNo, devNo; struct bus_info *bus; struct device_info *dev; struct guest_msgs cmd; int retval = CONTROLVM_RESP_SUCCESS; busNo = msg->cmd.destroy_device.bus_no; devNo = msg->cmd.destroy_device.bus_no; read_lock(&BusListLock); LOGINF("destroy_device called for busNo=%u, devNo=%u", busNo, devNo); for (bus = BusListHead; bus; bus = bus->next) { if (bus->bus_no == busNo) { /* make sure the device number is valid */ if (devNo >= bus->device_count) { LOGERR("CONTROLVM_DEVICE_DESTORY Failed: device(%d) >= deviceCount(%d).", devNo, bus->device_count); retval = CONTROLVM_RESP_ERROR_DEVICE_INVALID; } else { /* make sure this device exists */ dev = bus->device[devNo]; if (!dev) { LOGERR("CONTROLVM_DEVICE_DESTROY Failed: device %d does not exist.", devNo); retval = CONTROLVM_RESP_ERROR_ALREADY_DONE; } } break; } } if (!bus) { LOGERR("CONTROLVM_DEVICE_DESTROY Failed: bus %d does not exist", busNo); retval = CONTROLVM_RESP_ERROR_BUS_INVALID; } read_unlock(&BusListLock); if (retval == CONTROLVM_RESP_SUCCESS) { /* the msg is bound for virtpci; send * guest_msgs struct to callback */ if (!uuid_le_cmp(dev->channel_uuid, spar_vhba_channel_protocol_uuid)) { cmd.msgtype = GUEST_DEL_VHBA; cmd.del_vhba.chanptr = dev->chanptr; } else if (!uuid_le_cmp(dev->channel_uuid, spar_vnic_channel_protocol_uuid)) { cmd.msgtype = GUEST_DEL_VNIC; cmd.del_vnic.chanptr = dev->chanptr; } else { LOGERR("CONTROLVM_DEVICE_DESTROY Failed: unknown channelTypeGuid.\n"); return CONTROLVM_RESP_ERROR_CHANNEL_TYPE_UNKNOWN; } if (!virt_control_chan_func) { LOGERR("CONTROLVM_DEVICE_DESTORY Failed: virtpci callback not registered."); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_FAILURE; } if (!virt_control_chan_func(&cmd)) { LOGERR("CONTROLVM_DEVICE_DESTROY Failed: virtpci GUEST_DEL_[VHBA||VNIC] returned error."); return CONTROLVM_RESP_ERROR_VIRTPCI_DRIVER_CALLBACK_ERROR; } /* you must disable channel interrupts BEFORE you unmap the channel, * because if you unmap first, there may still be some activity going * on which accesses the channel and you will get a "unable to handle * kernel paging request" */ if (dev->polling) { LOGINF("calling uislib_disable_channel_interrupts"); uislib_disable_channel_interrupts(busNo, devNo); } /* unmap the channel memory for the device. */ if (!msg->hdr.flags.test_message) { LOGINF("destroy_device, doing iounmap"); uislib_iounmap(dev->chanptr); } kfree(dev); bus->device[devNo] = NULL; } return retval; } static int init_chipset(struct controlvm_message *msg, char *buf) { POSTCODE_LINUX_2(CHIPSET_INIT_ENTRY_PC, POSTCODE_SEVERITY_INFO); MaxBusCount = msg->cmd.init_chipset.bus_count; PlatformNumber = msg->cmd.init_chipset.platform_number; PhysicalDataChan = 0; /* We need to make sure we have our functions registered * before processing messages. If we are a test vehicle the * test_message for init_chipset will be set. We can ignore the * waits for the callbacks, since this will be manually entered * from a user. If no test_message is set, we will wait for the * functions. */ if (!msg->hdr.flags.test_message) WAIT_ON_CALLBACK(virt_control_chan_func); chipset_inited = 1; POSTCODE_LINUX_2(CHIPSET_INIT_EXIT_PC, POSTCODE_SEVERITY_INFO); return CONTROLVM_RESP_SUCCESS; } static int delete_bus_glue(u32 busNo) { struct controlvm_message msg; init_msg_header(&msg, CONTROLVM_BUS_DESTROY, 0, 0); msg.cmd.destroy_bus.bus_no = busNo; if (destroy_bus(&msg, NULL) != CONTROLVM_RESP_SUCCESS) { LOGERR("destroy_bus failed. busNo=0x%x\n", busNo); return 0; } return 1; } static int delete_device_glue(u32 busNo, u32 devNo) { struct controlvm_message msg; init_msg_header(&msg, CONTROLVM_DEVICE_DESTROY, 0, 0); msg.cmd.destroy_device.bus_no = busNo; msg.cmd.destroy_device.dev_no = devNo; if (destroy_device(&msg, NULL) != CONTROLVM_RESP_SUCCESS) { LOGERR("destroy_device failed. busNo=0x%x devNo=0x%x\n", busNo, devNo); return 0; } return 1; } int uislib_client_inject_add_bus(u32 bus_no, uuid_le inst_uuid, u64 channel_addr, ulong n_channel_bytes) { struct controlvm_message msg; LOGINF("enter busNo=0x%x\n", bus_no); /* step 0: init the chipset */ POSTCODE_LINUX_3(CHIPSET_INIT_ENTRY_PC, bus_no, POSTCODE_SEVERITY_INFO); if (!chipset_inited) { /* step: initialize the chipset */ init_msg_header(&msg, CONTROLVM_CHIPSET_INIT, 0, 0); /* this change is needed so that console will come up * OK even when the bus 0 create comes in late. If the * bus 0 create is the first create, then the add_vnic * will work fine, but if the bus 0 create arrives * after number 4, then the add_vnic will fail, and the * ultraboot will fail. */ msg.cmd.init_chipset.bus_count = 23; msg.cmd.init_chipset.switch_count = 0; if (init_chipset(&msg, NULL) != CONTROLVM_RESP_SUCCESS) { LOGERR("init_chipset failed.\n"); return 0; } LOGINF("chipset initialized\n"); POSTCODE_LINUX_3(CHIPSET_INIT_EXIT_PC, bus_no, POSTCODE_SEVERITY_INFO); } /* step 1: create a bus */ POSTCODE_LINUX_3(BUS_CREATE_ENTRY_PC, bus_no, POSTCODE_SEVERITY_WARNING); init_msg_header(&msg, CONTROLVM_BUS_CREATE, 0, 0); msg.cmd.create_bus.bus_no = bus_no; msg.cmd.create_bus.dev_count = 23; /* devNo+1; */ msg.cmd.create_bus.channel_addr = channel_addr; msg.cmd.create_bus.channel_bytes = n_channel_bytes; if (create_bus(&msg, NULL) != CONTROLVM_RESP_SUCCESS) { LOGERR("create_bus failed.\n"); POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus_no, POSTCODE_SEVERITY_ERR); return 0; } POSTCODE_LINUX_3(BUS_CREATE_EXIT_PC, bus_no, POSTCODE_SEVERITY_INFO); return 1; } EXPORT_SYMBOL_GPL(uislib_client_inject_add_bus); int uislib_client_inject_del_bus(u32 bus_no) { return delete_bus_glue(bus_no); } EXPORT_SYMBOL_GPL(uislib_client_inject_del_bus); int uislib_client_inject_pause_vhba(u32 bus_no, u32 dev_no) { struct controlvm_message msg; int rc; init_msg_header(&msg, CONTROLVM_DEVICE_CHANGESTATE, 0, 0); msg.cmd.device_change_state.bus_no = bus_no; msg.cmd.device_change_state.dev_no = dev_no; msg.cmd.device_change_state.state = segment_state_standby; rc = pause_device(&msg); if (rc != CONTROLVM_RESP_SUCCESS) { LOGERR("VHBA pause_device failed. busNo=0x%x devNo=0x%x\n", bus_no, dev_no); return rc; } return 0; } EXPORT_SYMBOL_GPL(uislib_client_inject_pause_vhba); int uislib_client_inject_resume_vhba(u32 bus_no, u32 dev_no) { struct controlvm_message msg; int rc; init_msg_header(&msg, CONTROLVM_DEVICE_CHANGESTATE, 0, 0); msg.cmd.device_change_state.bus_no = bus_no; msg.cmd.device_change_state.dev_no = dev_no; msg.cmd.device_change_state.state = segment_state_running; rc = resume_device(&msg); if (rc != CONTROLVM_RESP_SUCCESS) { LOGERR("VHBA resume_device failed. busNo=0x%x devNo=0x%x\n", bus_no, dev_no); return rc; } return 0; } EXPORT_SYMBOL_GPL(uislib_client_inject_resume_vhba); int uislib_client_inject_add_vhba(u32 bus_no, u32 dev_no, u64 phys_chan_addr, u32 chan_bytes, int is_test_addr, uuid_le inst_uuid, struct irq_info *intr) { struct controlvm_message msg; LOGINF(" enter busNo=0x%x devNo=0x%x\n", bus_no, dev_no); /* chipset init'ed with bus bus has been previously created - * Verify it still exists step 2: create the VHBA device on the * bus */ POSTCODE_LINUX_4(VHBA_CREATE_ENTRY_PC, dev_no, bus_no, POSTCODE_SEVERITY_INFO); init_msg_header(&msg, CONTROLVM_DEVICE_CREATE, 0, 0); if (is_test_addr) /* signify that the physical channel address does NOT * need to be ioremap()ed */ msg.hdr.flags.test_message = 1; msg.cmd.create_device.bus_no = bus_no; msg.cmd.create_device.dev_no = dev_no; msg.cmd.create_device.dev_inst_uuid = inst_uuid; if (intr) msg.cmd.create_device.intr = *intr; else memset(&msg.cmd.create_device.intr, 0, sizeof(struct irq_info)); msg.cmd.create_device.channel_addr = phys_chan_addr; if (chan_bytes < MIN_IO_CHANNEL_SIZE) { LOGERR("wrong channel size.chan_bytes = 0x%x IO_CHANNEL_SIZE= 0x%x\n", chan_bytes, (unsigned int) MIN_IO_CHANNEL_SIZE); POSTCODE_LINUX_4(VHBA_CREATE_FAILURE_PC, chan_bytes, MIN_IO_CHANNEL_SIZE, POSTCODE_SEVERITY_ERR); return 0; } msg.cmd.create_device.channel_bytes = chan_bytes; msg.cmd.create_device.data_type_uuid = spar_vhba_channel_protocol_uuid; if (create_device(&msg, NULL) != CONTROLVM_RESP_SUCCESS) { LOGERR("VHBA create_device failed.\n"); POSTCODE_LINUX_4(VHBA_CREATE_FAILURE_PC, dev_no, bus_no, POSTCODE_SEVERITY_ERR); return 0; } POSTCODE_LINUX_4(VHBA_CREATE_SUCCESS_PC, dev_no, bus_no, POSTCODE_SEVERITY_INFO); return 1; } EXPORT_SYMBOL_GPL(uislib_client_inject_add_vhba); int uislib_client_inject_del_vhba(u32 bus_no, u32 dev_no) { return delete_device_glue(bus_no, dev_no); } EXPORT_SYMBOL_GPL(uislib_client_inject_del_vhba); int uislib_client_inject_add_vnic(u32 bus_no, u32 dev_no, u64 phys_chan_addr, u32 chan_bytes, int is_test_addr, uuid_le inst_uuid, struct irq_info *intr) { struct controlvm_message msg; LOGINF(" enter busNo=0x%x devNo=0x%x\n", bus_no, dev_no); /* chipset init'ed with bus bus has been previously created - * Verify it still exists step 2: create the VNIC device on the * bus */ POSTCODE_LINUX_4(VNIC_CREATE_ENTRY_PC, dev_no, bus_no, POSTCODE_SEVERITY_INFO); init_msg_header(&msg, CONTROLVM_DEVICE_CREATE, 0, 0); if (is_test_addr) /* signify that the physical channel address does NOT * need to be ioremap()ed */ msg.hdr.flags.test_message = 1; msg.cmd.create_device.bus_no = bus_no; msg.cmd.create_device.dev_no = dev_no; msg.cmd.create_device.dev_inst_uuid = inst_uuid; if (intr) msg.cmd.create_device.intr = *intr; else memset(&msg.cmd.create_device.intr, 0, sizeof(struct irq_info)); msg.cmd.create_device.channel_addr = phys_chan_addr; if (chan_bytes < MIN_IO_CHANNEL_SIZE) { LOGERR("wrong channel size.chan_bytes = 0x%x IO_CHANNEL_SIZE= 0x%x\n", chan_bytes, (unsigned int) MIN_IO_CHANNEL_SIZE); POSTCODE_LINUX_4(VNIC_CREATE_FAILURE_PC, chan_bytes, MIN_IO_CHANNEL_SIZE, POSTCODE_SEVERITY_ERR); return 0; } msg.cmd.create_device.channel_bytes = chan_bytes; msg.cmd.create_device.data_type_uuid = spar_vnic_channel_protocol_uuid; if (create_device(&msg, NULL) != CONTROLVM_RESP_SUCCESS) { LOGERR("VNIC create_device failed.\n"); POSTCODE_LINUX_4(VNIC_CREATE_FAILURE_PC, dev_no, bus_no, POSTCODE_SEVERITY_ERR); return 0; } POSTCODE_LINUX_4(VNIC_CREATE_SUCCESS_PC, dev_no, bus_no, POSTCODE_SEVERITY_INFO); return 1; } EXPORT_SYMBOL_GPL(uislib_client_inject_add_vnic); int uislib_client_inject_pause_vnic(u32 bus_no, u32 dev_no) { struct controlvm_message msg; int rc; init_msg_header(&msg, CONTROLVM_DEVICE_CHANGESTATE, 0, 0); msg.cmd.device_change_state.bus_no = bus_no; msg.cmd.device_change_state.dev_no = dev_no; msg.cmd.device_change_state.state = segment_state_standby; rc = pause_device(&msg); if (rc != CONTROLVM_RESP_SUCCESS) { LOGERR("VNIC pause_device failed. busNo=0x%x devNo=0x%x\n", bus_no, dev_no); return -1; } return 0; } EXPORT_SYMBOL_GPL(uislib_client_inject_pause_vnic); int uislib_client_inject_resume_vnic(u32 bus_no, u32 dev_no) { struct controlvm_message msg; int rc; init_msg_header(&msg, CONTROLVM_DEVICE_CHANGESTATE, 0, 0); msg.cmd.device_change_state.bus_no = bus_no; msg.cmd.device_change_state.dev_no = dev_no; msg.cmd.device_change_state.state = segment_state_running; rc = resume_device(&msg); if (rc != CONTROLVM_RESP_SUCCESS) { LOGERR("VNIC resume_device failed. busNo=0x%x devNo=0x%x\n", bus_no, dev_no); return -1; } return 0; } EXPORT_SYMBOL_GPL(uislib_client_inject_resume_vnic); int uislib_client_inject_del_vnic(u32 bus_no, u32 dev_no) { return delete_device_glue(bus_no, dev_no); } EXPORT_SYMBOL_GPL(uislib_client_inject_del_vnic); void * uislib_cache_alloc(struct kmem_cache *cur_pool, char *fn, int ln) { /* __GFP_NORETRY means "ok to fail", meaning kmalloc() can * return NULL. If you do NOT specify __GFP_NORETRY, Linux * will go to extreme measures to get memory for you (like, * invoke oom killer), which will probably cripple the system. */ void *p = kmem_cache_alloc(cur_pool, GFP_ATOMIC | __GFP_NORETRY); if (p == NULL) { LOGERR("uislib_malloc failed to alloc uiscmdrsp @%s:%d", fn, ln); return NULL; } return p; } EXPORT_SYMBOL_GPL(uislib_cache_alloc); void uislib_cache_free(struct kmem_cache *cur_pool, void *p, char *fn, int ln) { if (p == NULL) { LOGERR("uislib_free NULL pointer @%s:%d", fn, ln); return; } kmem_cache_free(cur_pool, p); } EXPORT_SYMBOL_GPL(uislib_cache_free); /*****************************************************/ /* proc filesystem callback functions */ /*****************************************************/ #define PLINE(...) uisutil_add_proc_line_ex(&tot, buff, \ buff_len, __VA_ARGS__) static int info_debugfs_read_helper(char **buff, int *buff_len) { int i, tot = 0; struct bus_info *bus; if (PLINE("\nBuses:\n") < 0) goto err_done; read_lock(&BusListLock); for (bus = BusListHead; bus; bus = bus->next) { if (PLINE(" bus=0x%p, busNo=%d, deviceCount=%d\n", bus, bus->bus_no, bus->device_count) < 0) goto err_done_unlock; if (PLINE(" Devices:\n") < 0) goto err_done_unlock; for (i = 0; i < bus->device_count; i++) { if (bus->device[i]) { if (PLINE(" busNo %d, device[%i]: 0x%p, chanptr=0x%p, swtch=0x%p\n", bus->bus_no, i, bus->device[i], bus->device[i]->chanptr, bus->device[i]->swtch) < 0) goto err_done_unlock; if (PLINE(" first_busy_cnt=%llu, moved_to_tail_cnt=%llu, last_on_list_cnt=%llu\n", bus->device[i]->first_busy_cnt, bus->device[i]->moved_to_tail_cnt, bus->device[i]->last_on_list_cnt) < 0) goto err_done_unlock; } } } read_unlock(&BusListLock); if (PLINE("UisUtils_Registered_Services: %d\n", atomic_read(&uisutils_registered_services)) < 0) goto err_done; if (PLINE("cycles_before_wait %llu wait_cycles:%llu\n", cycles_before_wait, wait_cycles) < 0) goto err_done; if (PLINE("tot_wakeup_cnt %llu:tot_wait_cnt %llu:tot_schedule_cnt %llu\n", tot_wakeup_cnt, tot_wait_cnt, tot_schedule_cnt) < 0) goto err_done; if (PLINE("en_smart_wakeup %d\n", en_smart_wakeup) < 0) goto err_done; if (PLINE("tot_moved_to_tail_cnt %llu\n", tot_moved_to_tail_cnt) < 0) goto err_done; return tot; err_done_unlock: read_unlock(&BusListLock); err_done: return -1; } static ssize_t info_debugfs_read(struct file *file, char __user *buf, size_t len, loff_t *offset) { char *temp; int totalBytes = 0; int remaining_bytes = PROC_READ_BUFFER_SIZE; /* *start = buf; */ if (ProcReadBuffer == NULL) { DBGINF("ProcReadBuffer == NULL; allocating buffer.\n."); ProcReadBuffer = vmalloc(PROC_READ_BUFFER_SIZE); if (ProcReadBuffer == NULL) { LOGERR("failed to allocate buffer to provide proc data.\n"); return -ENOMEM; } } temp = ProcReadBuffer; if ((*offset == 0) || (!ProcReadBufferValid)) { DBGINF("calling info_debugfs_read_helper.\n"); /* if the read fails, then -1 will be returned */ totalBytes = info_debugfs_read_helper(&temp, &remaining_bytes); ProcReadBufferValid = 1; } else totalBytes = strlen(ProcReadBuffer); return simple_read_from_buffer(buf, len, offset, ProcReadBuffer, totalBytes); } static struct device_info * find_dev(u32 busNo, u32 devNo) { struct bus_info *bus; struct device_info *dev = NULL; read_lock(&BusListLock); for (bus = BusListHead; bus; bus = bus->next) { if (bus->bus_no == busNo) { /* make sure the device number is valid */ if (devNo >= bus->device_count) { LOGERR("%s bad busNo, devNo=%d,%d", __func__, (int) (busNo), (int) (devNo)); goto Away; } dev = bus->device[devNo]; if (!dev) LOGERR("%s bad busNo, devNo=%d,%d", __func__, (int) (busNo), (int) (devNo)); goto Away; } } Away: read_unlock(&BusListLock); return dev; } /* This thread calls the "interrupt" function for each device that has * enabled such using uislib_enable_channel_interrupts(). The "interrupt" * function typically reads and processes the devices's channel input * queue. This thread repeatedly does this, until the thread is told to stop * (via uisthread_stop()). Sleeping rules: * - If we have called the "interrupt" function for all devices, and all of * them have reported "nothing processed" (returned 0), then we will go to * sleep for a maximum of POLLJIFFIES_NORMAL jiffies. * - If anyone calls uislib_force_channel_interrupt(), the above jiffy * sleep will be interrupted, and we will resume calling the "interrupt" * function for all devices. * - The list of devices is dynamically re-ordered in order to * attempt to preserve fairness. Whenever we spin thru the list of * devices and call the dev->interrupt() function, if we find * devices which report that there is still more work to do, the * the first such device we find is moved to the end of the device * list. This ensures that extremely busy devices don't starve out * less-busy ones. * */ static int Process_Incoming(void *v) { unsigned long long cur_cycles, old_cycles, idle_cycles, delta_cycles; struct list_head *new_tail = NULL; int i; UIS_DAEMONIZE("dev_incoming"); for (i = 0; i < 16; i++) { old_cycles = get_cycles(); wait_event_timeout(Wakeup_Polling_Device_Channels, 0, POLLJIFFIES_NORMAL); cur_cycles = get_cycles(); if (wait_cycles == 0) { wait_cycles = (cur_cycles - old_cycles); } else { if (wait_cycles < (cur_cycles - old_cycles)) wait_cycles = (cur_cycles - old_cycles); } } LOGINF("wait_cycles=%llu", wait_cycles); cycles_before_wait = wait_cycles; idle_cycles = 0; Go_Polling_Device_Channels = 0; while (1) { struct list_head *lelt, *tmp; struct device_info *dev = NULL; /* poll each channel for input */ down(&Lock_Polling_Device_Channels); new_tail = NULL; list_for_each_safe(lelt, tmp, &List_Polling_Device_Channels) { int rc = 0; dev = list_entry(lelt, struct device_info, list_polling_device_channels); down(&dev->interrupt_callback_lock); if (dev->interrupt) rc = dev->interrupt(dev->interrupt_context); else continue; up(&dev->interrupt_callback_lock); if (rc) { /* dev->interrupt returned, but there * is still more work to do. * Reschedule work to occur as soon as * possible. */ idle_cycles = 0; if (new_tail == NULL) { dev->first_busy_cnt++; if (! (list_is_last (lelt, &List_Polling_Device_Channels))) { new_tail = lelt; dev->moved_to_tail_cnt++; } else dev->last_on_list_cnt++; } } if (Incoming_ThreadInfo.should_stop) break; } if (new_tail != NULL) { tot_moved_to_tail_cnt++; list_move_tail(new_tail, &List_Polling_Device_Channels); } up(&Lock_Polling_Device_Channels); cur_cycles = get_cycles(); delta_cycles = cur_cycles - old_cycles; old_cycles = cur_cycles; /* At this point, we have scanned thru all of the * channels, and at least one of the following is true: * - there is no input waiting on any of the channels * - we have received a signal to stop this thread */ if (Incoming_ThreadInfo.should_stop) break; if (en_smart_wakeup == 0xFF) { LOGINF("en_smart_wakeup set to 0xff, to force exiting process_incoming"); break; } /* wait for POLLJIFFIES_NORMAL jiffies, or until * someone wakes up Wakeup_Polling_Device_Channels, * whichever comes first only do a wait when we have * been idle for cycles_before_wait cycles. */ if (idle_cycles > cycles_before_wait) { Go_Polling_Device_Channels = 0; tot_wait_cnt++; wait_event_timeout(Wakeup_Polling_Device_Channels, Go_Polling_Device_Channels, POLLJIFFIES_NORMAL); Go_Polling_Device_Channels = 1; } else { tot_schedule_cnt++; schedule(); idle_cycles = idle_cycles + delta_cycles; } } DBGINF("exiting.\n"); complete_and_exit(&Incoming_ThreadInfo.has_stopped, 0); } static BOOL Initialize_incoming_thread(void) { if (Incoming_Thread_Started) return TRUE; if (!uisthread_start(&Incoming_ThreadInfo, &Process_Incoming, NULL, "dev_incoming")) { LOGERR("uisthread_start Initialize_incoming_thread ****FAILED"); return FALSE; } Incoming_Thread_Started = TRUE; return TRUE; } /* Add a new device/channel to the list being processed by * Process_Incoming(). * - indicates the function to call periodically. * - indicates the data to pass to the * function. */ void uislib_enable_channel_interrupts(u32 bus_no, u32 dev_no, int (*interrupt)(void *), void *interrupt_context) { struct device_info *dev; dev = find_dev(bus_no, dev_no); if (!dev) { LOGERR("%s busNo=%d, devNo=%d", __func__, (int) (bus_no), (int) (dev_no)); return; } down(&Lock_Polling_Device_Channels); Initialize_incoming_thread(); dev->interrupt = interrupt; dev->interrupt_context = interrupt_context; dev->polling = TRUE; list_add_tail(&(dev->list_polling_device_channels), &List_Polling_Device_Channels); up(&Lock_Polling_Device_Channels); } EXPORT_SYMBOL_GPL(uislib_enable_channel_interrupts); /* Remove a device/channel from the list being processed by * Process_Incoming(). */ void uislib_disable_channel_interrupts(u32 bus_no, u32 dev_no) { struct device_info *dev; dev = find_dev(bus_no, dev_no); if (!dev) { LOGERR("%s busNo=%d, devNo=%d", __func__, (int) (bus_no), (int) (dev_no)); return; } down(&Lock_Polling_Device_Channels); list_del(&dev->list_polling_device_channels); dev->polling = FALSE; dev->interrupt = NULL; up(&Lock_Polling_Device_Channels); } EXPORT_SYMBOL_GPL(uislib_disable_channel_interrupts); static void do_wakeup_polling_device_channels(struct work_struct *dummy) { if (!Go_Polling_Device_Channels) { Go_Polling_Device_Channels = 1; wake_up(&Wakeup_Polling_Device_Channels); } } static DECLARE_WORK(Work_wakeup_polling_device_channels, do_wakeup_polling_device_channels); /* Call this function when you want to send a hint to Process_Incoming() that * your device might have more requests. */ void uislib_force_channel_interrupt(u32 bus_no, u32 dev_no) { if (en_smart_wakeup == 0) return; if (Go_Polling_Device_Channels) return; /* The point of using schedule_work() instead of just doing * the work inline is to force a slight delay before waking up * the Process_Incoming() thread. */ tot_wakeup_cnt++; schedule_work(&Work_wakeup_polling_device_channels); } EXPORT_SYMBOL_GPL(uislib_force_channel_interrupt); /*****************************************************/ /* Module Init & Exit functions */ /*****************************************************/ static int __init uislib_mod_init(void) { if (!unisys_spar_platform) return -ENODEV; LOGINF("MONITORAPIS"); LOGINF("sizeof(struct uiscmdrsp):%lu bytes\n", (ulong) sizeof(struct uiscmdrsp)); LOGINF("sizeof(struct phys_info):%lu\n", (ulong) sizeof(struct phys_info)); LOGINF("sizeof(uiscmdrsp_scsi):%lu\n", (ulong) sizeof(struct uiscmdrsp_scsi)); LOGINF("sizeof(uiscmdrsp_net):%lu\n", (ulong) sizeof(struct uiscmdrsp_net)); LOGINF("sizeof(CONTROLVM_MESSAGE):%lu bytes\n", (ulong) sizeof(struct controlvm_message)); LOGINF("sizeof(struct spar_controlvm_channel_protocol):%lu bytes\n", (ulong) sizeof(struct spar_controlvm_channel_protocol)); LOGINF("sizeof(CHANNEL_HEADER):%lu bytes\n", (ulong) sizeof(struct channel_header)); LOGINF("sizeof(struct spar_io_channel_protocol):%lu bytes\n", (ulong) sizeof(struct spar_io_channel_protocol)); LOGINF("SIZEOF_CMDRSP:%lu bytes\n", SIZEOF_CMDRSP); LOGINF("SIZEOF_PROTOCOL:%lu bytes\n", SIZEOF_PROTOCOL); /* initialize global pointers to NULL */ BusListHead = NULL; BusListCount = MaxBusCount = 0; rwlock_init(&BusListLock); virt_control_chan_func = NULL; /* Issue VMCALL_GET_CONTROLVM_ADDR to get CtrlChanPhysAddr and * then map this physical address to a virtual address. */ POSTCODE_LINUX_2(DRIVER_ENTRY_PC, POSTCODE_SEVERITY_INFO); dir_debugfs = debugfs_create_dir(DIR_DEBUGFS_ENTRY, NULL); if (dir_debugfs) { info_debugfs_entry = debugfs_create_file( INFO_DEBUGFS_ENTRY_FN, 0444, dir_debugfs, NULL, &debugfs_info_fops); platformnumber_debugfs_read = debugfs_create_u32( PLATFORMNUMBER_DEBUGFS_ENTRY_FN, 0444, dir_debugfs, &PlatformNumber); cycles_before_wait_debugfs_read = debugfs_create_u64( CYCLES_BEFORE_WAIT_DEBUGFS_ENTRY_FN, 0666, dir_debugfs, &cycles_before_wait); smart_wakeup_debugfs_entry = debugfs_create_bool( SMART_WAKEUP_DEBUGFS_ENTRY_FN, 0666, dir_debugfs, &en_smart_wakeup); } POSTCODE_LINUX_3(DRIVER_EXIT_PC, 0, POSTCODE_SEVERITY_INFO); return 0; } static void __exit uislib_mod_exit(void) { if (ProcReadBuffer) { vfree(ProcReadBuffer); ProcReadBuffer = NULL; } debugfs_remove(info_debugfs_entry); debugfs_remove(smart_wakeup_debugfs_entry); debugfs_remove(cycles_before_wait_debugfs_read); debugfs_remove(platformnumber_debugfs_read); debugfs_remove(dir_debugfs); DBGINF("goodbye.\n"); } module_init(uislib_mod_init); module_exit(uislib_mod_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Usha Srinivasan"); MODULE_ALIAS("uislib"); /* this is extracted during depmod and kept in modules.dep */