// SPDX-License-Identifier: GPL-2.0-only /* * Datapath implementation. * * Copyright (c) 2017-2019, Silicon Laboratories, Inc. * Copyright (c) 2010, ST-Ericsson */ #include #include "data_tx.h" #include "wfx.h" #include "bh.h" #include "sta.h" #include "queue.h" #include "debug.h" #include "traces.h" #include "hif_tx_mib.h" #define WFX_INVALID_RATE_ID 15 #define WFX_LINK_ID_NO_ASSOC 15 #define WFX_LINK_ID_GC_TIMEOUT ((unsigned long)(10 * HZ)) static int wfx_get_hw_rate(struct wfx_dev *wdev, const struct ieee80211_tx_rate *rate) { if (rate->idx < 0) return -1; if (rate->flags & IEEE80211_TX_RC_MCS) { if (rate->idx > 7) { WARN(1, "wrong rate->idx value: %d", rate->idx); return -1; } return rate->idx + 14; } // WFx only support 2GHz, else band information should be retrieved // from ieee80211_tx_info return wdev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates[rate->idx].hw_value; } /* TX policy cache implementation */ static void wfx_tx_policy_build(struct wfx_vif *wvif, struct tx_policy *policy, struct ieee80211_tx_rate *rates) { int i; size_t count; struct wfx_dev *wdev = wvif->wdev; WARN(rates[0].idx < 0, "invalid rate policy"); memset(policy, 0, sizeof(*policy)); for (i = 1; i < IEEE80211_TX_MAX_RATES; i++) if (rates[i].idx < 0) break; count = i; /* HACK!!! Device has problems (at least) switching from * 54Mbps CTS to 1Mbps. This switch takes enormous amount * of time (100-200 ms), leading to valuable throughput drop. * As a workaround, additional g-rates are injected to the * policy. */ if (count == 2 && !(rates[0].flags & IEEE80211_TX_RC_MCS) && rates[0].idx > 4 && rates[0].count > 2 && rates[1].idx < 2) { int mid_rate = (rates[0].idx + 4) >> 1; /* Decrease number of retries for the initial rate */ rates[0].count -= 2; if (mid_rate != 4) { /* Keep fallback rate at 1Mbps. */ rates[3] = rates[1]; /* Inject 1 transmission on lowest g-rate */ rates[2].idx = 4; rates[2].count = 1; rates[2].flags = rates[1].flags; /* Inject 1 transmission on mid-rate */ rates[1].idx = mid_rate; rates[1].count = 1; /* Fallback to 1 Mbps is a really bad thing, * so let's try to increase probability of * successful transmission on the lowest g rate * even more */ if (rates[0].count >= 3) { --rates[0].count; ++rates[2].count; } /* Adjust amount of rates defined */ count += 2; } else { /* Keep fallback rate at 1Mbps. */ rates[2] = rates[1]; /* Inject 2 transmissions on lowest g-rate */ rates[1].idx = 4; rates[1].count = 2; /* Adjust amount of rates defined */ count += 1; } } for (i = 0; i < IEEE80211_TX_MAX_RATES; ++i) { int rateid; u8 count; if (rates[i].idx < 0) break; WARN_ON(rates[i].count > 15); rateid = wfx_get_hw_rate(wdev, &rates[i]); // Pack two values in each byte of policy->rates count = rates[i].count; if (rateid % 2) count <<= 4; policy->rates[rateid / 2] |= count; } } static bool tx_policy_is_equal(const struct tx_policy *a, const struct tx_policy *b) { return !memcmp(a->rates, b->rates, sizeof(a->rates)); } static int wfx_tx_policy_find(struct tx_policy_cache *cache, struct tx_policy *wanted) { struct tx_policy *it; list_for_each_entry(it, &cache->used, link) if (tx_policy_is_equal(wanted, it)) return it - cache->cache; list_for_each_entry(it, &cache->free, link) if (tx_policy_is_equal(wanted, it)) return it - cache->cache; return -1; } static void wfx_tx_policy_use(struct tx_policy_cache *cache, struct tx_policy *entry) { ++entry->usage_count; list_move(&entry->link, &cache->used); } static int wfx_tx_policy_release(struct tx_policy_cache *cache, struct tx_policy *entry) { int ret = --entry->usage_count; if (!ret) list_move(&entry->link, &cache->free); return ret; } static int wfx_tx_policy_get(struct wfx_vif *wvif, struct ieee80211_tx_rate *rates, bool *renew) { int idx; struct tx_policy_cache *cache = &wvif->tx_policy_cache; struct tx_policy wanted; wfx_tx_policy_build(wvif, &wanted, rates); spin_lock_bh(&cache->lock); if (WARN_ON(list_empty(&cache->free))) { spin_unlock_bh(&cache->lock); return WFX_INVALID_RATE_ID; } idx = wfx_tx_policy_find(cache, &wanted); if (idx >= 0) { *renew = false; } else { struct tx_policy *entry; *renew = true; /* If policy is not found create a new one * using the oldest entry in "free" list */ entry = list_entry(cache->free.prev, struct tx_policy, link); memcpy(entry->rates, wanted.rates, sizeof(entry->rates)); entry->uploaded = false; entry->usage_count = 0; idx = entry - cache->cache; } wfx_tx_policy_use(cache, &cache->cache[idx]); if (list_empty(&cache->free)) { /* Lock TX queues. */ wfx_tx_queues_lock(wvif->wdev); } spin_unlock_bh(&cache->lock); return idx; } static void wfx_tx_policy_put(struct wfx_vif *wvif, int idx) { int usage, locked; struct tx_policy_cache *cache = &wvif->tx_policy_cache; if (idx == WFX_INVALID_RATE_ID) return; spin_lock_bh(&cache->lock); locked = list_empty(&cache->free); usage = wfx_tx_policy_release(cache, &cache->cache[idx]); if (locked && !usage) { /* Unlock TX queues. */ wfx_tx_queues_unlock(wvif->wdev); } spin_unlock_bh(&cache->lock); } static int wfx_tx_policy_upload(struct wfx_vif *wvif) { int i; struct tx_policy_cache *cache = &wvif->tx_policy_cache; struct hif_mib_set_tx_rate_retry_policy *arg = kzalloc(struct_size(arg, tx_rate_retry_policy, HIF_MIB_NUM_TX_RATE_RETRY_POLICIES), GFP_KERNEL); struct hif_mib_tx_rate_retry_policy *dst; spin_lock_bh(&cache->lock); /* Upload only modified entries. */ for (i = 0; i < HIF_MIB_NUM_TX_RATE_RETRY_POLICIES; ++i) { struct tx_policy *src = &cache->cache[i]; if (!src->uploaded && memzcmp(src->rates, sizeof(src->rates))) { dst = arg->tx_rate_retry_policy + arg->num_tx_rate_policies; dst->policy_index = i; dst->short_retry_count = 255; dst->long_retry_count = 255; dst->first_rate_sel = 1; dst->terminate = 1; dst->count_init = 1; memcpy(&dst->rates, src->rates, sizeof(src->rates)); src->uploaded = true; arg->num_tx_rate_policies++; } } spin_unlock_bh(&cache->lock); hif_set_tx_rate_retry_policy(wvif, arg); kfree(arg); return 0; } void wfx_tx_policy_upload_work(struct work_struct *work) { struct wfx_vif *wvif = container_of(work, struct wfx_vif, tx_policy_upload_work); wfx_tx_policy_upload(wvif); wfx_tx_unlock(wvif->wdev); wfx_tx_queues_unlock(wvif->wdev); } void wfx_tx_policy_init(struct wfx_vif *wvif) { struct tx_policy_cache *cache = &wvif->tx_policy_cache; int i; memset(cache, 0, sizeof(*cache)); spin_lock_init(&cache->lock); INIT_LIST_HEAD(&cache->used); INIT_LIST_HEAD(&cache->free); for (i = 0; i < HIF_MIB_NUM_TX_RATE_RETRY_POLICIES; ++i) list_add(&cache->cache[i].link, &cache->free); } /* Link ID related functions */ static int wfx_alloc_link_id(struct wfx_vif *wvif, const u8 *mac) { int i, ret = 0; unsigned long max_inactivity = 0; unsigned long now = jiffies; spin_lock_bh(&wvif->ps_state_lock); for (i = 0; i < WFX_MAX_STA_IN_AP_MODE; ++i) { if (!wvif->link_id_db[i].status) { ret = i + 1; break; } else if (wvif->link_id_db[i].status != WFX_LINK_HARD && !wvif->wdev->tx_queue_stats.link_map_cache[i + 1]) { unsigned long inactivity = now - wvif->link_id_db[i].timestamp; if (inactivity < max_inactivity) continue; max_inactivity = inactivity; ret = i + 1; } } if (ret) { struct wfx_link_entry *entry = &wvif->link_id_db[ret - 1]; entry->status = WFX_LINK_RESERVE; ether_addr_copy(entry->mac, mac); memset(&entry->buffered, 0, WFX_MAX_TID); skb_queue_head_init(&entry->rx_queue); wfx_tx_lock(wvif->wdev); if (!schedule_work(&wvif->link_id_work)) wfx_tx_unlock(wvif->wdev); } else { dev_info(wvif->wdev->dev, "no more link-id available\n"); } spin_unlock_bh(&wvif->ps_state_lock); return ret; } int wfx_find_link_id(struct wfx_vif *wvif, const u8 *mac) { int i, ret = 0; spin_lock_bh(&wvif->ps_state_lock); for (i = 0; i < WFX_MAX_STA_IN_AP_MODE; ++i) { if (ether_addr_equal(mac, wvif->link_id_db[i].mac) && wvif->link_id_db[i].status) { wvif->link_id_db[i].timestamp = jiffies; ret = i + 1; break; } } spin_unlock_bh(&wvif->ps_state_lock); return ret; } static int wfx_map_link(struct wfx_vif *wvif, struct wfx_link_entry *link_entry, int sta_id) { int ret; ret = hif_map_link(wvif, link_entry->mac, 0, sta_id); if (ret == 0) /* Save the MAC address currently associated with the peer * for future unmap request */ ether_addr_copy(link_entry->old_mac, link_entry->mac); return ret; } int wfx_unmap_link(struct wfx_vif *wvif, int sta_id) { u8 *mac_addr = NULL; if (sta_id) mac_addr = wvif->link_id_db[sta_id - 1].old_mac; return hif_map_link(wvif, mac_addr, 1, sta_id); } void wfx_link_id_gc_work(struct work_struct *work) { struct wfx_vif *wvif = container_of(work, struct wfx_vif, link_id_gc_work.work); unsigned long now = jiffies; unsigned long next_gc = -1; long ttl; u32 mask; int i; if (wvif->state != WFX_STATE_AP) return; wfx_tx_lock_flush(wvif->wdev); spin_lock_bh(&wvif->ps_state_lock); for (i = 0; i < WFX_MAX_STA_IN_AP_MODE; ++i) { bool need_reset = false; mask = BIT(i + 1); if (wvif->link_id_db[i].status == WFX_LINK_RESERVE || (wvif->link_id_db[i].status == WFX_LINK_HARD && !(wvif->link_id_map & mask))) { if (wvif->link_id_map & mask) { wvif->sta_asleep_mask &= ~mask; wvif->pspoll_mask &= ~mask; need_reset = true; } wvif->link_id_map |= mask; if (wvif->link_id_db[i].status != WFX_LINK_HARD) wvif->link_id_db[i].status = WFX_LINK_SOFT; spin_unlock_bh(&wvif->ps_state_lock); if (need_reset) wfx_unmap_link(wvif, i + 1); wfx_map_link(wvif, &wvif->link_id_db[i], i + 1); next_gc = min(next_gc, WFX_LINK_ID_GC_TIMEOUT); spin_lock_bh(&wvif->ps_state_lock); } else if (wvif->link_id_db[i].status == WFX_LINK_SOFT) { ttl = wvif->link_id_db[i].timestamp - now + WFX_LINK_ID_GC_TIMEOUT; if (ttl <= 0) { need_reset = true; wvif->link_id_db[i].status = WFX_LINK_OFF; wvif->link_id_map &= ~mask; wvif->sta_asleep_mask &= ~mask; wvif->pspoll_mask &= ~mask; spin_unlock_bh(&wvif->ps_state_lock); wfx_unmap_link(wvif, i + 1); spin_lock_bh(&wvif->ps_state_lock); } else { next_gc = min_t(unsigned long, next_gc, ttl); } } if (need_reset) skb_queue_purge(&wvif->link_id_db[i].rx_queue); } spin_unlock_bh(&wvif->ps_state_lock); if (next_gc != -1) schedule_delayed_work(&wvif->link_id_gc_work, next_gc); wfx_tx_unlock(wvif->wdev); } void wfx_link_id_work(struct work_struct *work) { struct wfx_vif *wvif = container_of(work, struct wfx_vif, link_id_work); wfx_tx_flush(wvif->wdev); wfx_link_id_gc_work(&wvif->link_id_gc_work.work); wfx_tx_unlock(wvif->wdev); } /* Tx implementation */ static bool ieee80211_is_action_back(struct ieee80211_hdr *hdr) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)hdr; if (!ieee80211_is_action(mgmt->frame_control)) return false; if (mgmt->u.action.category != WLAN_CATEGORY_BACK) return false; return true; } static void wfx_tx_manage_pm(struct wfx_vif *wvif, struct ieee80211_hdr *hdr, struct wfx_tx_priv *tx_priv, struct ieee80211_sta *sta) { u32 mask = ~BIT(tx_priv->raw_link_id); spin_lock_bh(&wvif->ps_state_lock); if (ieee80211_is_auth(hdr->frame_control)) { wvif->sta_asleep_mask &= mask; wvif->pspoll_mask &= mask; } if (tx_priv->link_id == WFX_LINK_ID_AFTER_DTIM && !wvif->mcast_buffered) { wvif->mcast_buffered = true; if (wvif->sta_asleep_mask) schedule_work(&wvif->mcast_start_work); } if (tx_priv->raw_link_id) { wvif->link_id_db[tx_priv->raw_link_id - 1].timestamp = jiffies; if (tx_priv->tid < WFX_MAX_TID) wvif->link_id_db[tx_priv->raw_link_id - 1].buffered[tx_priv->tid]++; } spin_unlock_bh(&wvif->ps_state_lock); if (sta) ieee80211_sta_set_buffered(sta, tx_priv->tid, true); } static u8 wfx_tx_get_raw_link_id(struct wfx_vif *wvif, struct ieee80211_sta *sta, struct ieee80211_hdr *hdr) { struct wfx_sta_priv *sta_priv = sta ? (struct wfx_sta_priv *) &sta->drv_priv : NULL; const u8 *da = ieee80211_get_DA(hdr); int ret; if (sta_priv && sta_priv->link_id) return sta_priv->link_id; if (wvif->vif->type != NL80211_IFTYPE_AP) return 0; if (is_multicast_ether_addr(da)) return 0; ret = wfx_find_link_id(wvif, da); if (!ret) ret = wfx_alloc_link_id(wvif, da); if (!ret) { dev_err(wvif->wdev->dev, "no more link-id available\n"); return WFX_LINK_ID_NO_ASSOC; } return ret; } static void wfx_tx_fixup_rates(struct ieee80211_tx_rate *rates) { int i; bool finished; // Firmware is not able to mix rates with differents flags for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { if (rates[0].flags & IEEE80211_TX_RC_SHORT_GI) rates[i].flags |= IEEE80211_TX_RC_SHORT_GI; if (!(rates[0].flags & IEEE80211_TX_RC_SHORT_GI)) rates[i].flags &= ~IEEE80211_TX_RC_SHORT_GI; if (!(rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)) rates[i].flags &= ~IEEE80211_TX_RC_USE_RTS_CTS; } // Sort rates and remove duplicates do { finished = true; for (i = 0; i < IEEE80211_TX_MAX_RATES - 1; i++) { if (rates[i + 1].idx == rates[i].idx && rates[i].idx != -1) { rates[i].count += rates[i + 1].count; if (rates[i].count > 15) rates[i].count = 15; rates[i + 1].idx = -1; rates[i + 1].count = 0; finished = false; } if (rates[i + 1].idx > rates[i].idx) { swap(rates[i + 1], rates[i]); finished = false; } } } while (!finished); // Ensure that MCS0 or 1Mbps is present at the end of the retry list for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { if (rates[i].idx == 0) break; if (rates[i].idx == -1) { rates[i].idx = 0; rates[i].count = 8; // == hw->max_rate_tries rates[i].flags = rates[i - 1].flags & IEEE80211_TX_RC_MCS; break; } } // All retries use long GI for (i = 1; i < IEEE80211_TX_MAX_RATES; i++) rates[i].flags &= ~IEEE80211_TX_RC_SHORT_GI; } static u8 wfx_tx_get_rate_id(struct wfx_vif *wvif, struct ieee80211_tx_info *tx_info) { bool tx_policy_renew = false; u8 rate_id; rate_id = wfx_tx_policy_get(wvif, tx_info->driver_rates, &tx_policy_renew); if (rate_id == WFX_INVALID_RATE_ID) dev_warn(wvif->wdev->dev, "unable to get a valid Tx policy"); if (tx_policy_renew) { /* FIXME: It's not so optimal to stop TX queues every now and * then. Better to reimplement task scheduling with a counter. */ wfx_tx_lock(wvif->wdev); wfx_tx_queues_lock(wvif->wdev); if (!schedule_work(&wvif->tx_policy_upload_work)) { wfx_tx_queues_unlock(wvif->wdev); wfx_tx_unlock(wvif->wdev); } } return rate_id; } static struct hif_ht_tx_parameters wfx_tx_get_tx_parms(struct wfx_dev *wdev, struct ieee80211_tx_info *tx_info) { struct ieee80211_tx_rate *rate = &tx_info->driver_rates[0]; struct hif_ht_tx_parameters ret = { }; if (!(rate->flags & IEEE80211_TX_RC_MCS)) ret.frame_format = HIF_FRAME_FORMAT_NON_HT; else if (!(rate->flags & IEEE80211_TX_RC_GREEN_FIELD)) ret.frame_format = HIF_FRAME_FORMAT_MIXED_FORMAT_HT; else ret.frame_format = HIF_FRAME_FORMAT_GF_HT_11N; if (rate->flags & IEEE80211_TX_RC_SHORT_GI) ret.short_gi = 1; if (tx_info->flags & IEEE80211_TX_CTL_STBC) ret.stbc = 0; // FIXME: Not yet supported by firmware? return ret; } static u8 wfx_tx_get_tid(struct ieee80211_hdr *hdr) { // FIXME: ieee80211_get_tid(hdr) should be sufficient for all cases. if (!ieee80211_is_data(hdr->frame_control)) return WFX_MAX_TID; if (ieee80211_is_data_qos(hdr->frame_control)) return ieee80211_get_tid(hdr); else return 0; } static int wfx_tx_get_icv_len(struct ieee80211_key_conf *hw_key) { int mic_space; if (!hw_key) return 0; mic_space = (hw_key->cipher == WLAN_CIPHER_SUITE_TKIP) ? 8 : 0; return hw_key->icv_len + mic_space; } static int wfx_tx_inner(struct wfx_vif *wvif, struct ieee80211_sta *sta, struct sk_buff *skb) { struct hif_msg *hif_msg; struct hif_req_tx *req; struct wfx_tx_priv *tx_priv; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int queue_id = tx_info->hw_queue; size_t offset = (size_t) skb->data & 3; int wmsg_len = sizeof(struct hif_msg) + sizeof(struct hif_req_tx) + offset; WARN(queue_id >= IEEE80211_NUM_ACS, "unsupported queue_id"); wfx_tx_fixup_rates(tx_info->driver_rates); // From now tx_info->control is unusable memset(tx_info->rate_driver_data, 0, sizeof(struct wfx_tx_priv)); // Fill tx_priv tx_priv = (struct wfx_tx_priv *)tx_info->rate_driver_data; tx_priv->tid = wfx_tx_get_tid(hdr); tx_priv->raw_link_id = wfx_tx_get_raw_link_id(wvif, sta, hdr); tx_priv->link_id = tx_priv->raw_link_id; if (ieee80211_has_protected(hdr->frame_control)) tx_priv->hw_key = hw_key; if (tx_info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) tx_priv->link_id = WFX_LINK_ID_AFTER_DTIM; if (sta && (sta->uapsd_queues & BIT(queue_id))) tx_priv->link_id = WFX_LINK_ID_UAPSD; // Fill hif_msg WARN(skb_headroom(skb) < wmsg_len, "not enough space in skb"); WARN(offset & 1, "attempt to transmit an unaligned frame"); skb_put(skb, wfx_tx_get_icv_len(tx_priv->hw_key)); skb_push(skb, wmsg_len); memset(skb->data, 0, wmsg_len); hif_msg = (struct hif_msg *)skb->data; hif_msg->len = cpu_to_le16(skb->len); hif_msg->id = HIF_REQ_ID_TX; hif_msg->interface = wvif->id; if (skb->len > wvif->wdev->hw_caps.size_inp_ch_buf) { dev_warn(wvif->wdev->dev, "requested frame size (%d) is larger than maximum supported (%d)\n", skb->len, wvif->wdev->hw_caps.size_inp_ch_buf); skb_pull(skb, wmsg_len); return -EIO; } // Fill tx request req = (struct hif_req_tx *)hif_msg->body; req->packet_id = queue_id << 16 | IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl)); req->data_flags.fc_offset = offset; req->queue_id.peer_sta_id = tx_priv->raw_link_id; // Queue index are inverted between firmware and Linux req->queue_id.queue_id = 3 - queue_id; req->ht_tx_parameters = wfx_tx_get_tx_parms(wvif->wdev, tx_info); req->tx_flags.retry_policy_index = wfx_tx_get_rate_id(wvif, tx_info); // Auxiliary operations wfx_tx_manage_pm(wvif, hdr, tx_priv, sta); wfx_tx_queue_put(wvif->wdev, &wvif->wdev->tx_queue[queue_id], skb); wfx_bh_request_tx(wvif->wdev); return 0; } void wfx_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct wfx_dev *wdev = hw->priv; struct wfx_vif *wvif; struct ieee80211_sta *sta = control ? control->sta : NULL; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; size_t driver_data_room = sizeof_field(struct ieee80211_tx_info, rate_driver_data); compiletime_assert(sizeof(struct wfx_tx_priv) <= driver_data_room, "struct tx_priv is too large"); WARN(skb->next || skb->prev, "skb is already member of a list"); // control.vif can be NULL for injected frames if (tx_info->control.vif) wvif = (struct wfx_vif *)tx_info->control.vif->drv_priv; else wvif = wvif_iterate(wdev, NULL); if (WARN_ON(!wvif)) goto drop; // FIXME: why? if (ieee80211_is_action_back(hdr)) { dev_info(wdev->dev, "drop BA action\n"); goto drop; } if (wfx_tx_inner(wvif, sta, skb)) goto drop; return; drop: ieee80211_tx_status_irqsafe(wdev->hw, skb); } void wfx_tx_confirm_cb(struct wfx_vif *wvif, struct hif_cnf_tx *arg) { int i; int tx_count; struct sk_buff *skb; struct ieee80211_tx_rate *rate; struct ieee80211_tx_info *tx_info; const struct wfx_tx_priv *tx_priv; skb = wfx_pending_get(wvif->wdev, arg->packet_id); if (!skb) { dev_warn(wvif->wdev->dev, "received unknown packet_id (%#.8x) from chip\n", arg->packet_id); return; } tx_info = IEEE80211_SKB_CB(skb); tx_priv = wfx_skb_tx_priv(skb); _trace_tx_stats(arg, skb, wfx_pending_get_pkt_us_delay(wvif->wdev, skb)); // You can touch to tx_priv, but don't touch to tx_info->status. tx_count = arg->ack_failures; if (!arg->status || arg->ack_failures) tx_count += 1; // Also report success for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { rate = &tx_info->status.rates[i]; if (rate->idx < 0) break; if (tx_count < rate->count && arg->status == HIF_STATUS_RETRY_EXCEEDED && arg->ack_failures) dev_dbg(wvif->wdev->dev, "all retries were not consumed: %d != %d\n", rate->count, tx_count); if (tx_count <= rate->count && tx_count && arg->txed_rate != wfx_get_hw_rate(wvif->wdev, rate)) dev_dbg(wvif->wdev->dev, "inconsistent tx_info rates: %d != %d\n", arg->txed_rate, wfx_get_hw_rate(wvif->wdev, rate)); if (tx_count > rate->count) { tx_count -= rate->count; } else if (!tx_count) { rate->count = 0; rate->idx = -1; } else { rate->count = tx_count; tx_count = 0; } } if (tx_count) dev_dbg(wvif->wdev->dev, "%d more retries than expected\n", tx_count); skb_trim(skb, skb->len - wfx_tx_get_icv_len(tx_priv->hw_key)); // From now, you can touch to tx_info->status, but do not touch to // tx_priv anymore // FIXME: use ieee80211_tx_info_clear_status() memset(tx_info->rate_driver_data, 0, sizeof(tx_info->rate_driver_data)); memset(tx_info->pad, 0, sizeof(tx_info->pad)); if (!arg->status) { if (wvif->bss_loss_state && arg->packet_id == wvif->bss_loss_confirm_id) wfx_cqm_bssloss_sm(wvif, 0, 1, 0); tx_info->status.tx_time = arg->media_delay - arg->tx_queue_delay; if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; else tx_info->flags |= IEEE80211_TX_STAT_ACK; } else if (arg->status == HIF_REQUEUE) { /* "REQUEUE" means "implicit suspend" */ struct hif_ind_suspend_resume_tx suspend = { .suspend_resume_flags.resume = 0, .suspend_resume_flags.bc_mc_only = 1, }; WARN(!arg->tx_result_flags.requeue, "incoherent status and result_flags"); wfx_suspend_resume(wvif, &suspend); tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; } else { if (wvif->bss_loss_state && arg->packet_id == wvif->bss_loss_confirm_id) wfx_cqm_bssloss_sm(wvif, 0, 0, 1); } wfx_pending_remove(wvif->wdev, skb); } static void wfx_notify_buffered_tx(struct wfx_vif *wvif, struct sk_buff *skb, struct hif_req_tx *req) { struct ieee80211_sta *sta; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int tid = wfx_tx_get_tid(hdr); int raw_link_id = req->queue_id.peer_sta_id; u8 *buffered; if (raw_link_id && tid < WFX_MAX_TID) { buffered = wvif->link_id_db[raw_link_id - 1].buffered; spin_lock_bh(&wvif->ps_state_lock); WARN(!buffered[tid], "inconsistent notification"); buffered[tid]--; spin_unlock_bh(&wvif->ps_state_lock); if (!buffered[tid]) { rcu_read_lock(); sta = ieee80211_find_sta(wvif->vif, hdr->addr1); if (sta) ieee80211_sta_set_buffered(sta, tid, false); rcu_read_unlock(); } } } void wfx_skb_dtor(struct wfx_dev *wdev, struct sk_buff *skb) { struct hif_msg *hif = (struct hif_msg *)skb->data; struct hif_req_tx *req = (struct hif_req_tx *)hif->body; struct wfx_vif *wvif = wdev_to_wvif(wdev, hif->interface); unsigned int offset = sizeof(struct hif_req_tx) + sizeof(struct hif_msg) + req->data_flags.fc_offset; WARN_ON(!wvif); skb_pull(skb, offset); wfx_notify_buffered_tx(wvif, skb, req); wfx_tx_policy_put(wvif, req->tx_flags.retry_policy_index); ieee80211_tx_status_irqsafe(wdev->hw, skb); }