// SPDX-License-Identifier: GPL-2.0 /* * Thunderbolt link controller support * * Copyright (C) 2019, Intel Corporation * Author: Mika Westerberg */ #include "tb.h" /** * tb_lc_read_uuid() - Read switch UUID from link controller common register * @sw: Switch whose UUID is read * @uuid: UUID is placed here */ int tb_lc_read_uuid(struct tb_switch *sw, u32 *uuid) { if (!sw->cap_lc) return -EINVAL; return tb_sw_read(sw, uuid, TB_CFG_SWITCH, sw->cap_lc + TB_LC_FUSE, 4); } static int read_lc_desc(struct tb_switch *sw, u32 *desc) { if (!sw->cap_lc) return -EINVAL; return tb_sw_read(sw, desc, TB_CFG_SWITCH, sw->cap_lc + TB_LC_DESC, 1); } static int find_port_lc_cap(struct tb_port *port) { struct tb_switch *sw = port->sw; int start, phys, ret, size; u32 desc; ret = read_lc_desc(sw, &desc); if (ret) return ret; /* Start of port LC registers */ start = (desc & TB_LC_DESC_SIZE_MASK) >> TB_LC_DESC_SIZE_SHIFT; size = (desc & TB_LC_DESC_PORT_SIZE_MASK) >> TB_LC_DESC_PORT_SIZE_SHIFT; phys = tb_phy_port_from_link(port->port); return sw->cap_lc + start + phys * size; } static int tb_lc_set_port_configured(struct tb_port *port, bool configured) { bool upstream = tb_is_upstream_port(port); struct tb_switch *sw = port->sw; u32 ctrl, lane; int cap, ret; if (sw->generation < 2) return 0; cap = find_port_lc_cap(port); if (cap < 0) return cap; ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1); if (ret) return ret; /* Resolve correct lane */ if (port->port % 2) lane = TB_LC_SX_CTRL_L1C; else lane = TB_LC_SX_CTRL_L2C; if (configured) { ctrl |= lane; if (upstream) ctrl |= TB_LC_SX_CTRL_UPSTREAM; } else { ctrl &= ~lane; if (upstream) ctrl &= ~TB_LC_SX_CTRL_UPSTREAM; } return tb_sw_write(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1); } /** * tb_lc_configure_port() - Let LC know about configured port * @port: Port that is set as configured * * Sets the port configured for power management purposes. */ int tb_lc_configure_port(struct tb_port *port) { return tb_lc_set_port_configured(port, true); } /** * tb_lc_unconfigure_port() - Let LC know about unconfigured port * @port: Port that is set as configured * * Sets the port unconfigured for power management purposes. */ void tb_lc_unconfigure_port(struct tb_port *port) { tb_lc_set_port_configured(port, false); } static int tb_lc_set_xdomain_configured(struct tb_port *port, bool configure) { struct tb_switch *sw = port->sw; u32 ctrl, lane; int cap, ret; if (sw->generation < 2) return 0; cap = find_port_lc_cap(port); if (cap < 0) return cap; ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1); if (ret) return ret; /* Resolve correct lane */ if (port->port % 2) lane = TB_LC_SX_CTRL_L1D; else lane = TB_LC_SX_CTRL_L2D; if (configure) ctrl |= lane; else ctrl &= ~lane; return tb_sw_write(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1); } /** * tb_lc_configure_xdomain() - Inform LC that the link is XDomain * @port: Switch downstream port connected to another host * * Sets the lane configured for XDomain accordingly so that the LC knows * about this. Returns %0 in success and negative errno in failure. */ int tb_lc_configure_xdomain(struct tb_port *port) { return tb_lc_set_xdomain_configured(port, true); } /** * tb_lc_unconfigure_xdomain() - Unconfigure XDomain from port * @port: Switch downstream port that was connected to another host * * Unsets the lane XDomain configuration. */ void tb_lc_unconfigure_xdomain(struct tb_port *port) { tb_lc_set_xdomain_configured(port, false); } /** * tb_lc_start_lane_initialization() - Start lane initialization * @port: Device router lane 0 adapter * * Starts lane initialization for @port after the router resumed from * sleep. Should be called for those downstream lane adapters that were * not connected (tb_lc_configure_port() was not called) before sleep. * * Returns %0 in success and negative errno in case of failure. */ int tb_lc_start_lane_initialization(struct tb_port *port) { struct tb_switch *sw = port->sw; int ret, cap; u32 ctrl; if (!tb_route(sw)) return 0; if (sw->generation < 2) return 0; cap = find_port_lc_cap(port); if (cap < 0) return cap; ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1); if (ret) return ret; ctrl |= TB_LC_SX_CTRL_SLI; return tb_sw_write(sw, &ctrl, TB_CFG_SWITCH, cap + TB_LC_SX_CTRL, 1); } /** * tb_lc_is_clx_supported() - Check whether CLx is supported by the lane adapter * @port: Lane adapter * * TB_LC_LINK_ATTR_CPS bit reflects if the link supports CLx including * active cables (if connected on the link). */ bool tb_lc_is_clx_supported(struct tb_port *port) { struct tb_switch *sw = port->sw; int cap, ret; u32 val; cap = find_port_lc_cap(port); if (cap < 0) return false; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_LINK_ATTR, 1); if (ret) return false; return !!(val & TB_LC_LINK_ATTR_CPS); } /** * tb_lc_is_usb_plugged() - Is there USB device connected to port * @port: Device router lane 0 adapter * * Returns true if the @port has USB type-C device connected. */ bool tb_lc_is_usb_plugged(struct tb_port *port) { struct tb_switch *sw = port->sw; int cap, ret; u32 val; if (sw->generation != 3) return false; cap = find_port_lc_cap(port); if (cap < 0) return false; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_CS_42, 1); if (ret) return false; return !!(val & TB_LC_CS_42_USB_PLUGGED); } /** * tb_lc_is_xhci_connected() - Is the internal xHCI connected * @port: Device router lane 0 adapter * * Returns true if the internal xHCI has been connected to @port. */ bool tb_lc_is_xhci_connected(struct tb_port *port) { struct tb_switch *sw = port->sw; int cap, ret; u32 val; if (sw->generation != 3) return false; cap = find_port_lc_cap(port); if (cap < 0) return false; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_LINK_REQ, 1); if (ret) return false; return !!(val & TB_LC_LINK_REQ_XHCI_CONNECT); } static int __tb_lc_xhci_connect(struct tb_port *port, bool connect) { struct tb_switch *sw = port->sw; int cap, ret; u32 val; if (sw->generation != 3) return -EINVAL; cap = find_port_lc_cap(port); if (cap < 0) return cap; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_LINK_REQ, 1); if (ret) return ret; if (connect) val |= TB_LC_LINK_REQ_XHCI_CONNECT; else val &= ~TB_LC_LINK_REQ_XHCI_CONNECT; return tb_sw_write(sw, &val, TB_CFG_SWITCH, cap + TB_LC_LINK_REQ, 1); } /** * tb_lc_xhci_connect() - Connect internal xHCI * @port: Device router lane 0 adapter * * Tells LC to connect the internal xHCI to @port. Returns %0 on success * and negative errno in case of failure. Can be called for Thunderbolt 3 * routers only. */ int tb_lc_xhci_connect(struct tb_port *port) { int ret; ret = __tb_lc_xhci_connect(port, true); if (ret) return ret; tb_port_dbg(port, "xHCI connected\n"); return 0; } /** * tb_lc_xhci_disconnect() - Disconnect internal xHCI * @port: Device router lane 0 adapter * * Tells LC to disconnect the internal xHCI from @port. Can be called * for Thunderbolt 3 routers only. */ void tb_lc_xhci_disconnect(struct tb_port *port) { __tb_lc_xhci_connect(port, false); tb_port_dbg(port, "xHCI disconnected\n"); } static int tb_lc_set_wake_one(struct tb_switch *sw, unsigned int offset, unsigned int flags) { u32 ctrl; int ret; /* * Enable wake on PCIe and USB4 (wake coming from another * router). */ ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH, offset + TB_LC_SX_CTRL, 1); if (ret) return ret; ctrl &= ~(TB_LC_SX_CTRL_WOC | TB_LC_SX_CTRL_WOD | TB_LC_SX_CTRL_WODPC | TB_LC_SX_CTRL_WODPD | TB_LC_SX_CTRL_WOP | TB_LC_SX_CTRL_WOU4); if (flags & TB_WAKE_ON_CONNECT) ctrl |= TB_LC_SX_CTRL_WOC | TB_LC_SX_CTRL_WOD; if (flags & TB_WAKE_ON_USB4) ctrl |= TB_LC_SX_CTRL_WOU4; if (flags & TB_WAKE_ON_PCIE) ctrl |= TB_LC_SX_CTRL_WOP; if (flags & TB_WAKE_ON_DP) ctrl |= TB_LC_SX_CTRL_WODPC | TB_LC_SX_CTRL_WODPD; return tb_sw_write(sw, &ctrl, TB_CFG_SWITCH, offset + TB_LC_SX_CTRL, 1); } /** * tb_lc_set_wake() - Enable/disable wake * @sw: Switch whose wakes to configure * @flags: Wakeup flags (%0 to disable) * * For each LC sets wake bits accordingly. */ int tb_lc_set_wake(struct tb_switch *sw, unsigned int flags) { int start, size, nlc, ret, i; u32 desc; if (sw->generation < 2) return 0; if (!tb_route(sw)) return 0; ret = read_lc_desc(sw, &desc); if (ret) return ret; /* Figure out number of link controllers */ nlc = desc & TB_LC_DESC_NLC_MASK; start = (desc & TB_LC_DESC_SIZE_MASK) >> TB_LC_DESC_SIZE_SHIFT; size = (desc & TB_LC_DESC_PORT_SIZE_MASK) >> TB_LC_DESC_PORT_SIZE_SHIFT; /* For each link controller set sleep bit */ for (i = 0; i < nlc; i++) { unsigned int offset = sw->cap_lc + start + i * size; ret = tb_lc_set_wake_one(sw, offset, flags); if (ret) return ret; } return 0; } /** * tb_lc_set_sleep() - Inform LC that the switch is going to sleep * @sw: Switch to set sleep * * Let the switch link controllers know that the switch is going to * sleep. */ int tb_lc_set_sleep(struct tb_switch *sw) { int start, size, nlc, ret, i; u32 desc; if (sw->generation < 2) return 0; ret = read_lc_desc(sw, &desc); if (ret) return ret; /* Figure out number of link controllers */ nlc = desc & TB_LC_DESC_NLC_MASK; start = (desc & TB_LC_DESC_SIZE_MASK) >> TB_LC_DESC_SIZE_SHIFT; size = (desc & TB_LC_DESC_PORT_SIZE_MASK) >> TB_LC_DESC_PORT_SIZE_SHIFT; /* For each link controller set sleep bit */ for (i = 0; i < nlc; i++) { unsigned int offset = sw->cap_lc + start + i * size; u32 ctrl; ret = tb_sw_read(sw, &ctrl, TB_CFG_SWITCH, offset + TB_LC_SX_CTRL, 1); if (ret) return ret; ctrl |= TB_LC_SX_CTRL_SLP; ret = tb_sw_write(sw, &ctrl, TB_CFG_SWITCH, offset + TB_LC_SX_CTRL, 1); if (ret) return ret; } return 0; } /** * tb_lc_lane_bonding_possible() - Is lane bonding possible towards switch * @sw: Switch to check * * Checks whether conditions for lane bonding from parent to @sw are * possible. */ bool tb_lc_lane_bonding_possible(struct tb_switch *sw) { struct tb_port *up; int cap, ret; u32 val; if (sw->generation < 2) return false; up = tb_upstream_port(sw); cap = find_port_lc_cap(up); if (cap < 0) return false; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, cap + TB_LC_PORT_ATTR, 1); if (ret) return false; return !!(val & TB_LC_PORT_ATTR_BE); } static int tb_lc_dp_sink_from_port(const struct tb_switch *sw, struct tb_port *in) { struct tb_port *port; /* The first DP IN port is sink 0 and second is sink 1 */ tb_switch_for_each_port(sw, port) { if (tb_port_is_dpin(port)) return in != port; } return -EINVAL; } static int tb_lc_dp_sink_available(struct tb_switch *sw, int sink) { u32 val, alloc; int ret; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->cap_lc + TB_LC_SNK_ALLOCATION, 1); if (ret) return ret; /* * Sink is available for CM/SW to use if the allocation valie is * either 0 or 1. */ if (!sink) { alloc = val & TB_LC_SNK_ALLOCATION_SNK0_MASK; if (!alloc || alloc == TB_LC_SNK_ALLOCATION_SNK0_CM) return 0; } else { alloc = (val & TB_LC_SNK_ALLOCATION_SNK1_MASK) >> TB_LC_SNK_ALLOCATION_SNK1_SHIFT; if (!alloc || alloc == TB_LC_SNK_ALLOCATION_SNK1_CM) return 0; } return -EBUSY; } /** * tb_lc_dp_sink_query() - Is DP sink available for DP IN port * @sw: Switch whose DP sink is queried * @in: DP IN port to check * * Queries through LC SNK_ALLOCATION registers whether DP sink is available * for the given DP IN port or not. */ bool tb_lc_dp_sink_query(struct tb_switch *sw, struct tb_port *in) { int sink; /* * For older generations sink is always available as there is no * allocation mechanism. */ if (sw->generation < 3) return true; sink = tb_lc_dp_sink_from_port(sw, in); if (sink < 0) return false; return !tb_lc_dp_sink_available(sw, sink); } /** * tb_lc_dp_sink_alloc() - Allocate DP sink * @sw: Switch whose DP sink is allocated * @in: DP IN port the DP sink is allocated for * * Allocate DP sink for @in via LC SNK_ALLOCATION registers. If the * resource is available and allocation is successful returns %0. In all * other cases returs negative errno. In particular %-EBUSY is returned if * the resource was not available. */ int tb_lc_dp_sink_alloc(struct tb_switch *sw, struct tb_port *in) { int ret, sink; u32 val; if (sw->generation < 3) return 0; sink = tb_lc_dp_sink_from_port(sw, in); if (sink < 0) return sink; ret = tb_lc_dp_sink_available(sw, sink); if (ret) return ret; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->cap_lc + TB_LC_SNK_ALLOCATION, 1); if (ret) return ret; if (!sink) { val &= ~TB_LC_SNK_ALLOCATION_SNK0_MASK; val |= TB_LC_SNK_ALLOCATION_SNK0_CM; } else { val &= ~TB_LC_SNK_ALLOCATION_SNK1_MASK; val |= TB_LC_SNK_ALLOCATION_SNK1_CM << TB_LC_SNK_ALLOCATION_SNK1_SHIFT; } ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, sw->cap_lc + TB_LC_SNK_ALLOCATION, 1); if (ret) return ret; tb_port_dbg(in, "sink %d allocated\n", sink); return 0; } /** * tb_lc_dp_sink_dealloc() - De-allocate DP sink * @sw: Switch whose DP sink is de-allocated * @in: DP IN port whose DP sink is de-allocated * * De-allocate DP sink from @in using LC SNK_ALLOCATION registers. */ int tb_lc_dp_sink_dealloc(struct tb_switch *sw, struct tb_port *in) { int ret, sink; u32 val; if (sw->generation < 3) return 0; sink = tb_lc_dp_sink_from_port(sw, in); if (sink < 0) return sink; /* Needs to be owned by CM/SW */ ret = tb_lc_dp_sink_available(sw, sink); if (ret) return ret; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->cap_lc + TB_LC_SNK_ALLOCATION, 1); if (ret) return ret; if (!sink) val &= ~TB_LC_SNK_ALLOCATION_SNK0_MASK; else val &= ~TB_LC_SNK_ALLOCATION_SNK1_MASK; ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, sw->cap_lc + TB_LC_SNK_ALLOCATION, 1); if (ret) return ret; tb_port_dbg(in, "sink %d de-allocated\n", sink); return 0; } /** * tb_lc_force_power() - Forces LC to be powered on * @sw: Thunderbolt switch * * This is useful to let authentication cycle pass even without * a Thunderbolt link present. */ int tb_lc_force_power(struct tb_switch *sw) { u32 in = 0xffff; return tb_sw_write(sw, &in, TB_CFG_SWITCH, TB_LC_POWER, 1); }