// SPDX-License-Identifier: GPL-2.0 /* * USB4 specific functionality * * Copyright (C) 2019, Intel Corporation * Authors: Mika Westerberg * Rajmohan Mani */ #include #include #include "tb.h" #define USB4_DATA_DWORDS 16 #define USB4_DATA_RETRIES 3 enum usb4_switch_op { USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10, USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12, USB4_SWITCH_OP_NVM_WRITE = 0x20, USB4_SWITCH_OP_NVM_AUTH = 0x21, USB4_SWITCH_OP_NVM_READ = 0x22, USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23, USB4_SWITCH_OP_DROM_READ = 0x24, USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25, }; #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2) #define USB4_NVM_READ_OFFSET_SHIFT 2 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24) #define USB4_NVM_READ_LENGTH_SHIFT 24 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2) #define USB4_DROM_ADDRESS_SHIFT 2 #define USB4_DROM_SIZE_MASK GENMASK(19, 15) #define USB4_DROM_SIZE_SHIFT 15 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0) typedef int (*read_block_fn)(struct tb_switch *, unsigned int, void *, size_t); typedef int (*write_block_fn)(struct tb_switch *, const void *, size_t); static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, u32 value, int timeout_msec) { ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); do { u32 val; int ret; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); if (ret) return ret; if ((val & bit) == value) return 0; usleep_range(50, 100); } while (ktime_before(ktime_get(), timeout)); return -ETIMEDOUT; } static int usb4_switch_op_read_data(struct tb_switch *sw, void *data, size_t dwords) { if (dwords > USB4_DATA_DWORDS) return -EINVAL; return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords); } static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data, size_t dwords) { if (dwords > USB4_DATA_DWORDS) return -EINVAL; return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords); } static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata) { return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); } static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata) { return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); } static int usb4_switch_do_read_data(struct tb_switch *sw, u16 address, void *buf, size_t size, read_block_fn read_block) { unsigned int retries = USB4_DATA_RETRIES; unsigned int offset; offset = address & 3; address = address & ~3; do { size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4); unsigned int dwaddress, dwords; u8 data[USB4_DATA_DWORDS * 4]; int ret; dwaddress = address / 4; dwords = ALIGN(nbytes, 4) / 4; ret = read_block(sw, dwaddress, data, dwords); if (ret) { if (ret == -ETIMEDOUT) { if (retries--) continue; ret = -EIO; } return ret; } memcpy(buf, data + offset, nbytes); size -= nbytes; address += nbytes; buf += nbytes; } while (size > 0); return 0; } static int usb4_switch_do_write_data(struct tb_switch *sw, u16 address, const void *buf, size_t size, write_block_fn write_next_block) { unsigned int retries = USB4_DATA_RETRIES; unsigned int offset; offset = address & 3; address = address & ~3; do { u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4); u8 data[USB4_DATA_DWORDS * 4]; int ret; memcpy(data + offset, buf, nbytes); ret = write_next_block(sw, data, nbytes / 4); if (ret) { if (ret == -ETIMEDOUT) { if (retries--) continue; ret = -EIO; } return ret; } size -= nbytes; address += nbytes; buf += nbytes; } while (size > 0); return 0; } static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status) { u32 val; int ret; val = opcode | ROUTER_CS_26_OV; ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); if (ret) return ret; ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500); if (ret) return ret; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); if (val & ROUTER_CS_26_ONS) return -EOPNOTSUPP; *status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT; return 0; } /** * usb4_switch_setup() - Additional setup for USB4 device * @sw: USB4 router to setup * * USB4 routers need additional settings in order to enable all the * tunneling. This function enables USB and PCIe tunneling if it can be * enabled (e.g the parent switch also supports them). If USB tunneling * is not available for some reason (like that there is Thunderbolt 3 * switch upstream) then the internal xHCI controller is enabled * instead. */ int usb4_switch_setup(struct tb_switch *sw) { struct tb_switch *parent; bool tbt3, xhci; u32 val = 0; int ret; if (!tb_route(sw)) return 0; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1); if (ret) return ret; xhci = val & ROUTER_CS_6_HCI; tbt3 = !(val & ROUTER_CS_6_TNS); tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n", tbt3 ? "yes" : "no", xhci ? "yes" : "no"); ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); if (ret) return ret; parent = tb_switch_parent(sw); if (tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) { val |= ROUTER_CS_5_UTO; xhci = false; } /* Only enable PCIe tunneling if the parent router supports it */ if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) { val |= ROUTER_CS_5_PTO; /* * xHCI can be enabled if PCIe tunneling is supported * and the parent does not have any USB3 dowstream * adapters (so we cannot do USB 3.x tunneling). */ if (xhci) val |= ROUTER_CS_5_HCO; } /* TBT3 supported by the CM */ val |= ROUTER_CS_5_C3S; /* Tunneling configuration is ready now */ val |= ROUTER_CS_5_CV; ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); if (ret) return ret; return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR, ROUTER_CS_6_CR, 50); } /** * usb4_switch_read_uid() - Read UID from USB4 router * @sw: USB4 router * * Reads 64-bit UID from USB4 router config space. */ int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid) { return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2); } static int usb4_switch_drom_read_block(struct tb_switch *sw, unsigned int dwaddress, void *buf, size_t dwords) { u8 status = 0; u32 metadata; int ret; metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK; metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) & USB4_DROM_ADDRESS_MASK; ret = usb4_switch_op_write_metadata(sw, metadata); if (ret) return ret; ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status); if (ret) return ret; if (status) return -EIO; return usb4_switch_op_read_data(sw, buf, dwords); } /** * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM * @sw: USB4 router * * Uses USB4 router operations to read router DROM. For devices this * should always work but for hosts it may return %-EOPNOTSUPP in which * case the host router does not have DROM. */ int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf, size_t size) { return usb4_switch_do_read_data(sw, address, buf, size, usb4_switch_drom_read_block); } static int usb4_set_port_configured(struct tb_port *port, bool configured) { int ret; u32 val; ret = tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_19, 1); if (ret) return ret; if (configured) val |= PORT_CS_19_PC; else val &= ~PORT_CS_19_PC; return tb_port_write(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_19, 1); } /** * usb4_switch_configure_link() - Set upstream USB4 link configured * @sw: USB4 router * * Sets the upstream USB4 link to be configured for power management * purposes. */ int usb4_switch_configure_link(struct tb_switch *sw) { struct tb_port *up; if (!tb_route(sw)) return 0; up = tb_upstream_port(sw); return usb4_set_port_configured(up, true); } /** * usb4_switch_unconfigure_link() - Un-set upstream USB4 link configuration * @sw: USB4 router * * Reverse of usb4_switch_configure_link(). */ void usb4_switch_unconfigure_link(struct tb_switch *sw) { struct tb_port *up; if (sw->is_unplugged || !tb_route(sw)) return; up = tb_upstream_port(sw); usb4_set_port_configured(up, false); } /** * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding * @sw: USB4 router * * Checks whether conditions are met so that lane bonding can be * established with the upstream router. Call only for device routers. */ bool usb4_switch_lane_bonding_possible(struct tb_switch *sw) { struct tb_port *up; int ret; u32 val; up = tb_upstream_port(sw); ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1); if (ret) return false; return !!(val & PORT_CS_18_BE); } /** * usb4_switch_set_sleep() - Prepare the router to enter sleep * @sw: USB4 router * * Enables wakes and sets sleep bit for the router. Returns when the * router sleep ready bit has been asserted. */ int usb4_switch_set_sleep(struct tb_switch *sw) { int ret; u32 val; /* Set sleep bit and wait for sleep ready to be asserted */ ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); if (ret) return ret; val |= ROUTER_CS_5_SLP; ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); if (ret) return ret; return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR, ROUTER_CS_6_SLPR, 500); } /** * usb4_switch_nvm_sector_size() - Return router NVM sector size * @sw: USB4 router * * If the router supports NVM operations this function returns the NVM * sector size in bytes. If NVM operations are not supported returns * %-EOPNOTSUPP. */ int usb4_switch_nvm_sector_size(struct tb_switch *sw) { u32 metadata; u8 status; int ret; ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status); if (ret) return ret; if (status) return status == 0x2 ? -EOPNOTSUPP : -EIO; ret = usb4_switch_op_read_metadata(sw, &metadata); if (ret) return ret; return metadata & USB4_NVM_SECTOR_SIZE_MASK; } static int usb4_switch_nvm_read_block(struct tb_switch *sw, unsigned int dwaddress, void *buf, size_t dwords) { u8 status = 0; u32 metadata; int ret; metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) & USB4_NVM_READ_LENGTH_MASK; metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) & USB4_NVM_READ_OFFSET_MASK; ret = usb4_switch_op_write_metadata(sw, metadata); if (ret) return ret; ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status); if (ret) return ret; if (status) return -EIO; return usb4_switch_op_read_data(sw, buf, dwords); } /** * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM * @sw: USB4 router * @address: Starting address in bytes * @buf: Read data is placed here * @size: How many bytes to read * * Reads NVM contents of the router. If NVM is not supported returns * %-EOPNOTSUPP. */ int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, size_t size) { return usb4_switch_do_read_data(sw, address, buf, size, usb4_switch_nvm_read_block); } static int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address) { u32 metadata, dwaddress; u8 status = 0; int ret; dwaddress = address / 4; metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & USB4_NVM_SET_OFFSET_MASK; ret = usb4_switch_op_write_metadata(sw, metadata); if (ret) return ret; ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status); if (ret) return ret; return status ? -EIO : 0; } static int usb4_switch_nvm_write_next_block(struct tb_switch *sw, const void *buf, size_t dwords) { u8 status; int ret; ret = usb4_switch_op_write_data(sw, buf, dwords); if (ret) return ret; ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status); if (ret) return ret; return status ? -EIO : 0; } /** * usb4_switch_nvm_write() - Write to the router NVM * @sw: USB4 router * @address: Start address where to write in bytes * @buf: Pointer to the data to write * @size: Size of @buf in bytes * * Writes @buf to the router NVM using USB4 router operations. If NVM * write is not supported returns %-EOPNOTSUPP. */ int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address, const void *buf, size_t size) { int ret; ret = usb4_switch_nvm_set_offset(sw, address); if (ret) return ret; return usb4_switch_do_write_data(sw, address, buf, size, usb4_switch_nvm_write_next_block); } /** * usb4_switch_nvm_authenticate() - Authenticate new NVM * @sw: USB4 router * * After the new NVM has been written via usb4_switch_nvm_write(), this * function triggers NVM authentication process. If the authentication * is successful the router is power cycled and the new NVM starts * running. In case of failure returns negative errno. */ int usb4_switch_nvm_authenticate(struct tb_switch *sw) { u8 status = 0; int ret; ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status); if (ret) return ret; switch (status) { case 0x0: tb_sw_dbg(sw, "NVM authentication successful\n"); return 0; case 0x1: return -EINVAL; case 0x2: return -EAGAIN; case 0x3: return -EOPNOTSUPP; default: return -EIO; } } /** * usb4_switch_query_dp_resource() - Query availability of DP IN resource * @sw: USB4 router * @in: DP IN adapter * * For DP tunneling this function can be used to query availability of * DP IN resource. Returns true if the resource is available for DP * tunneling, false otherwise. */ bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) { u8 status; int ret; ret = usb4_switch_op_write_metadata(sw, in->port); if (ret) return false; ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status); /* * If DP resource allocation is not supported assume it is * always available. */ if (ret == -EOPNOTSUPP) return true; else if (ret) return false; return !status; } /** * usb4_switch_alloc_dp_resource() - Allocate DP IN resource * @sw: USB4 router * @in: DP IN adapter * * Allocates DP IN resource for DP tunneling using USB4 router * operations. If the resource was allocated returns %0. Otherwise * returns negative errno, in particular %-EBUSY if the resource is * already allocated. */ int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) { u8 status; int ret; ret = usb4_switch_op_write_metadata(sw, in->port); if (ret) return ret; ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status); if (ret == -EOPNOTSUPP) return 0; else if (ret) return ret; return status ? -EBUSY : 0; } /** * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource * @sw: USB4 router * @in: DP IN adapter * * Releases the previously allocated DP IN resource. */ int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) { u8 status; int ret; ret = usb4_switch_op_write_metadata(sw, in->port); if (ret) return ret; ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status); if (ret == -EOPNOTSUPP) return 0; else if (ret) return ret; return status ? -EIO : 0; } static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port) { struct tb_port *p; int usb4_idx = 0; /* Assume port is primary */ tb_switch_for_each_port(sw, p) { if (!tb_port_is_null(p)) continue; if (tb_is_upstream_port(p)) continue; if (!p->link_nr) { if (p == port) break; usb4_idx++; } } return usb4_idx; } /** * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter * @sw: USB4 router * @port: USB4 port * * USB4 routers have direct mapping between USB4 ports and PCIe * downstream adapters where the PCIe topology is extended. This * function returns the corresponding downstream PCIe adapter or %NULL * if no such mapping was possible. */ struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw, const struct tb_port *port) { int usb4_idx = usb4_port_idx(sw, port); struct tb_port *p; int pcie_idx = 0; /* Find PCIe down port matching usb4_port */ tb_switch_for_each_port(sw, p) { if (!tb_port_is_pcie_down(p)) continue; if (pcie_idx == usb4_idx && !tb_pci_port_is_enabled(p)) return p; pcie_idx++; } return NULL; } /** * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter * @sw: USB4 router * @port: USB4 port * * USB4 routers have direct mapping between USB4 ports and USB 3.x * downstream adapters where the USB 3.x topology is extended. This * function returns the corresponding downstream USB 3.x adapter or * %NULL if no such mapping was possible. */ struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw, const struct tb_port *port) { int usb4_idx = usb4_port_idx(sw, port); struct tb_port *p; int usb_idx = 0; /* Find USB3 down port matching usb4_port */ tb_switch_for_each_port(sw, p) { if (!tb_port_is_usb3_down(p)) continue; if (usb_idx == usb4_idx && !tb_usb3_port_is_enabled(p)) return p; usb_idx++; } return NULL; } /** * usb4_port_unlock() - Unlock USB4 downstream port * @port: USB4 port to unlock * * Unlocks USB4 downstream port so that the connection manager can * access the router below this port. */ int usb4_port_unlock(struct tb_port *port) { int ret; u32 val; ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1); if (ret) return ret; val &= ~ADP_CS_4_LCK; return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1); }