/* * Freescale lpuart serial port driver * * Copyright 2012-2013 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #if defined(CONFIG_SERIAL_FSL_LPUART_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* All registers are 8-bit width */ #define UARTBDH 0x00 #define UARTBDL 0x01 #define UARTCR1 0x02 #define UARTCR2 0x03 #define UARTSR1 0x04 #define UARTCR3 0x06 #define UARTDR 0x07 #define UARTCR4 0x0a #define UARTCR5 0x0b #define UARTMODEM 0x0d #define UARTPFIFO 0x10 #define UARTCFIFO 0x11 #define UARTSFIFO 0x12 #define UARTTWFIFO 0x13 #define UARTTCFIFO 0x14 #define UARTRWFIFO 0x15 #define UARTBDH_LBKDIE 0x80 #define UARTBDH_RXEDGIE 0x40 #define UARTBDH_SBR_MASK 0x1f #define UARTCR1_LOOPS 0x80 #define UARTCR1_RSRC 0x20 #define UARTCR1_M 0x10 #define UARTCR1_WAKE 0x08 #define UARTCR1_ILT 0x04 #define UARTCR1_PE 0x02 #define UARTCR1_PT 0x01 #define UARTCR2_TIE 0x80 #define UARTCR2_TCIE 0x40 #define UARTCR2_RIE 0x20 #define UARTCR2_ILIE 0x10 #define UARTCR2_TE 0x08 #define UARTCR2_RE 0x04 #define UARTCR2_RWU 0x02 #define UARTCR2_SBK 0x01 #define UARTSR1_TDRE 0x80 #define UARTSR1_TC 0x40 #define UARTSR1_RDRF 0x20 #define UARTSR1_IDLE 0x10 #define UARTSR1_OR 0x08 #define UARTSR1_NF 0x04 #define UARTSR1_FE 0x02 #define UARTSR1_PE 0x01 #define UARTCR3_R8 0x80 #define UARTCR3_T8 0x40 #define UARTCR3_TXDIR 0x20 #define UARTCR3_TXINV 0x10 #define UARTCR3_ORIE 0x08 #define UARTCR3_NEIE 0x04 #define UARTCR3_FEIE 0x02 #define UARTCR3_PEIE 0x01 #define UARTCR4_MAEN1 0x80 #define UARTCR4_MAEN2 0x40 #define UARTCR4_M10 0x20 #define UARTCR4_BRFA_MASK 0x1f #define UARTCR4_BRFA_OFF 0 #define UARTCR5_TDMAS 0x80 #define UARTCR5_RDMAS 0x20 #define UARTMODEM_RXRTSE 0x08 #define UARTMODEM_TXRTSPOL 0x04 #define UARTMODEM_TXRTSE 0x02 #define UARTMODEM_TXCTSE 0x01 #define UARTPFIFO_TXFE 0x80 #define UARTPFIFO_FIFOSIZE_MASK 0x7 #define UARTPFIFO_TXSIZE_OFF 4 #define UARTPFIFO_RXFE 0x08 #define UARTPFIFO_RXSIZE_OFF 0 #define UARTCFIFO_TXFLUSH 0x80 #define UARTCFIFO_RXFLUSH 0x40 #define UARTCFIFO_RXOFE 0x04 #define UARTCFIFO_TXOFE 0x02 #define UARTCFIFO_RXUFE 0x01 #define UARTSFIFO_TXEMPT 0x80 #define UARTSFIFO_RXEMPT 0x40 #define UARTSFIFO_RXOF 0x04 #define UARTSFIFO_TXOF 0x02 #define UARTSFIFO_RXUF 0x01 #define DMA_MAXBURST 16 #define DMA_MAXBURST_MASK (DMA_MAXBURST - 1) #define FSL_UART_RX_DMA_BUFFER_SIZE 64 #define DRIVER_NAME "fsl-lpuart" #define DEV_NAME "ttyLP" #define UART_NR 6 struct lpuart_port { struct uart_port port; struct clk *clk; unsigned int txfifo_size; unsigned int rxfifo_size; bool lpuart_dma_use; struct dma_chan *dma_tx_chan; struct dma_chan *dma_rx_chan; struct dma_async_tx_descriptor *dma_tx_desc; struct dma_async_tx_descriptor *dma_rx_desc; dma_addr_t dma_tx_buf_bus; dma_addr_t dma_rx_buf_bus; dma_cookie_t dma_tx_cookie; dma_cookie_t dma_rx_cookie; unsigned char *dma_tx_buf_virt; unsigned char *dma_rx_buf_virt; unsigned int dma_tx_bytes; unsigned int dma_rx_bytes; int dma_tx_in_progress; int dma_rx_in_progress; unsigned int dma_rx_timeout; struct timer_list lpuart_timer; }; static struct of_device_id lpuart_dt_ids[] = { { .compatible = "fsl,vf610-lpuart", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, lpuart_dt_ids); /* Forward declare this for the dma callbacks*/ static void lpuart_dma_tx_complete(void *arg); static void lpuart_dma_rx_complete(void *arg); static void lpuart_stop_tx(struct uart_port *port) { unsigned char temp; temp = readb(port->membase + UARTCR2); temp &= ~(UARTCR2_TIE | UARTCR2_TCIE); writeb(temp, port->membase + UARTCR2); } static void lpuart_stop_rx(struct uart_port *port) { unsigned char temp; temp = readb(port->membase + UARTCR2); writeb(temp & ~UARTCR2_RE, port->membase + UARTCR2); } static void lpuart_enable_ms(struct uart_port *port) { } static void lpuart_copy_rx_to_tty(struct lpuart_port *sport, struct tty_port *tty, int count) { int copied; sport->port.icount.rx += count; if (!tty) { dev_err(sport->port.dev, "No tty port\n"); return; } dma_sync_single_for_cpu(sport->port.dev, sport->dma_rx_buf_bus, FSL_UART_RX_DMA_BUFFER_SIZE, DMA_FROM_DEVICE); copied = tty_insert_flip_string(tty, ((unsigned char *)(sport->dma_rx_buf_virt)), count); if (copied != count) { WARN_ON(1); dev_err(sport->port.dev, "RxData copy to tty layer failed\n"); } dma_sync_single_for_device(sport->port.dev, sport->dma_rx_buf_bus, FSL_UART_RX_DMA_BUFFER_SIZE, DMA_TO_DEVICE); } static void lpuart_pio_tx(struct lpuart_port *sport) { struct circ_buf *xmit = &sport->port.state->xmit; unsigned long flags; spin_lock_irqsave(&sport->port.lock, flags); while (!uart_circ_empty(xmit) && readb(sport->port.membase + UARTTCFIFO) < sport->txfifo_size) { writeb(xmit->buf[xmit->tail], sport->port.membase + UARTDR); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); sport->port.icount.tx++; } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&sport->port); if (uart_circ_empty(xmit)) writeb(readb(sport->port.membase + UARTCR5) | UARTCR5_TDMAS, sport->port.membase + UARTCR5); spin_unlock_irqrestore(&sport->port.lock, flags); } static int lpuart_dma_tx(struct lpuart_port *sport, unsigned long count) { struct circ_buf *xmit = &sport->port.state->xmit; dma_addr_t tx_bus_addr; dma_sync_single_for_device(sport->port.dev, sport->dma_tx_buf_bus, UART_XMIT_SIZE, DMA_TO_DEVICE); sport->dma_tx_bytes = count & ~(DMA_MAXBURST_MASK); tx_bus_addr = sport->dma_tx_buf_bus + xmit->tail; sport->dma_tx_desc = dmaengine_prep_slave_single(sport->dma_tx_chan, tx_bus_addr, sport->dma_tx_bytes, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!sport->dma_tx_desc) { dev_err(sport->port.dev, "Not able to get desc for tx\n"); return -EIO; } sport->dma_tx_desc->callback = lpuart_dma_tx_complete; sport->dma_tx_desc->callback_param = sport; sport->dma_tx_in_progress = 1; sport->dma_tx_cookie = dmaengine_submit(sport->dma_tx_desc); dma_async_issue_pending(sport->dma_tx_chan); return 0; } static void lpuart_prepare_tx(struct lpuart_port *sport) { struct circ_buf *xmit = &sport->port.state->xmit; unsigned long count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE); if (!count) return; if (count < DMA_MAXBURST) writeb(readb(sport->port.membase + UARTCR5) & ~UARTCR5_TDMAS, sport->port.membase + UARTCR5); else { writeb(readb(sport->port.membase + UARTCR5) | UARTCR5_TDMAS, sport->port.membase + UARTCR5); lpuart_dma_tx(sport, count); } } static void lpuart_dma_tx_complete(void *arg) { struct lpuart_port *sport = arg; struct circ_buf *xmit = &sport->port.state->xmit; unsigned long flags; async_tx_ack(sport->dma_tx_desc); spin_lock_irqsave(&sport->port.lock, flags); xmit->tail = (xmit->tail + sport->dma_tx_bytes) & (UART_XMIT_SIZE - 1); sport->dma_tx_in_progress = 0; if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&sport->port); lpuart_prepare_tx(sport); spin_unlock_irqrestore(&sport->port.lock, flags); } static int lpuart_dma_rx(struct lpuart_port *sport) { dma_sync_single_for_device(sport->port.dev, sport->dma_rx_buf_bus, FSL_UART_RX_DMA_BUFFER_SIZE, DMA_TO_DEVICE); sport->dma_rx_desc = dmaengine_prep_slave_single(sport->dma_rx_chan, sport->dma_rx_buf_bus, FSL_UART_RX_DMA_BUFFER_SIZE, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!sport->dma_rx_desc) { dev_err(sport->port.dev, "Not able to get desc for rx\n"); return -EIO; } sport->dma_rx_desc->callback = lpuart_dma_rx_complete; sport->dma_rx_desc->callback_param = sport; sport->dma_rx_in_progress = 1; sport->dma_rx_cookie = dmaengine_submit(sport->dma_rx_desc); dma_async_issue_pending(sport->dma_rx_chan); return 0; } static void lpuart_dma_rx_complete(void *arg) { struct lpuart_port *sport = arg; struct tty_port *port = &sport->port.state->port; unsigned long flags; async_tx_ack(sport->dma_rx_desc); spin_lock_irqsave(&sport->port.lock, flags); sport->dma_rx_in_progress = 0; lpuart_copy_rx_to_tty(sport, port, FSL_UART_RX_DMA_BUFFER_SIZE); tty_flip_buffer_push(port); lpuart_dma_rx(sport); spin_unlock_irqrestore(&sport->port.lock, flags); } static void lpuart_timer_func(unsigned long data) { struct lpuart_port *sport = (struct lpuart_port *)data; struct tty_port *port = &sport->port.state->port; struct dma_tx_state state; unsigned long flags; unsigned char temp; int count; del_timer(&sport->lpuart_timer); dmaengine_pause(sport->dma_rx_chan); dmaengine_tx_status(sport->dma_rx_chan, sport->dma_rx_cookie, &state); dmaengine_terminate_all(sport->dma_rx_chan); count = FSL_UART_RX_DMA_BUFFER_SIZE - state.residue; async_tx_ack(sport->dma_rx_desc); spin_lock_irqsave(&sport->port.lock, flags); sport->dma_rx_in_progress = 0; lpuart_copy_rx_to_tty(sport, port, count); tty_flip_buffer_push(port); temp = readb(sport->port.membase + UARTCR5); writeb(temp & ~UARTCR5_RDMAS, sport->port.membase + UARTCR5); spin_unlock_irqrestore(&sport->port.lock, flags); } static inline void lpuart_prepare_rx(struct lpuart_port *sport) { unsigned long flags; unsigned char temp; spin_lock_irqsave(&sport->port.lock, flags); init_timer(&sport->lpuart_timer); sport->lpuart_timer.function = lpuart_timer_func; sport->lpuart_timer.data = (unsigned long)sport; sport->lpuart_timer.expires = jiffies + sport->dma_rx_timeout; add_timer(&sport->lpuart_timer); lpuart_dma_rx(sport); temp = readb(sport->port.membase + UARTCR5); writeb(temp | UARTCR5_RDMAS, sport->port.membase + UARTCR5); spin_unlock_irqrestore(&sport->port.lock, flags); } static inline void lpuart_transmit_buffer(struct lpuart_port *sport) { struct circ_buf *xmit = &sport->port.state->xmit; while (!uart_circ_empty(xmit) && (readb(sport->port.membase + UARTTCFIFO) < sport->txfifo_size)) { writeb(xmit->buf[xmit->tail], sport->port.membase + UARTDR); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); sport->port.icount.tx++; } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&sport->port); if (uart_circ_empty(xmit)) lpuart_stop_tx(&sport->port); } static void lpuart_start_tx(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); struct circ_buf *xmit = &sport->port.state->xmit; unsigned char temp; temp = readb(port->membase + UARTCR2); writeb(temp | UARTCR2_TIE, port->membase + UARTCR2); if (sport->lpuart_dma_use) { if (!uart_circ_empty(xmit) && !sport->dma_tx_in_progress) lpuart_prepare_tx(sport); } else { if (readb(port->membase + UARTSR1) & UARTSR1_TDRE) lpuart_transmit_buffer(sport); } } static irqreturn_t lpuart_txint(int irq, void *dev_id) { struct lpuart_port *sport = dev_id; struct circ_buf *xmit = &sport->port.state->xmit; unsigned long flags; spin_lock_irqsave(&sport->port.lock, flags); if (sport->port.x_char) { writeb(sport->port.x_char, sport->port.membase + UARTDR); goto out; } if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { lpuart_stop_tx(&sport->port); goto out; } lpuart_transmit_buffer(sport); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&sport->port); out: spin_unlock_irqrestore(&sport->port.lock, flags); return IRQ_HANDLED; } static irqreturn_t lpuart_rxint(int irq, void *dev_id) { struct lpuart_port *sport = dev_id; unsigned int flg, ignored = 0; struct tty_port *port = &sport->port.state->port; unsigned long flags; unsigned char rx, sr; spin_lock_irqsave(&sport->port.lock, flags); while (!(readb(sport->port.membase + UARTSFIFO) & UARTSFIFO_RXEMPT)) { flg = TTY_NORMAL; sport->port.icount.rx++; /* * to clear the FE, OR, NF, FE, PE flags, * read SR1 then read DR */ sr = readb(sport->port.membase + UARTSR1); rx = readb(sport->port.membase + UARTDR); if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) continue; if (sr & (UARTSR1_PE | UARTSR1_OR | UARTSR1_FE)) { if (sr & UARTSR1_PE) sport->port.icount.parity++; else if (sr & UARTSR1_FE) sport->port.icount.frame++; if (sr & UARTSR1_OR) sport->port.icount.overrun++; if (sr & sport->port.ignore_status_mask) { if (++ignored > 100) goto out; continue; } sr &= sport->port.read_status_mask; if (sr & UARTSR1_PE) flg = TTY_PARITY; else if (sr & UARTSR1_FE) flg = TTY_FRAME; if (sr & UARTSR1_OR) flg = TTY_OVERRUN; #ifdef SUPPORT_SYSRQ sport->port.sysrq = 0; #endif } tty_insert_flip_char(port, rx, flg); } out: spin_unlock_irqrestore(&sport->port.lock, flags); tty_flip_buffer_push(port); return IRQ_HANDLED; } static irqreturn_t lpuart_int(int irq, void *dev_id) { struct lpuart_port *sport = dev_id; unsigned char sts; sts = readb(sport->port.membase + UARTSR1); if (sts & UARTSR1_RDRF) { if (sport->lpuart_dma_use) lpuart_prepare_rx(sport); else lpuart_rxint(irq, dev_id); } if (sts & UARTSR1_TDRE && !(readb(sport->port.membase + UARTCR5) & UARTCR5_TDMAS)) { if (sport->lpuart_dma_use) lpuart_pio_tx(sport); else lpuart_txint(irq, dev_id); } return IRQ_HANDLED; } /* return TIOCSER_TEMT when transmitter is not busy */ static unsigned int lpuart_tx_empty(struct uart_port *port) { return (readb(port->membase + UARTSR1) & UARTSR1_TC) ? TIOCSER_TEMT : 0; } static unsigned int lpuart_get_mctrl(struct uart_port *port) { unsigned int temp = 0; unsigned char reg; reg = readb(port->membase + UARTMODEM); if (reg & UARTMODEM_TXCTSE) temp |= TIOCM_CTS; if (reg & UARTMODEM_RXRTSE) temp |= TIOCM_RTS; return temp; } static void lpuart_set_mctrl(struct uart_port *port, unsigned int mctrl) { unsigned char temp; temp = readb(port->membase + UARTMODEM) & ~(UARTMODEM_RXRTSE | UARTMODEM_TXCTSE); if (mctrl & TIOCM_RTS) temp |= UARTMODEM_RXRTSE; if (mctrl & TIOCM_CTS) temp |= UARTMODEM_TXCTSE; writeb(temp, port->membase + UARTMODEM); } static void lpuart_break_ctl(struct uart_port *port, int break_state) { unsigned char temp; temp = readb(port->membase + UARTCR2) & ~UARTCR2_SBK; if (break_state != 0) temp |= UARTCR2_SBK; writeb(temp, port->membase + UARTCR2); } static void lpuart_setup_watermark(struct lpuart_port *sport) { unsigned char val, cr2; unsigned char cr2_saved; cr2 = readb(sport->port.membase + UARTCR2); cr2_saved = cr2; cr2 &= ~(UARTCR2_TIE | UARTCR2_TCIE | UARTCR2_TE | UARTCR2_RIE | UARTCR2_RE); writeb(cr2, sport->port.membase + UARTCR2); /* determine FIFO size and enable FIFO mode */ val = readb(sport->port.membase + UARTPFIFO); sport->txfifo_size = 0x1 << (((val >> UARTPFIFO_TXSIZE_OFF) & UARTPFIFO_FIFOSIZE_MASK) + 1); sport->rxfifo_size = 0x1 << (((val >> UARTPFIFO_RXSIZE_OFF) & UARTPFIFO_FIFOSIZE_MASK) + 1); writeb(val | UARTPFIFO_TXFE | UARTPFIFO_RXFE, sport->port.membase + UARTPFIFO); /* flush Tx and Rx FIFO */ writeb(UARTCFIFO_TXFLUSH | UARTCFIFO_RXFLUSH, sport->port.membase + UARTCFIFO); writeb(0, sport->port.membase + UARTTWFIFO); writeb(1, sport->port.membase + UARTRWFIFO); /* Restore cr2 */ writeb(cr2_saved, sport->port.membase + UARTCR2); } static int lpuart_dma_tx_request(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); struct dma_chan *tx_chan; struct dma_slave_config dma_tx_sconfig; dma_addr_t dma_bus; unsigned char *dma_buf; int ret; tx_chan = dma_request_slave_channel(sport->port.dev, "tx"); if (!tx_chan) { dev_err(sport->port.dev, "Dma tx channel request failed!\n"); return -ENODEV; } dma_bus = dma_map_single(tx_chan->device->dev, sport->port.state->xmit.buf, UART_XMIT_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(tx_chan->device->dev, dma_bus)) { dev_err(sport->port.dev, "dma_map_single tx failed\n"); dma_release_channel(tx_chan); return -ENOMEM; } dma_buf = sport->port.state->xmit.buf; dma_tx_sconfig.dst_addr = sport->port.mapbase + UARTDR; dma_tx_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dma_tx_sconfig.dst_maxburst = DMA_MAXBURST; dma_tx_sconfig.direction = DMA_MEM_TO_DEV; ret = dmaengine_slave_config(tx_chan, &dma_tx_sconfig); if (ret < 0) { dev_err(sport->port.dev, "Dma slave config failed, err = %d\n", ret); dma_release_channel(tx_chan); return ret; } sport->dma_tx_chan = tx_chan; sport->dma_tx_buf_virt = dma_buf; sport->dma_tx_buf_bus = dma_bus; sport->dma_tx_in_progress = 0; return 0; } static int lpuart_dma_rx_request(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); struct dma_chan *rx_chan; struct dma_slave_config dma_rx_sconfig; dma_addr_t dma_bus; unsigned char *dma_buf; int ret; rx_chan = dma_request_slave_channel(sport->port.dev, "rx"); if (!rx_chan) { dev_err(sport->port.dev, "Dma rx channel request failed!\n"); return -ENODEV; } dma_buf = devm_kzalloc(sport->port.dev, FSL_UART_RX_DMA_BUFFER_SIZE, GFP_KERNEL); if (!dma_buf) { dev_err(sport->port.dev, "Dma rx alloc failed\n"); dma_release_channel(rx_chan); return -ENOMEM; } dma_bus = dma_map_single(rx_chan->device->dev, dma_buf, FSL_UART_RX_DMA_BUFFER_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(rx_chan->device->dev, dma_bus)) { dev_err(sport->port.dev, "dma_map_single rx failed\n"); dma_release_channel(rx_chan); return -ENOMEM; } dma_rx_sconfig.src_addr = sport->port.mapbase + UARTDR; dma_rx_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dma_rx_sconfig.src_maxburst = 1; dma_rx_sconfig.direction = DMA_DEV_TO_MEM; ret = dmaengine_slave_config(rx_chan, &dma_rx_sconfig); if (ret < 0) { dev_err(sport->port.dev, "Dma slave config failed, err = %d\n", ret); dma_release_channel(rx_chan); return ret; } sport->dma_rx_chan = rx_chan; sport->dma_rx_buf_virt = dma_buf; sport->dma_rx_buf_bus = dma_bus; sport->dma_rx_in_progress = 0; sport->dma_rx_timeout = (sport->port.timeout - HZ / 50) * FSL_UART_RX_DMA_BUFFER_SIZE * 3 / sport->rxfifo_size / 2; if (sport->dma_rx_timeout < msecs_to_jiffies(20)) sport->dma_rx_timeout = msecs_to_jiffies(20); return 0; } static void lpuart_dma_tx_free(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); struct dma_chan *dma_chan; dma_unmap_single(sport->port.dev, sport->dma_tx_buf_bus, UART_XMIT_SIZE, DMA_TO_DEVICE); dma_chan = sport->dma_tx_chan; sport->dma_tx_chan = NULL; sport->dma_tx_buf_bus = 0; sport->dma_tx_buf_virt = NULL; dma_release_channel(dma_chan); } static void lpuart_dma_rx_free(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); struct dma_chan *dma_chan; dma_unmap_single(sport->port.dev, sport->dma_rx_buf_bus, FSL_UART_RX_DMA_BUFFER_SIZE, DMA_FROM_DEVICE); dma_chan = sport->dma_rx_chan; sport->dma_rx_chan = NULL; sport->dma_rx_buf_bus = 0; sport->dma_rx_buf_virt = NULL; dma_release_channel(dma_chan); } static int lpuart_startup(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); int ret; unsigned long flags; unsigned char temp; /*whether use dma support by dma request results*/ if (lpuart_dma_tx_request(port) || lpuart_dma_rx_request(port)) { sport->lpuart_dma_use = false; } else { sport->lpuart_dma_use = true; temp = readb(port->membase + UARTCR5); writeb(temp | UARTCR5_TDMAS, port->membase + UARTCR5); } ret = devm_request_irq(port->dev, port->irq, lpuart_int, 0, DRIVER_NAME, sport); if (ret) return ret; spin_lock_irqsave(&sport->port.lock, flags); lpuart_setup_watermark(sport); temp = readb(sport->port.membase + UARTCR2); temp |= (UARTCR2_RIE | UARTCR2_TIE | UARTCR2_RE | UARTCR2_TE); writeb(temp, sport->port.membase + UARTCR2); spin_unlock_irqrestore(&sport->port.lock, flags); return 0; } static void lpuart_shutdown(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned char temp; unsigned long flags; spin_lock_irqsave(&port->lock, flags); /* disable Rx/Tx and interrupts */ temp = readb(port->membase + UARTCR2); temp &= ~(UARTCR2_TE | UARTCR2_RE | UARTCR2_TIE | UARTCR2_TCIE | UARTCR2_RIE); writeb(temp, port->membase + UARTCR2); spin_unlock_irqrestore(&port->lock, flags); devm_free_irq(port->dev, port->irq, sport); if (sport->lpuart_dma_use) { lpuart_dma_tx_free(port); lpuart_dma_rx_free(port); } } static void lpuart_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned long flags; unsigned char cr1, old_cr1, old_cr2, cr4, bdh, modem; unsigned int baud; unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; unsigned int sbr, brfa; cr1 = old_cr1 = readb(sport->port.membase + UARTCR1); old_cr2 = readb(sport->port.membase + UARTCR2); cr4 = readb(sport->port.membase + UARTCR4); bdh = readb(sport->port.membase + UARTBDH); modem = readb(sport->port.membase + UARTMODEM); /* * only support CS8 and CS7, and for CS7 must enable PE. * supported mode: * - (7,e/o,1) * - (8,n,1) * - (8,m/s,1) * - (8,e/o,1) */ while ((termios->c_cflag & CSIZE) != CS8 && (termios->c_cflag & CSIZE) != CS7) { termios->c_cflag &= ~CSIZE; termios->c_cflag |= old_csize; old_csize = CS8; } if ((termios->c_cflag & CSIZE) == CS8 || (termios->c_cflag & CSIZE) == CS7) cr1 = old_cr1 & ~UARTCR1_M; if (termios->c_cflag & CMSPAR) { if ((termios->c_cflag & CSIZE) != CS8) { termios->c_cflag &= ~CSIZE; termios->c_cflag |= CS8; } cr1 |= UARTCR1_M; } if (termios->c_cflag & CRTSCTS) { modem |= (UARTMODEM_RXRTSE | UARTMODEM_TXCTSE); } else { termios->c_cflag &= ~CRTSCTS; modem &= ~(UARTMODEM_RXRTSE | UARTMODEM_TXCTSE); } if (termios->c_cflag & CSTOPB) termios->c_cflag &= ~CSTOPB; /* parity must be enabled when CS7 to match 8-bits format */ if ((termios->c_cflag & CSIZE) == CS7) termios->c_cflag |= PARENB; if ((termios->c_cflag & PARENB)) { if (termios->c_cflag & CMSPAR) { cr1 &= ~UARTCR1_PE; cr1 |= UARTCR1_M; } else { cr1 |= UARTCR1_PE; if ((termios->c_cflag & CSIZE) == CS8) cr1 |= UARTCR1_M; if (termios->c_cflag & PARODD) cr1 |= UARTCR1_PT; else cr1 &= ~UARTCR1_PT; } } /* ask the core to calculate the divisor */ baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); spin_lock_irqsave(&sport->port.lock, flags); sport->port.read_status_mask = 0; if (termios->c_iflag & INPCK) sport->port.read_status_mask |= (UARTSR1_FE | UARTSR1_PE); if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) sport->port.read_status_mask |= UARTSR1_FE; /* characters to ignore */ sport->port.ignore_status_mask = 0; if (termios->c_iflag & IGNPAR) sport->port.ignore_status_mask |= UARTSR1_PE; if (termios->c_iflag & IGNBRK) { sport->port.ignore_status_mask |= UARTSR1_FE; /* * if we're ignoring parity and break indicators, * ignore overruns too (for real raw support). */ if (termios->c_iflag & IGNPAR) sport->port.ignore_status_mask |= UARTSR1_OR; } /* update the per-port timeout */ uart_update_timeout(port, termios->c_cflag, baud); /* wait transmit engin complete */ while (!(readb(sport->port.membase + UARTSR1) & UARTSR1_TC)) barrier(); /* disable transmit and receive */ writeb(old_cr2 & ~(UARTCR2_TE | UARTCR2_RE), sport->port.membase + UARTCR2); sbr = sport->port.uartclk / (16 * baud); brfa = ((sport->port.uartclk - (16 * sbr * baud)) * 2) / baud; bdh &= ~UARTBDH_SBR_MASK; bdh |= (sbr >> 8) & 0x1F; cr4 &= ~UARTCR4_BRFA_MASK; brfa &= UARTCR4_BRFA_MASK; writeb(cr4 | brfa, sport->port.membase + UARTCR4); writeb(bdh, sport->port.membase + UARTBDH); writeb(sbr & 0xFF, sport->port.membase + UARTBDL); writeb(cr1, sport->port.membase + UARTCR1); writeb(modem, sport->port.membase + UARTMODEM); /* restore control register */ writeb(old_cr2, sport->port.membase + UARTCR2); spin_unlock_irqrestore(&sport->port.lock, flags); } static const char *lpuart_type(struct uart_port *port) { return "FSL_LPUART"; } static void lpuart_release_port(struct uart_port *port) { /* nothing to do */ } static int lpuart_request_port(struct uart_port *port) { return 0; } /* configure/autoconfigure the port */ static void lpuart_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) port->type = PORT_LPUART; } static int lpuart_verify_port(struct uart_port *port, struct serial_struct *ser) { int ret = 0; if (ser->type != PORT_UNKNOWN && ser->type != PORT_LPUART) ret = -EINVAL; if (port->irq != ser->irq) ret = -EINVAL; if (ser->io_type != UPIO_MEM) ret = -EINVAL; if (port->uartclk / 16 != ser->baud_base) ret = -EINVAL; if (port->iobase != ser->port) ret = -EINVAL; if (ser->hub6 != 0) ret = -EINVAL; return ret; } static struct uart_ops lpuart_pops = { .tx_empty = lpuart_tx_empty, .set_mctrl = lpuart_set_mctrl, .get_mctrl = lpuart_get_mctrl, .stop_tx = lpuart_stop_tx, .start_tx = lpuart_start_tx, .stop_rx = lpuart_stop_rx, .enable_ms = lpuart_enable_ms, .break_ctl = lpuart_break_ctl, .startup = lpuart_startup, .shutdown = lpuart_shutdown, .set_termios = lpuart_set_termios, .type = lpuart_type, .request_port = lpuart_request_port, .release_port = lpuart_release_port, .config_port = lpuart_config_port, .verify_port = lpuart_verify_port, }; static struct lpuart_port *lpuart_ports[UART_NR]; #ifdef CONFIG_SERIAL_FSL_LPUART_CONSOLE static void lpuart_console_putchar(struct uart_port *port, int ch) { while (!(readb(port->membase + UARTSR1) & UARTSR1_TDRE)) barrier(); writeb(ch, port->membase + UARTDR); } static void lpuart_console_write(struct console *co, const char *s, unsigned int count) { struct lpuart_port *sport = lpuart_ports[co->index]; unsigned char old_cr2, cr2; /* first save CR2 and then disable interrupts */ cr2 = old_cr2 = readb(sport->port.membase + UARTCR2); cr2 |= (UARTCR2_TE | UARTCR2_RE); cr2 &= ~(UARTCR2_TIE | UARTCR2_TCIE | UARTCR2_RIE); writeb(cr2, sport->port.membase + UARTCR2); uart_console_write(&sport->port, s, count, lpuart_console_putchar); /* wait for transmitter finish complete and restore CR2 */ while (!(readb(sport->port.membase + UARTSR1) & UARTSR1_TC)) barrier(); writeb(old_cr2, sport->port.membase + UARTCR2); } /* * if the port was already initialised (eg, by a boot loader), * try to determine the current setup. */ static void __init lpuart_console_get_options(struct lpuart_port *sport, int *baud, int *parity, int *bits) { unsigned char cr, bdh, bdl, brfa; unsigned int sbr, uartclk, baud_raw; cr = readb(sport->port.membase + UARTCR2); cr &= UARTCR2_TE | UARTCR2_RE; if (!cr) return; /* ok, the port was enabled */ cr = readb(sport->port.membase + UARTCR1); *parity = 'n'; if (cr & UARTCR1_PE) { if (cr & UARTCR1_PT) *parity = 'o'; else *parity = 'e'; } if (cr & UARTCR1_M) *bits = 9; else *bits = 8; bdh = readb(sport->port.membase + UARTBDH); bdh &= UARTBDH_SBR_MASK; bdl = readb(sport->port.membase + UARTBDL); sbr = bdh; sbr <<= 8; sbr |= bdl; brfa = readb(sport->port.membase + UARTCR4); brfa &= UARTCR4_BRFA_MASK; uartclk = clk_get_rate(sport->clk); /* * baud = mod_clk/(16*(sbr[13]+(brfa)/32) */ baud_raw = uartclk / (16 * (sbr + brfa / 32)); if (*baud != baud_raw) printk(KERN_INFO "Serial: Console lpuart rounded baud rate" "from %d to %d\n", baud_raw, *baud); } static int __init lpuart_console_setup(struct console *co, char *options) { struct lpuart_port *sport; int baud = 115200; int bits = 8; int parity = 'n'; int flow = 'n'; /* * check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ if (co->index == -1 || co->index >= ARRAY_SIZE(lpuart_ports)) co->index = 0; sport = lpuart_ports[co->index]; if (sport == NULL) return -ENODEV; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); else lpuart_console_get_options(sport, &baud, &parity, &bits); lpuart_setup_watermark(sport); return uart_set_options(&sport->port, co, baud, parity, bits, flow); } static struct uart_driver lpuart_reg; static struct console lpuart_console = { .name = DEV_NAME, .write = lpuart_console_write, .device = uart_console_device, .setup = lpuart_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &lpuart_reg, }; #define LPUART_CONSOLE (&lpuart_console) #else #define LPUART_CONSOLE NULL #endif static struct uart_driver lpuart_reg = { .owner = THIS_MODULE, .driver_name = DRIVER_NAME, .dev_name = DEV_NAME, .nr = ARRAY_SIZE(lpuart_ports), .cons = LPUART_CONSOLE, }; static int lpuart_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct lpuart_port *sport; struct resource *res; int ret; sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); if (!sport) return -ENOMEM; pdev->dev.coherent_dma_mask = 0; ret = of_alias_get_id(np, "serial"); if (ret < 0) { dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); return ret; } sport->port.line = ret; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; sport->port.mapbase = res->start; sport->port.membase = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(sport->port.membase)) return PTR_ERR(sport->port.membase); sport->port.dev = &pdev->dev; sport->port.type = PORT_LPUART; sport->port.iotype = UPIO_MEM; sport->port.irq = platform_get_irq(pdev, 0); sport->port.ops = &lpuart_pops; sport->port.flags = UPF_BOOT_AUTOCONF; sport->clk = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(sport->clk)) { ret = PTR_ERR(sport->clk); dev_err(&pdev->dev, "failed to get uart clk: %d\n", ret); return ret; } ret = clk_prepare_enable(sport->clk); if (ret) { dev_err(&pdev->dev, "failed to enable uart clk: %d\n", ret); return ret; } sport->port.uartclk = clk_get_rate(sport->clk); lpuart_ports[sport->port.line] = sport; platform_set_drvdata(pdev, &sport->port); ret = uart_add_one_port(&lpuart_reg, &sport->port); if (ret) { clk_disable_unprepare(sport->clk); return ret; } return 0; } static int lpuart_remove(struct platform_device *pdev) { struct lpuart_port *sport = platform_get_drvdata(pdev); uart_remove_one_port(&lpuart_reg, &sport->port); clk_disable_unprepare(sport->clk); return 0; } #ifdef CONFIG_PM_SLEEP static int lpuart_suspend(struct device *dev) { struct lpuart_port *sport = dev_get_drvdata(dev); uart_suspend_port(&lpuart_reg, &sport->port); return 0; } static int lpuart_resume(struct device *dev) { struct lpuart_port *sport = dev_get_drvdata(dev); uart_resume_port(&lpuart_reg, &sport->port); return 0; } #endif static SIMPLE_DEV_PM_OPS(lpuart_pm_ops, lpuart_suspend, lpuart_resume); static struct platform_driver lpuart_driver = { .probe = lpuart_probe, .remove = lpuart_remove, .driver = { .name = "fsl-lpuart", .owner = THIS_MODULE, .of_match_table = lpuart_dt_ids, .pm = &lpuart_pm_ops, }, }; static int __init lpuart_serial_init(void) { int ret; pr_info("serial: Freescale lpuart driver\n"); ret = uart_register_driver(&lpuart_reg); if (ret) return ret; ret = platform_driver_register(&lpuart_driver); if (ret) uart_unregister_driver(&lpuart_reg); return ret; } static void __exit lpuart_serial_exit(void) { platform_driver_unregister(&lpuart_driver); uart_unregister_driver(&lpuart_reg); } module_init(lpuart_serial_init); module_exit(lpuart_serial_exit); MODULE_DESCRIPTION("Freescale lpuart serial port driver"); MODULE_LICENSE("GPL v2");