// SPDX-License-Identifier: GPL-2.0 /* * Written for linux by Johan Myreen as a translation from * the assembly version by Linus (with diacriticals added) * * Some additional features added by Christoph Niemann (ChN), March 1993 * * Loadable keymaps by Risto Kankkunen, May 1993 * * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 * Added decr/incr_console, dynamic keymaps, Unicode support, * dynamic function/string keys, led setting, Sept 1994 * `Sticky' modifier keys, 951006. * * 11-11-96: SAK should now work in the raw mode (Martin Mares) * * Modified to provide 'generic' keyboard support by Hamish Macdonald * Merge with the m68k keyboard driver and split-off of the PC low-level * parts by Geert Uytterhoeven, May 1997 * * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) * 30-07-98: Dead keys redone, aeb@cwi.nl. * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Exported functions/variables */ #define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META)) #if defined(CONFIG_X86) || defined(CONFIG_PARISC) #include #else static inline int kbd_defleds(void) { return 0; } #endif #define KBD_DEFLOCK 0 /* * Handler Tables. */ #define K_HANDLERS\ k_self, k_fn, k_spec, k_pad,\ k_dead, k_cons, k_cur, k_shift,\ k_meta, k_ascii, k_lock, k_lowercase,\ k_slock, k_dead2, k_brl, k_ignore typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, char up_flag); static k_handler_fn K_HANDLERS; static k_handler_fn *k_handler[16] = { K_HANDLERS }; #define FN_HANDLERS\ fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num typedef void (fn_handler_fn)(struct vc_data *vc); static fn_handler_fn FN_HANDLERS; static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; /* * Variables exported for vt_ioctl.c */ struct vt_spawn_console vt_spawn_con = { .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), .pid = NULL, .sig = 0, }; /* * Internal Data. */ static struct kbd_struct kbd_table[MAX_NR_CONSOLES]; static struct kbd_struct *kbd = kbd_table; /* maximum values each key_handler can handle */ static const unsigned char max_vals[] = { [ KT_LATIN ] = 255, [ KT_FN ] = ARRAY_SIZE(func_table) - 1, [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1, [ KT_PAD ] = NR_PAD - 1, [ KT_DEAD ] = NR_DEAD - 1, [ KT_CONS ] = 255, [ KT_CUR ] = 3, [ KT_SHIFT ] = NR_SHIFT - 1, [ KT_META ] = 255, [ KT_ASCII ] = NR_ASCII - 1, [ KT_LOCK ] = NR_LOCK - 1, [ KT_LETTER ] = 255, [ KT_SLOCK ] = NR_LOCK - 1, [ KT_DEAD2 ] = 255, [ KT_BRL ] = NR_BRL - 1, }; static const int NR_TYPES = ARRAY_SIZE(max_vals); static void kbd_bh(struct tasklet_struct *unused); static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh); static struct input_handler kbd_handler; static DEFINE_SPINLOCK(kbd_event_lock); static DEFINE_SPINLOCK(led_lock); static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */ static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */ static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ static bool dead_key_next; /* Handles a number being assembled on the number pad */ static bool npadch_active; static unsigned int npadch_value; static unsigned int diacr; static bool rep; /* flag telling character repeat */ static int shift_state = 0; static unsigned int ledstate = -1U; /* undefined */ static unsigned char ledioctl; static bool vt_switch; /* * Notifier list for console keyboard events */ static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); int register_keyboard_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&keyboard_notifier_list, nb); } EXPORT_SYMBOL_GPL(register_keyboard_notifier); int unregister_keyboard_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); } EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); /* * Translation of scancodes to keycodes. We set them on only the first * keyboard in the list that accepts the scancode and keycode. * Explanation for not choosing the first attached keyboard anymore: * USB keyboards for example have two event devices: one for all "normal" * keys and one for extra function keys (like "volume up", "make coffee", * etc.). So this means that scancodes for the extra function keys won't * be valid for the first event device, but will be for the second. */ struct getset_keycode_data { struct input_keymap_entry ke; int error; }; static int getkeycode_helper(struct input_handle *handle, void *data) { struct getset_keycode_data *d = data; d->error = input_get_keycode(handle->dev, &d->ke); return d->error == 0; /* stop as soon as we successfully get one */ } static int getkeycode(unsigned int scancode) { struct getset_keycode_data d = { .ke = { .flags = 0, .len = sizeof(scancode), .keycode = 0, }, .error = -ENODEV, }; memcpy(d.ke.scancode, &scancode, sizeof(scancode)); input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); return d.error ?: d.ke.keycode; } static int setkeycode_helper(struct input_handle *handle, void *data) { struct getset_keycode_data *d = data; d->error = input_set_keycode(handle->dev, &d->ke); return d->error == 0; /* stop as soon as we successfully set one */ } static int setkeycode(unsigned int scancode, unsigned int keycode) { struct getset_keycode_data d = { .ke = { .flags = 0, .len = sizeof(scancode), .keycode = keycode, }, .error = -ENODEV, }; memcpy(d.ke.scancode, &scancode, sizeof(scancode)); input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); return d.error; } /* * Making beeps and bells. Note that we prefer beeps to bells, but when * shutting the sound off we do both. */ static int kd_sound_helper(struct input_handle *handle, void *data) { unsigned int *hz = data; struct input_dev *dev = handle->dev; if (test_bit(EV_SND, dev->evbit)) { if (test_bit(SND_TONE, dev->sndbit)) { input_inject_event(handle, EV_SND, SND_TONE, *hz); if (*hz) return 0; } if (test_bit(SND_BELL, dev->sndbit)) input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); } return 0; } static void kd_nosound(struct timer_list *unused) { static unsigned int zero; input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); } static DEFINE_TIMER(kd_mksound_timer, kd_nosound); void kd_mksound(unsigned int hz, unsigned int ticks) { del_timer_sync(&kd_mksound_timer); input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); if (hz && ticks) mod_timer(&kd_mksound_timer, jiffies + ticks); } EXPORT_SYMBOL(kd_mksound); /* * Setting the keyboard rate. */ static int kbd_rate_helper(struct input_handle *handle, void *data) { struct input_dev *dev = handle->dev; struct kbd_repeat *rpt = data; if (test_bit(EV_REP, dev->evbit)) { if (rpt[0].delay > 0) input_inject_event(handle, EV_REP, REP_DELAY, rpt[0].delay); if (rpt[0].period > 0) input_inject_event(handle, EV_REP, REP_PERIOD, rpt[0].period); rpt[1].delay = dev->rep[REP_DELAY]; rpt[1].period = dev->rep[REP_PERIOD]; } return 0; } int kbd_rate(struct kbd_repeat *rpt) { struct kbd_repeat data[2] = { *rpt }; input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); *rpt = data[1]; /* Copy currently used settings */ return 0; } /* * Helper Functions. */ static void put_queue(struct vc_data *vc, int ch) { tty_insert_flip_char(&vc->port, ch, 0); tty_flip_buffer_push(&vc->port); } static void puts_queue(struct vc_data *vc, const char *cp) { tty_insert_flip_string(&vc->port, cp, strlen(cp)); tty_flip_buffer_push(&vc->port); } static void applkey(struct vc_data *vc, int key, char mode) { static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; buf[1] = (mode ? 'O' : '['); buf[2] = key; puts_queue(vc, buf); } /* * Many other routines do put_queue, but I think either * they produce ASCII, or they produce some user-assigned * string, and in both cases we might assume that it is * in utf-8 already. */ static void to_utf8(struct vc_data *vc, uint c) { if (c < 0x80) /* 0******* */ put_queue(vc, c); else if (c < 0x800) { /* 110***** 10****** */ put_queue(vc, 0xc0 | (c >> 6)); put_queue(vc, 0x80 | (c & 0x3f)); } else if (c < 0x10000) { if (c >= 0xD800 && c < 0xE000) return; if (c == 0xFFFF) return; /* 1110**** 10****** 10****** */ put_queue(vc, 0xe0 | (c >> 12)); put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); put_queue(vc, 0x80 | (c & 0x3f)); } else if (c < 0x110000) { /* 11110*** 10****** 10****** 10****** */ put_queue(vc, 0xf0 | (c >> 18)); put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); put_queue(vc, 0x80 | (c & 0x3f)); } } /* FIXME: review locking for vt.c callers */ static void set_leds(void) { tasklet_schedule(&keyboard_tasklet); } /* * Called after returning from RAW mode or when changing consoles - recompute * shift_down[] and shift_state from key_down[] maybe called when keymap is * undefined, so that shiftkey release is seen. The caller must hold the * kbd_event_lock. */ static void do_compute_shiftstate(void) { unsigned int k, sym, val; shift_state = 0; memset(shift_down, 0, sizeof(shift_down)); for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) { sym = U(key_maps[0][k]); if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) continue; val = KVAL(sym); if (val == KVAL(K_CAPSSHIFT)) val = KVAL(K_SHIFT); shift_down[val]++; shift_state |= BIT(val); } } /* We still have to export this method to vt.c */ void vt_set_leds_compute_shiftstate(void) { unsigned long flags; /* * When VT is switched, the keyboard led needs to be set once. * Ensure that after the switch is completed, the state of the * keyboard LED is consistent with the state of the keyboard lock. */ vt_switch = true; set_leds(); spin_lock_irqsave(&kbd_event_lock, flags); do_compute_shiftstate(); spin_unlock_irqrestore(&kbd_event_lock, flags); } /* * We have a combining character DIACR here, followed by the character CH. * If the combination occurs in the table, return the corresponding value. * Otherwise, if CH is a space or equals DIACR, return DIACR. * Otherwise, conclude that DIACR was not combining after all, * queue it and return CH. */ static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) { unsigned int d = diacr; unsigned int i; diacr = 0; if ((d & ~0xff) == BRL_UC_ROW) { if ((ch & ~0xff) == BRL_UC_ROW) return d | ch; } else { for (i = 0; i < accent_table_size; i++) if (accent_table[i].diacr == d && accent_table[i].base == ch) return accent_table[i].result; } if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) return d; if (kbd->kbdmode == VC_UNICODE) to_utf8(vc, d); else { int c = conv_uni_to_8bit(d); if (c != -1) put_queue(vc, c); } return ch; } /* * Special function handlers */ static void fn_enter(struct vc_data *vc) { if (diacr) { if (kbd->kbdmode == VC_UNICODE) to_utf8(vc, diacr); else { int c = conv_uni_to_8bit(diacr); if (c != -1) put_queue(vc, c); } diacr = 0; } put_queue(vc, '\r'); if (vc_kbd_mode(kbd, VC_CRLF)) put_queue(vc, '\n'); } static void fn_caps_toggle(struct vc_data *vc) { if (rep) return; chg_vc_kbd_led(kbd, VC_CAPSLOCK); } static void fn_caps_on(struct vc_data *vc) { if (rep) return; set_vc_kbd_led(kbd, VC_CAPSLOCK); } static void fn_show_ptregs(struct vc_data *vc) { struct pt_regs *regs = get_irq_regs(); if (regs) show_regs(regs); } static void fn_hold(struct vc_data *vc) { struct tty_struct *tty = vc->port.tty; if (rep || !tty) return; /* * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); * these routines are also activated by ^S/^Q. * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) */ if (tty->flow.stopped) start_tty(tty); else stop_tty(tty); } static void fn_num(struct vc_data *vc) { if (vc_kbd_mode(kbd, VC_APPLIC)) applkey(vc, 'P', 1); else fn_bare_num(vc); } /* * Bind this to Shift-NumLock if you work in application keypad mode * but want to be able to change the NumLock flag. * Bind this to NumLock if you prefer that the NumLock key always * changes the NumLock flag. */ static void fn_bare_num(struct vc_data *vc) { if (!rep) chg_vc_kbd_led(kbd, VC_NUMLOCK); } static void fn_lastcons(struct vc_data *vc) { /* switch to the last used console, ChN */ set_console(last_console); } static void fn_dec_console(struct vc_data *vc) { int i, cur = fg_console; /* Currently switching? Queue this next switch relative to that. */ if (want_console != -1) cur = want_console; for (i = cur - 1; i != cur; i--) { if (i == -1) i = MAX_NR_CONSOLES - 1; if (vc_cons_allocated(i)) break; } set_console(i); } static void fn_inc_console(struct vc_data *vc) { int i, cur = fg_console; /* Currently switching? Queue this next switch relative to that. */ if (want_console != -1) cur = want_console; for (i = cur+1; i != cur; i++) { if (i == MAX_NR_CONSOLES) i = 0; if (vc_cons_allocated(i)) break; } set_console(i); } static void fn_send_intr(struct vc_data *vc) { tty_insert_flip_char(&vc->port, 0, TTY_BREAK); tty_flip_buffer_push(&vc->port); } static void fn_scroll_forw(struct vc_data *vc) { scrollfront(vc, 0); } static void fn_scroll_back(struct vc_data *vc) { scrollback(vc); } static void fn_show_mem(struct vc_data *vc) { show_mem(0, NULL); } static void fn_show_state(struct vc_data *vc) { show_state(); } static void fn_boot_it(struct vc_data *vc) { ctrl_alt_del(); } static void fn_compose(struct vc_data *vc) { dead_key_next = true; } static void fn_spawn_con(struct vc_data *vc) { spin_lock(&vt_spawn_con.lock); if (vt_spawn_con.pid) if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { put_pid(vt_spawn_con.pid); vt_spawn_con.pid = NULL; } spin_unlock(&vt_spawn_con.lock); } static void fn_SAK(struct vc_data *vc) { struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; schedule_work(SAK_work); } static void fn_null(struct vc_data *vc) { do_compute_shiftstate(); } /* * Special key handlers */ static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) { } static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) { if (up_flag) return; if (value >= ARRAY_SIZE(fn_handler)) return; if ((kbd->kbdmode == VC_RAW || kbd->kbdmode == VC_MEDIUMRAW || kbd->kbdmode == VC_OFF) && value != KVAL(K_SAK)) return; /* SAK is allowed even in raw mode */ fn_handler[value](vc); } static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) { pr_err("k_lowercase was called - impossible\n"); } static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) { if (up_flag) return; /* no action, if this is a key release */ if (diacr) value = handle_diacr(vc, value); if (dead_key_next) { dead_key_next = false; diacr = value; return; } if (kbd->kbdmode == VC_UNICODE) to_utf8(vc, value); else { int c = conv_uni_to_8bit(value); if (c != -1) put_queue(vc, c); } } /* * Handle dead key. Note that we now may have several * dead keys modifying the same character. Very useful * for Vietnamese. */ static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) { if (up_flag) return; diacr = (diacr ? handle_diacr(vc, value) : value); } static void k_self(struct vc_data *vc, unsigned char value, char up_flag) { k_unicode(vc, conv_8bit_to_uni(value), up_flag); } static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) { k_deadunicode(vc, value, up_flag); } /* * Obsolete - for backwards compatibility only */ static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) { static const unsigned char ret_diacr[NR_DEAD] = { '`', /* dead_grave */ '\'', /* dead_acute */ '^', /* dead_circumflex */ '~', /* dead_tilda */ '"', /* dead_diaeresis */ ',', /* dead_cedilla */ '_', /* dead_macron */ 'U', /* dead_breve */ '.', /* dead_abovedot */ '*', /* dead_abovering */ '=', /* dead_doubleacute */ 'c', /* dead_caron */ 'k', /* dead_ogonek */ 'i', /* dead_iota */ '#', /* dead_voiced_sound */ 'o', /* dead_semivoiced_sound */ '!', /* dead_belowdot */ '?', /* dead_hook */ '+', /* dead_horn */ '-', /* dead_stroke */ ')', /* dead_abovecomma */ '(', /* dead_abovereversedcomma */ ':', /* dead_doublegrave */ 'n', /* dead_invertedbreve */ ';', /* dead_belowcomma */ '$', /* dead_currency */ '@', /* dead_greek */ }; k_deadunicode(vc, ret_diacr[value], up_flag); } static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) { if (up_flag) return; set_console(value); } static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) { if (up_flag) return; if ((unsigned)value < ARRAY_SIZE(func_table)) { unsigned long flags; spin_lock_irqsave(&func_buf_lock, flags); if (func_table[value]) puts_queue(vc, func_table[value]); spin_unlock_irqrestore(&func_buf_lock, flags); } else pr_err("k_fn called with value=%d\n", value); } static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) { static const char cur_chars[] = "BDCA"; if (up_flag) return; applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); } static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) { static const char pad_chars[] = "0123456789+-*/\015,.?()#"; static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; if (up_flag) return; /* no action, if this is a key release */ /* kludge... shift forces cursor/number keys */ if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { applkey(vc, app_map[value], 1); return; } if (!vc_kbd_led(kbd, VC_NUMLOCK)) { switch (value) { case KVAL(K_PCOMMA): case KVAL(K_PDOT): k_fn(vc, KVAL(K_REMOVE), 0); return; case KVAL(K_P0): k_fn(vc, KVAL(K_INSERT), 0); return; case KVAL(K_P1): k_fn(vc, KVAL(K_SELECT), 0); return; case KVAL(K_P2): k_cur(vc, KVAL(K_DOWN), 0); return; case KVAL(K_P3): k_fn(vc, KVAL(K_PGDN), 0); return; case KVAL(K_P4): k_cur(vc, KVAL(K_LEFT), 0); return; case KVAL(K_P6): k_cur(vc, KVAL(K_RIGHT), 0); return; case KVAL(K_P7): k_fn(vc, KVAL(K_FIND), 0); return; case KVAL(K_P8): k_cur(vc, KVAL(K_UP), 0); return; case KVAL(K_P9): k_fn(vc, KVAL(K_PGUP), 0); return; case KVAL(K_P5): applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); return; } } put_queue(vc, pad_chars[value]); if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) put_queue(vc, '\n'); } static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) { int old_state = shift_state; if (rep) return; /* * Mimic typewriter: * a CapsShift key acts like Shift but undoes CapsLock */ if (value == KVAL(K_CAPSSHIFT)) { value = KVAL(K_SHIFT); if (!up_flag) clr_vc_kbd_led(kbd, VC_CAPSLOCK); } if (up_flag) { /* * handle the case that two shift or control * keys are depressed simultaneously */ if (shift_down[value]) shift_down[value]--; } else shift_down[value]++; if (shift_down[value]) shift_state |= BIT(value); else shift_state &= ~BIT(value); /* kludge */ if (up_flag && shift_state != old_state && npadch_active) { if (kbd->kbdmode == VC_UNICODE) to_utf8(vc, npadch_value); else put_queue(vc, npadch_value & 0xff); npadch_active = false; } } static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) { if (up_flag) return; if (vc_kbd_mode(kbd, VC_META)) { put_queue(vc, '\033'); put_queue(vc, value); } else put_queue(vc, value | BIT(7)); } static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) { unsigned int base; if (up_flag) return; if (value < 10) { /* decimal input of code, while Alt depressed */ base = 10; } else { /* hexadecimal input of code, while AltGr depressed */ value -= 10; base = 16; } if (!npadch_active) { npadch_value = 0; npadch_active = true; } npadch_value = npadch_value * base + value; } static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) { if (up_flag || rep) return; chg_vc_kbd_lock(kbd, value); } static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) { k_shift(vc, value, up_flag); if (up_flag || rep) return; chg_vc_kbd_slock(kbd, value); /* try to make Alt, oops, AltGr and such work */ if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { kbd->slockstate = 0; chg_vc_kbd_slock(kbd, value); } } /* by default, 300ms interval for combination release */ static unsigned brl_timeout = 300; MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); module_param(brl_timeout, uint, 0644); static unsigned brl_nbchords = 1; MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); module_param(brl_nbchords, uint, 0644); static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) { static unsigned long chords; static unsigned committed; if (!brl_nbchords) k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); else { committed |= pattern; chords++; if (chords == brl_nbchords) { k_unicode(vc, BRL_UC_ROW | committed, up_flag); chords = 0; committed = 0; } } } static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) { static unsigned pressed, committing; static unsigned long releasestart; if (kbd->kbdmode != VC_UNICODE) { if (!up_flag) pr_warn("keyboard mode must be unicode for braille patterns\n"); return; } if (!value) { k_unicode(vc, BRL_UC_ROW, up_flag); return; } if (value > 8) return; if (!up_flag) { pressed |= BIT(value - 1); if (!brl_timeout) committing = pressed; } else if (brl_timeout) { if (!committing || time_after(jiffies, releasestart + msecs_to_jiffies(brl_timeout))) { committing = pressed; releasestart = jiffies; } pressed &= ~BIT(value - 1); if (!pressed && committing) { k_brlcommit(vc, committing, 0); committing = 0; } } else { if (committing) { k_brlcommit(vc, committing, 0); committing = 0; } pressed &= ~BIT(value - 1); } } #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS) struct kbd_led_trigger { struct led_trigger trigger; unsigned int mask; }; static int kbd_led_trigger_activate(struct led_classdev *cdev) { struct kbd_led_trigger *trigger = container_of(cdev->trigger, struct kbd_led_trigger, trigger); tasklet_disable(&keyboard_tasklet); if (ledstate != -1U) led_trigger_event(&trigger->trigger, ledstate & trigger->mask ? LED_FULL : LED_OFF); tasklet_enable(&keyboard_tasklet); return 0; } #define KBD_LED_TRIGGER(_led_bit, _name) { \ .trigger = { \ .name = _name, \ .activate = kbd_led_trigger_activate, \ }, \ .mask = BIT(_led_bit), \ } #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \ KBD_LED_TRIGGER((_led_bit) + 8, _name) static struct kbd_led_trigger kbd_led_triggers[] = { KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"), KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"), KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"), KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"), KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"), KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"), KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"), KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"), KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"), KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"), KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"), KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"), }; static void kbd_propagate_led_state(unsigned int old_state, unsigned int new_state) { struct kbd_led_trigger *trigger; unsigned int changed = old_state ^ new_state; int i; for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { trigger = &kbd_led_triggers[i]; if (changed & trigger->mask) led_trigger_event(&trigger->trigger, new_state & trigger->mask ? LED_FULL : LED_OFF); } } static int kbd_update_leds_helper(struct input_handle *handle, void *data) { unsigned int led_state = *(unsigned int *)data; if (test_bit(EV_LED, handle->dev->evbit)) kbd_propagate_led_state(~led_state, led_state); return 0; } static void kbd_init_leds(void) { int error; int i; for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { error = led_trigger_register(&kbd_led_triggers[i].trigger); if (error) pr_err("error %d while registering trigger %s\n", error, kbd_led_triggers[i].trigger.name); } } #else static int kbd_update_leds_helper(struct input_handle *handle, void *data) { unsigned int leds = *(unsigned int *)data; if (test_bit(EV_LED, handle->dev->evbit)) { input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0))); input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1))); input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2))); input_inject_event(handle, EV_SYN, SYN_REPORT, 0); } return 0; } static void kbd_propagate_led_state(unsigned int old_state, unsigned int new_state) { input_handler_for_each_handle(&kbd_handler, &new_state, kbd_update_leds_helper); } static void kbd_init_leds(void) { } #endif /* * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, * or (ii) whatever pattern of lights people want to show using KDSETLED, * or (iii) specified bits of specified words in kernel memory. */ static unsigned char getledstate(void) { return ledstate & 0xff; } void setledstate(struct kbd_struct *kb, unsigned int led) { unsigned long flags; spin_lock_irqsave(&led_lock, flags); if (!(led & ~7)) { ledioctl = led; kb->ledmode = LED_SHOW_IOCTL; } else kb->ledmode = LED_SHOW_FLAGS; set_leds(); spin_unlock_irqrestore(&led_lock, flags); } static inline unsigned char getleds(void) { struct kbd_struct *kb = kbd_table + fg_console; if (kb->ledmode == LED_SHOW_IOCTL) return ledioctl; return kb->ledflagstate; } /** * vt_get_leds - helper for braille console * @console: console to read * @flag: flag we want to check * * Check the status of a keyboard led flag and report it back */ int vt_get_leds(unsigned int console, int flag) { struct kbd_struct *kb = &kbd_table[console]; int ret; unsigned long flags; spin_lock_irqsave(&led_lock, flags); ret = vc_kbd_led(kb, flag); spin_unlock_irqrestore(&led_lock, flags); return ret; } EXPORT_SYMBOL_GPL(vt_get_leds); /** * vt_set_led_state - set LED state of a console * @console: console to set * @leds: LED bits * * Set the LEDs on a console. This is a wrapper for the VT layer * so that we can keep kbd knowledge internal */ void vt_set_led_state(unsigned int console, int leds) { struct kbd_struct *kb = &kbd_table[console]; setledstate(kb, leds); } /** * vt_kbd_con_start - Keyboard side of console start * @console: console * * Handle console start. This is a wrapper for the VT layer * so that we can keep kbd knowledge internal * * FIXME: We eventually need to hold the kbd lock here to protect * the LED updating. We can't do it yet because fn_hold calls stop_tty * and start_tty under the kbd_event_lock, while normal tty paths * don't hold the lock. We probably need to split out an LED lock * but not during an -rc release! */ void vt_kbd_con_start(unsigned int console) { struct kbd_struct *kb = &kbd_table[console]; unsigned long flags; spin_lock_irqsave(&led_lock, flags); clr_vc_kbd_led(kb, VC_SCROLLOCK); set_leds(); spin_unlock_irqrestore(&led_lock, flags); } /** * vt_kbd_con_stop - Keyboard side of console stop * @console: console * * Handle console stop. This is a wrapper for the VT layer * so that we can keep kbd knowledge internal */ void vt_kbd_con_stop(unsigned int console) { struct kbd_struct *kb = &kbd_table[console]; unsigned long flags; spin_lock_irqsave(&led_lock, flags); set_vc_kbd_led(kb, VC_SCROLLOCK); set_leds(); spin_unlock_irqrestore(&led_lock, flags); } /* * This is the tasklet that updates LED state of LEDs using standard * keyboard triggers. The reason we use tasklet is that we need to * handle the scenario when keyboard handler is not registered yet * but we already getting updates from the VT to update led state. */ static void kbd_bh(struct tasklet_struct *unused) { unsigned int leds; unsigned long flags; spin_lock_irqsave(&led_lock, flags); leds = getleds(); leds |= (unsigned int)kbd->lockstate << 8; spin_unlock_irqrestore(&led_lock, flags); if (vt_switch) { ledstate = ~leds; vt_switch = false; } if (leds != ledstate) { kbd_propagate_led_state(ledstate, leds); ledstate = leds; } } #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) static inline bool kbd_is_hw_raw(const struct input_dev *dev) { if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit)) return false; return dev->id.bustype == BUS_I8042 && dev->id.vendor == 0x0001 && dev->id.product == 0x0001; } static const unsigned short x86_keycodes[256] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; #ifdef CONFIG_SPARC static int sparc_l1_a_state; extern void sun_do_break(void); #endif static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) { int code; switch (keycode) { case KEY_PAUSE: put_queue(vc, 0xe1); put_queue(vc, 0x1d | up_flag); put_queue(vc, 0x45 | up_flag); break; case KEY_HANGEUL: if (!up_flag) put_queue(vc, 0xf2); break; case KEY_HANJA: if (!up_flag) put_queue(vc, 0xf1); break; case KEY_SYSRQ: /* * Real AT keyboards (that's what we're trying * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when * pressing PrtSc/SysRq alone, but simply 0x54 * when pressing Alt+PrtSc/SysRq. */ if (test_bit(KEY_LEFTALT, key_down) || test_bit(KEY_RIGHTALT, key_down)) { put_queue(vc, 0x54 | up_flag); } else { put_queue(vc, 0xe0); put_queue(vc, 0x2a | up_flag); put_queue(vc, 0xe0); put_queue(vc, 0x37 | up_flag); } break; default: if (keycode > 255) return -1; code = x86_keycodes[keycode]; if (!code) return -1; if (code & 0x100) put_queue(vc, 0xe0); put_queue(vc, (code & 0x7f) | up_flag); break; } return 0; } #else static inline bool kbd_is_hw_raw(const struct input_dev *dev) { return false; } static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) { if (keycode > 127) return -1; put_queue(vc, keycode | up_flag); return 0; } #endif static void kbd_rawcode(unsigned char data) { struct vc_data *vc = vc_cons[fg_console].d; kbd = &kbd_table[vc->vc_num]; if (kbd->kbdmode == VC_RAW) put_queue(vc, data); } static void kbd_keycode(unsigned int keycode, int down, bool hw_raw) { struct vc_data *vc = vc_cons[fg_console].d; unsigned short keysym, *key_map; unsigned char type; bool raw_mode; struct tty_struct *tty; int shift_final; struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; int rc; tty = vc->port.tty; if (tty && (!tty->driver_data)) { /* No driver data? Strange. Okay we fix it then. */ tty->driver_data = vc; } kbd = &kbd_table[vc->vc_num]; #ifdef CONFIG_SPARC if (keycode == KEY_STOP) sparc_l1_a_state = down; #endif rep = (down == 2); raw_mode = (kbd->kbdmode == VC_RAW); if (raw_mode && !hw_raw) if (emulate_raw(vc, keycode, !down << 7)) if (keycode < BTN_MISC && printk_ratelimit()) pr_warn("can't emulate rawmode for keycode %d\n", keycode); #ifdef CONFIG_SPARC if (keycode == KEY_A && sparc_l1_a_state) { sparc_l1_a_state = false; sun_do_break(); } #endif if (kbd->kbdmode == VC_MEDIUMRAW) { /* * This is extended medium raw mode, with keys above 127 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing * the 'up' flag if needed. 0 is reserved, so this shouldn't * interfere with anything else. The two bytes after 0 will * always have the up flag set not to interfere with older * applications. This allows for 16384 different keycodes, * which should be enough. */ if (keycode < 128) { put_queue(vc, keycode | (!down << 7)); } else { put_queue(vc, !down << 7); put_queue(vc, (keycode >> 7) | BIT(7)); put_queue(vc, keycode | BIT(7)); } raw_mode = true; } assign_bit(keycode, key_down, down); if (rep && (!vc_kbd_mode(kbd, VC_REPEAT) || (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { /* * Don't repeat a key if the input buffers are not empty and the * characters get aren't echoed locally. This makes key repeat * usable with slow applications and under heavy loads. */ return; } param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; param.ledstate = kbd->ledflagstate; key_map = key_maps[shift_final]; rc = atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, ¶m); if (rc == NOTIFY_STOP || !key_map) { atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, ¶m); do_compute_shiftstate(); kbd->slockstate = 0; return; } if (keycode < NR_KEYS) keysym = key_map[keycode]; else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); else return; type = KTYP(keysym); if (type < 0xf0) { param.value = keysym; rc = atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, ¶m); if (rc != NOTIFY_STOP) if (down && !raw_mode) k_unicode(vc, keysym, !down); return; } type -= 0xf0; if (type == KT_LETTER) { type = KT_LATIN; if (vc_kbd_led(kbd, VC_CAPSLOCK)) { key_map = key_maps[shift_final ^ BIT(KG_SHIFT)]; if (key_map) keysym = key_map[keycode]; } } param.value = keysym; rc = atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, ¶m); if (rc == NOTIFY_STOP) return; if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) return; (*k_handler[type])(vc, keysym & 0xff, !down); param.ledstate = kbd->ledflagstate; atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); if (type != KT_SLOCK) kbd->slockstate = 0; } static void kbd_event(struct input_handle *handle, unsigned int event_type, unsigned int event_code, int value) { /* We are called with interrupts disabled, just take the lock */ spin_lock(&kbd_event_lock); if (event_type == EV_MSC && event_code == MSC_RAW && kbd_is_hw_raw(handle->dev)) kbd_rawcode(value); if (event_type == EV_KEY && event_code <= KEY_MAX) kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev)); spin_unlock(&kbd_event_lock); tasklet_schedule(&keyboard_tasklet); do_poke_blanked_console = 1; schedule_console_callback(); } static bool kbd_match(struct input_handler *handler, struct input_dev *dev) { if (test_bit(EV_SND, dev->evbit)) return true; if (test_bit(EV_KEY, dev->evbit)) { if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) < BTN_MISC) return true; if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1, KEY_BRL_DOT1) <= KEY_BRL_DOT10) return true; } return false; } /* * When a keyboard (or other input device) is found, the kbd_connect * function is called. The function then looks at the device, and if it * likes it, it can open it and get events from it. In this (kbd_connect) * function, we should decide which VT to bind that keyboard to initially. */ static int kbd_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_handle *handle; int error; handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); if (!handle) return -ENOMEM; handle->dev = dev; handle->handler = handler; handle->name = "kbd"; error = input_register_handle(handle); if (error) goto err_free_handle; error = input_open_device(handle); if (error) goto err_unregister_handle; return 0; err_unregister_handle: input_unregister_handle(handle); err_free_handle: kfree(handle); return error; } static void kbd_disconnect(struct input_handle *handle) { input_close_device(handle); input_unregister_handle(handle); kfree(handle); } /* * Start keyboard handler on the new keyboard by refreshing LED state to * match the rest of the system. */ static void kbd_start(struct input_handle *handle) { tasklet_disable(&keyboard_tasklet); if (ledstate != -1U) kbd_update_leds_helper(handle, &ledstate); tasklet_enable(&keyboard_tasklet); } static const struct input_device_id kbd_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_KEY) }, }, { .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_SND) }, }, { }, /* Terminating entry */ }; MODULE_DEVICE_TABLE(input, kbd_ids); static struct input_handler kbd_handler = { .event = kbd_event, .match = kbd_match, .connect = kbd_connect, .disconnect = kbd_disconnect, .start = kbd_start, .name = "kbd", .id_table = kbd_ids, }; int __init kbd_init(void) { int i; int error; for (i = 0; i < MAX_NR_CONSOLES; i++) { kbd_table[i].ledflagstate = kbd_defleds(); kbd_table[i].default_ledflagstate = kbd_defleds(); kbd_table[i].ledmode = LED_SHOW_FLAGS; kbd_table[i].lockstate = KBD_DEFLOCK; kbd_table[i].slockstate = 0; kbd_table[i].modeflags = KBD_DEFMODE; kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; } kbd_init_leds(); error = input_register_handler(&kbd_handler); if (error) return error; tasklet_enable(&keyboard_tasklet); tasklet_schedule(&keyboard_tasklet); return 0; } /* Ioctl support code */ /** * vt_do_diacrit - diacritical table updates * @cmd: ioctl request * @udp: pointer to user data for ioctl * @perm: permissions check computed by caller * * Update the diacritical tables atomically and safely. Lock them * against simultaneous keypresses */ int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm) { unsigned long flags; int asize; int ret = 0; switch (cmd) { case KDGKBDIACR: { struct kbdiacrs __user *a = udp; struct kbdiacr *dia; int i; dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr), GFP_KERNEL); if (!dia) return -ENOMEM; /* Lock the diacriticals table, make a copy and then copy it after we unlock */ spin_lock_irqsave(&kbd_event_lock, flags); asize = accent_table_size; for (i = 0; i < asize; i++) { dia[i].diacr = conv_uni_to_8bit( accent_table[i].diacr); dia[i].base = conv_uni_to_8bit( accent_table[i].base); dia[i].result = conv_uni_to_8bit( accent_table[i].result); } spin_unlock_irqrestore(&kbd_event_lock, flags); if (put_user(asize, &a->kb_cnt)) ret = -EFAULT; else if (copy_to_user(a->kbdiacr, dia, asize * sizeof(struct kbdiacr))) ret = -EFAULT; kfree(dia); return ret; } case KDGKBDIACRUC: { struct kbdiacrsuc __user *a = udp; void *buf; buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc), GFP_KERNEL); if (buf == NULL) return -ENOMEM; /* Lock the diacriticals table, make a copy and then copy it after we unlock */ spin_lock_irqsave(&kbd_event_lock, flags); asize = accent_table_size; memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc)); spin_unlock_irqrestore(&kbd_event_lock, flags); if (put_user(asize, &a->kb_cnt)) ret = -EFAULT; else if (copy_to_user(a->kbdiacruc, buf, asize*sizeof(struct kbdiacruc))) ret = -EFAULT; kfree(buf); return ret; } case KDSKBDIACR: { struct kbdiacrs __user *a = udp; struct kbdiacr *dia = NULL; unsigned int ct; int i; if (!perm) return -EPERM; if (get_user(ct, &a->kb_cnt)) return -EFAULT; if (ct >= MAX_DIACR) return -EINVAL; if (ct) { dia = memdup_user(a->kbdiacr, sizeof(struct kbdiacr) * ct); if (IS_ERR(dia)) return PTR_ERR(dia); } spin_lock_irqsave(&kbd_event_lock, flags); accent_table_size = ct; for (i = 0; i < ct; i++) { accent_table[i].diacr = conv_8bit_to_uni(dia[i].diacr); accent_table[i].base = conv_8bit_to_uni(dia[i].base); accent_table[i].result = conv_8bit_to_uni(dia[i].result); } spin_unlock_irqrestore(&kbd_event_lock, flags); kfree(dia); return 0; } case KDSKBDIACRUC: { struct kbdiacrsuc __user *a = udp; unsigned int ct; void *buf = NULL; if (!perm) return -EPERM; if (get_user(ct, &a->kb_cnt)) return -EFAULT; if (ct >= MAX_DIACR) return -EINVAL; if (ct) { buf = memdup_user(a->kbdiacruc, ct * sizeof(struct kbdiacruc)); if (IS_ERR(buf)) return PTR_ERR(buf); } spin_lock_irqsave(&kbd_event_lock, flags); if (ct) memcpy(accent_table, buf, ct * sizeof(struct kbdiacruc)); accent_table_size = ct; spin_unlock_irqrestore(&kbd_event_lock, flags); kfree(buf); return 0; } } return ret; } /** * vt_do_kdskbmode - set keyboard mode ioctl * @console: the console to use * @arg: the requested mode * * Update the keyboard mode bits while holding the correct locks. * Return 0 for success or an error code. */ int vt_do_kdskbmode(unsigned int console, unsigned int arg) { struct kbd_struct *kb = &kbd_table[console]; int ret = 0; unsigned long flags; spin_lock_irqsave(&kbd_event_lock, flags); switch(arg) { case K_RAW: kb->kbdmode = VC_RAW; break; case K_MEDIUMRAW: kb->kbdmode = VC_MEDIUMRAW; break; case K_XLATE: kb->kbdmode = VC_XLATE; do_compute_shiftstate(); break; case K_UNICODE: kb->kbdmode = VC_UNICODE; do_compute_shiftstate(); break; case K_OFF: kb->kbdmode = VC_OFF; break; default: ret = -EINVAL; } spin_unlock_irqrestore(&kbd_event_lock, flags); return ret; } /** * vt_do_kdskbmeta - set keyboard meta state * @console: the console to use * @arg: the requested meta state * * Update the keyboard meta bits while holding the correct locks. * Return 0 for success or an error code. */ int vt_do_kdskbmeta(unsigned int console, unsigned int arg) { struct kbd_struct *kb = &kbd_table[console]; int ret = 0; unsigned long flags; spin_lock_irqsave(&kbd_event_lock, flags); switch(arg) { case K_METABIT: clr_vc_kbd_mode(kb, VC_META); break; case K_ESCPREFIX: set_vc_kbd_mode(kb, VC_META); break; default: ret = -EINVAL; } spin_unlock_irqrestore(&kbd_event_lock, flags); return ret; } int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm) { struct kbkeycode tmp; int kc = 0; if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) return -EFAULT; switch (cmd) { case KDGETKEYCODE: kc = getkeycode(tmp.scancode); if (kc >= 0) kc = put_user(kc, &user_kbkc->keycode); break; case KDSETKEYCODE: if (!perm) return -EPERM; kc = setkeycode(tmp.scancode, tmp.keycode); break; } return kc; } static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx, unsigned char map) { unsigned short *key_map, val; unsigned long flags; /* Ensure another thread doesn't free it under us */ spin_lock_irqsave(&kbd_event_lock, flags); key_map = key_maps[map]; if (key_map) { val = U(key_map[idx]); if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) val = K_HOLE; } else val = idx ? K_HOLE : K_NOSUCHMAP; spin_unlock_irqrestore(&kbd_event_lock, flags); return val; } static int vt_kdskbent(unsigned char kbdmode, unsigned char idx, unsigned char map, unsigned short val) { unsigned long flags; unsigned short *key_map, *new_map, oldval; if (!idx && val == K_NOSUCHMAP) { spin_lock_irqsave(&kbd_event_lock, flags); /* deallocate map */ key_map = key_maps[map]; if (map && key_map) { key_maps[map] = NULL; if (key_map[0] == U(K_ALLOCATED)) { kfree(key_map); keymap_count--; } } spin_unlock_irqrestore(&kbd_event_lock, flags); return 0; } if (KTYP(val) < NR_TYPES) { if (KVAL(val) > max_vals[KTYP(val)]) return -EINVAL; } else if (kbdmode != VC_UNICODE) return -EINVAL; /* ++Geert: non-PC keyboards may generate keycode zero */ #if !defined(__mc68000__) && !defined(__powerpc__) /* assignment to entry 0 only tests validity of args */ if (!idx) return 0; #endif new_map = kmalloc(sizeof(plain_map), GFP_KERNEL); if (!new_map) return -ENOMEM; spin_lock_irqsave(&kbd_event_lock, flags); key_map = key_maps[map]; if (key_map == NULL) { int j; if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && !capable(CAP_SYS_RESOURCE)) { spin_unlock_irqrestore(&kbd_event_lock, flags); kfree(new_map); return -EPERM; } key_maps[map] = new_map; key_map = new_map; key_map[0] = U(K_ALLOCATED); for (j = 1; j < NR_KEYS; j++) key_map[j] = U(K_HOLE); keymap_count++; } else kfree(new_map); oldval = U(key_map[idx]); if (val == oldval) goto out; /* Attention Key */ if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) { spin_unlock_irqrestore(&kbd_event_lock, flags); return -EPERM; } key_map[idx] = U(val); if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT)) do_compute_shiftstate(); out: spin_unlock_irqrestore(&kbd_event_lock, flags); return 0; } int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, unsigned int console) { struct kbd_struct *kb = &kbd_table[console]; struct kbentry kbe; if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry))) return -EFAULT; switch (cmd) { case KDGKBENT: return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index, kbe.kb_table), &user_kbe->kb_value); case KDSKBENT: if (!perm || !capable(CAP_SYS_TTY_CONFIG)) return -EPERM; return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table, kbe.kb_value); } return 0; } static char *vt_kdskbsent(char *kbs, unsigned char cur) { static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC); char *cur_f = func_table[cur]; if (cur_f && strlen(cur_f) >= strlen(kbs)) { strcpy(cur_f, kbs); return kbs; } func_table[cur] = kbs; return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL; } int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) { unsigned char kb_func; unsigned long flags; char *kbs; int ret; if (get_user(kb_func, &user_kdgkb->kb_func)) return -EFAULT; kb_func = array_index_nospec(kb_func, MAX_NR_FUNC); switch (cmd) { case KDGKBSENT: { /* size should have been a struct member */ ssize_t len = sizeof(user_kdgkb->kb_string); kbs = kmalloc(len, GFP_KERNEL); if (!kbs) return -ENOMEM; spin_lock_irqsave(&func_buf_lock, flags); len = strlcpy(kbs, func_table[kb_func] ? : "", len); spin_unlock_irqrestore(&func_buf_lock, flags); ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ? -EFAULT : 0; break; } case KDSKBSENT: if (!perm || !capable(CAP_SYS_TTY_CONFIG)) return -EPERM; kbs = strndup_user(user_kdgkb->kb_string, sizeof(user_kdgkb->kb_string)); if (IS_ERR(kbs)) return PTR_ERR(kbs); spin_lock_irqsave(&func_buf_lock, flags); kbs = vt_kdskbsent(kbs, kb_func); spin_unlock_irqrestore(&func_buf_lock, flags); ret = 0; break; } kfree(kbs); return ret; } int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm) { struct kbd_struct *kb = &kbd_table[console]; unsigned long flags; unsigned char ucval; switch(cmd) { /* the ioctls below read/set the flags usually shown in the leds */ /* don't use them - they will go away without warning */ case KDGKBLED: spin_lock_irqsave(&kbd_event_lock, flags); ucval = kb->ledflagstate | (kb->default_ledflagstate << 4); spin_unlock_irqrestore(&kbd_event_lock, flags); return put_user(ucval, (char __user *)arg); case KDSKBLED: if (!perm) return -EPERM; if (arg & ~0x77) return -EINVAL; spin_lock_irqsave(&led_lock, flags); kb->ledflagstate = (arg & 7); kb->default_ledflagstate = ((arg >> 4) & 7); set_leds(); spin_unlock_irqrestore(&led_lock, flags); return 0; /* the ioctls below only set the lights, not the functions */ /* for those, see KDGKBLED and KDSKBLED above */ case KDGETLED: ucval = getledstate(); return put_user(ucval, (char __user *)arg); case KDSETLED: if (!perm) return -EPERM; setledstate(kb, arg); return 0; } return -ENOIOCTLCMD; } int vt_do_kdgkbmode(unsigned int console) { struct kbd_struct *kb = &kbd_table[console]; /* This is a spot read so needs no locking */ switch (kb->kbdmode) { case VC_RAW: return K_RAW; case VC_MEDIUMRAW: return K_MEDIUMRAW; case VC_UNICODE: return K_UNICODE; case VC_OFF: return K_OFF; default: return K_XLATE; } } /** * vt_do_kdgkbmeta - report meta status * @console: console to report * * Report the meta flag status of this console */ int vt_do_kdgkbmeta(unsigned int console) { struct kbd_struct *kb = &kbd_table[console]; /* Again a spot read so no locking */ return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT; } /** * vt_reset_unicode - reset the unicode status * @console: console being reset * * Restore the unicode console state to its default */ void vt_reset_unicode(unsigned int console) { unsigned long flags; spin_lock_irqsave(&kbd_event_lock, flags); kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; spin_unlock_irqrestore(&kbd_event_lock, flags); } /** * vt_get_shift_state - shift bit state * * Report the shift bits from the keyboard state. We have to export * this to support some oddities in the vt layer. */ int vt_get_shift_state(void) { /* Don't lock as this is a transient report */ return shift_state; } /** * vt_reset_keyboard - reset keyboard state * @console: console to reset * * Reset the keyboard bits for a console as part of a general console * reset event */ void vt_reset_keyboard(unsigned int console) { struct kbd_struct *kb = &kbd_table[console]; unsigned long flags; spin_lock_irqsave(&kbd_event_lock, flags); set_vc_kbd_mode(kb, VC_REPEAT); clr_vc_kbd_mode(kb, VC_CKMODE); clr_vc_kbd_mode(kb, VC_APPLIC); clr_vc_kbd_mode(kb, VC_CRLF); kb->lockstate = 0; kb->slockstate = 0; spin_lock(&led_lock); kb->ledmode = LED_SHOW_FLAGS; kb->ledflagstate = kb->default_ledflagstate; spin_unlock(&led_lock); /* do not do set_leds here because this causes an endless tasklet loop when the keyboard hasn't been initialized yet */ spin_unlock_irqrestore(&kbd_event_lock, flags); } /** * vt_get_kbd_mode_bit - read keyboard status bits * @console: console to read from * @bit: mode bit to read * * Report back a vt mode bit. We do this without locking so the * caller must be sure that there are no synchronization needs */ int vt_get_kbd_mode_bit(unsigned int console, int bit) { struct kbd_struct *kb = &kbd_table[console]; return vc_kbd_mode(kb, bit); } /** * vt_set_kbd_mode_bit - read keyboard status bits * @console: console to read from * @bit: mode bit to read * * Set a vt mode bit. We do this without locking so the * caller must be sure that there are no synchronization needs */ void vt_set_kbd_mode_bit(unsigned int console, int bit) { struct kbd_struct *kb = &kbd_table[console]; unsigned long flags; spin_lock_irqsave(&kbd_event_lock, flags); set_vc_kbd_mode(kb, bit); spin_unlock_irqrestore(&kbd_event_lock, flags); } /** * vt_clr_kbd_mode_bit - read keyboard status bits * @console: console to read from * @bit: mode bit to read * * Report back a vt mode bit. We do this without locking so the * caller must be sure that there are no synchronization needs */ void vt_clr_kbd_mode_bit(unsigned int console, int bit) { struct kbd_struct *kb = &kbd_table[console]; unsigned long flags; spin_lock_irqsave(&kbd_event_lock, flags); clr_vc_kbd_mode(kb, bit); spin_unlock_irqrestore(&kbd_event_lock, flags); }