// SPDX-License-Identifier: GPL-2.0 /* * UCSI driver for Cypress CCGx Type-C controller * * Copyright (C) 2017-2018 NVIDIA Corporation. All rights reserved. * Author: Ajay Gupta * * Some code borrowed from drivers/usb/typec/ucsi/ucsi_acpi.c */ #include #include #include #include #include #include #include #include #include #include #include "ucsi.h" enum enum_fw_mode { BOOT, /* bootloader */ FW1, /* FW partition-1 (contains secondary fw) */ FW2, /* FW partition-2 (contains primary fw) */ FW_INVALID, }; #define CCGX_RAB_DEVICE_MODE 0x0000 #define CCGX_RAB_INTR_REG 0x0006 #define DEV_INT BIT(0) #define PORT0_INT BIT(1) #define PORT1_INT BIT(2) #define UCSI_READ_INT BIT(7) #define CCGX_RAB_JUMP_TO_BOOT 0x0007 #define TO_BOOT 'J' #define TO_ALT_FW 'A' #define CCGX_RAB_RESET_REQ 0x0008 #define RESET_SIG 'R' #define CMD_RESET_I2C 0x0 #define CMD_RESET_DEV 0x1 #define CCGX_RAB_ENTER_FLASHING 0x000A #define FLASH_ENTER_SIG 'P' #define CCGX_RAB_VALIDATE_FW 0x000B #define CCGX_RAB_FLASH_ROW_RW 0x000C #define FLASH_SIG 'F' #define FLASH_RD_CMD 0x0 #define FLASH_WR_CMD 0x1 #define FLASH_FWCT1_WR_CMD 0x2 #define FLASH_FWCT2_WR_CMD 0x3 #define FLASH_FWCT_SIG_WR_CMD 0x4 #define CCGX_RAB_READ_ALL_VER 0x0010 #define CCGX_RAB_READ_FW2_VER 0x0020 #define CCGX_RAB_UCSI_CONTROL 0x0039 #define CCGX_RAB_UCSI_CONTROL_START BIT(0) #define CCGX_RAB_UCSI_CONTROL_STOP BIT(1) #define CCGX_RAB_UCSI_DATA_BLOCK(offset) (0xf000 | ((offset) & 0xff)) #define REG_FLASH_RW_MEM 0x0200 #define DEV_REG_IDX CCGX_RAB_DEVICE_MODE #define CCGX_RAB_PDPORT_ENABLE 0x002C #define PDPORT_1 BIT(0) #define PDPORT_2 BIT(1) #define CCGX_RAB_RESPONSE 0x007E #define ASYNC_EVENT BIT(7) /* CCGx events & async msg codes */ #define RESET_COMPLETE 0x80 #define EVENT_INDEX RESET_COMPLETE #define PORT_CONNECT_DET 0x84 #define PORT_DISCONNECT_DET 0x85 #define ROLE_SWAP_COMPELETE 0x87 /* ccg firmware */ #define CYACD_LINE_SIZE 527 #define CCG4_ROW_SIZE 256 #define FW1_METADATA_ROW 0x1FF #define FW2_METADATA_ROW 0x1FE #define FW_CFG_TABLE_SIG_SIZE 256 static int secondary_fw_min_ver = 41; enum enum_flash_mode { SECONDARY_BL, /* update secondary using bootloader */ PRIMARY, /* update primary using secondary */ SECONDARY, /* update secondary using primary */ FLASH_NOT_NEEDED, /* update not required */ FLASH_INVALID, }; static const char * const ccg_fw_names[] = { "ccg_boot.cyacd", "ccg_primary.cyacd", "ccg_secondary.cyacd" }; struct ccg_dev_info { #define CCG_DEVINFO_FWMODE_SHIFT (0) #define CCG_DEVINFO_FWMODE_MASK (0x3 << CCG_DEVINFO_FWMODE_SHIFT) #define CCG_DEVINFO_PDPORTS_SHIFT (2) #define CCG_DEVINFO_PDPORTS_MASK (0x3 << CCG_DEVINFO_PDPORTS_SHIFT) u8 mode; u8 bl_mode; __le16 silicon_id; __le16 bl_last_row; } __packed; struct version_format { __le16 build; u8 patch; u8 ver; #define CCG_VERSION_PATCH(x) ((x) << 16) #define CCG_VERSION(x) ((x) << 24) #define CCG_VERSION_MIN_SHIFT (0) #define CCG_VERSION_MIN_MASK (0xf << CCG_VERSION_MIN_SHIFT) #define CCG_VERSION_MAJ_SHIFT (4) #define CCG_VERSION_MAJ_MASK (0xf << CCG_VERSION_MAJ_SHIFT) } __packed; /* * Firmware version 3.1.10 or earlier, built for NVIDIA has known issue * of missing interrupt when a device is connected for runtime resume */ #define CCG_FW_BUILD_NVIDIA (('n' << 8) | 'v') #define CCG_OLD_FW_VERSION (CCG_VERSION(0x31) | CCG_VERSION_PATCH(10)) struct version_info { struct version_format base; struct version_format app; }; struct fw_config_table { u32 identity; u16 table_size; u8 fwct_version; u8 is_key_change; u8 guid[16]; struct version_format base; struct version_format app; u8 primary_fw_digest[32]; u32 key_exp_length; u8 key_modulus[256]; u8 key_exp[4]; }; /* CCGx response codes */ enum ccg_resp_code { CMD_NO_RESP = 0x00, CMD_SUCCESS = 0x02, FLASH_DATA_AVAILABLE = 0x03, CMD_INVALID = 0x05, FLASH_UPDATE_FAIL = 0x07, INVALID_FW = 0x08, INVALID_ARG = 0x09, CMD_NOT_SUPPORT = 0x0A, TRANSACTION_FAIL = 0x0C, PD_CMD_FAIL = 0x0D, UNDEF_ERROR = 0x0F, INVALID_RESP = 0x10, }; #define CCG_EVENT_MAX (EVENT_INDEX + 43) struct ccg_cmd { u16 reg; u32 data; int len; u32 delay; /* ms delay for cmd timeout */ }; struct ccg_resp { u8 code; u8 length; }; struct ucsi_ccg { struct device *dev; struct ucsi *ucsi; struct ucsi_ppm ppm; struct i2c_client *client; struct ccg_dev_info info; /* version info for boot, primary and secondary */ struct version_info version[FW2 + 1]; u32 fw_version; /* CCG HPI communication flags */ unsigned long flags; #define RESET_PENDING 0 #define DEV_CMD_PENDING 1 struct ccg_resp dev_resp; u8 cmd_resp; int port_num; int irq; struct work_struct work; struct mutex lock; /* to sync between user and driver thread */ /* fw build with vendor information */ u16 fw_build; bool run_isr; /* flag to call ISR routine during resume */ struct work_struct pm_work; }; static int ccg_read(struct ucsi_ccg *uc, u16 rab, u8 *data, u32 len) { struct i2c_client *client = uc->client; const struct i2c_adapter_quirks *quirks = client->adapter->quirks; unsigned char buf[2]; struct i2c_msg msgs[] = { { .addr = client->addr, .flags = 0x0, .len = sizeof(buf), .buf = buf, }, { .addr = client->addr, .flags = I2C_M_RD, .buf = data, }, }; u32 rlen, rem_len = len, max_read_len = len; int status; /* check any max_read_len limitation on i2c adapter */ if (quirks && quirks->max_read_len) max_read_len = quirks->max_read_len; if (uc->fw_build == CCG_FW_BUILD_NVIDIA && uc->fw_version <= CCG_OLD_FW_VERSION) { mutex_lock(&uc->lock); /* * Do not schedule pm_work to run ISR in * ucsi_ccg_runtime_resume() after pm_runtime_get_sync() * since we are already in ISR path. */ uc->run_isr = false; mutex_unlock(&uc->lock); } pm_runtime_get_sync(uc->dev); while (rem_len > 0) { msgs[1].buf = &data[len - rem_len]; rlen = min_t(u16, rem_len, max_read_len); msgs[1].len = rlen; put_unaligned_le16(rab, buf); status = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (status < 0) { dev_err(uc->dev, "i2c_transfer failed %d\n", status); pm_runtime_put_sync(uc->dev); return status; } rab += rlen; rem_len -= rlen; } pm_runtime_put_sync(uc->dev); return 0; } static int ccg_write(struct ucsi_ccg *uc, u16 rab, u8 *data, u32 len) { struct i2c_client *client = uc->client; unsigned char *buf; struct i2c_msg msgs[] = { { .addr = client->addr, .flags = 0x0, } }; int status; buf = kzalloc(len + sizeof(rab), GFP_KERNEL); if (!buf) return -ENOMEM; put_unaligned_le16(rab, buf); memcpy(buf + sizeof(rab), data, len); msgs[0].len = len + sizeof(rab); msgs[0].buf = buf; if (uc->fw_build == CCG_FW_BUILD_NVIDIA && uc->fw_version <= CCG_OLD_FW_VERSION) { mutex_lock(&uc->lock); /* * Do not schedule pm_work to run ISR in * ucsi_ccg_runtime_resume() after pm_runtime_get_sync() * since we are already in ISR path. */ uc->run_isr = false; mutex_unlock(&uc->lock); } pm_runtime_get_sync(uc->dev); status = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (status < 0) { dev_err(uc->dev, "i2c_transfer failed %d\n", status); pm_runtime_put_sync(uc->dev); kfree(buf); return status; } pm_runtime_put_sync(uc->dev); kfree(buf); return 0; } static int ucsi_ccg_init(struct ucsi_ccg *uc) { unsigned int count = 10; u8 data; int status; data = CCGX_RAB_UCSI_CONTROL_STOP; status = ccg_write(uc, CCGX_RAB_UCSI_CONTROL, &data, sizeof(data)); if (status < 0) return status; data = CCGX_RAB_UCSI_CONTROL_START; status = ccg_write(uc, CCGX_RAB_UCSI_CONTROL, &data, sizeof(data)); if (status < 0) return status; /* * Flush CCGx RESPONSE queue by acking interrupts. Above ucsi control * register write will push response which must be cleared. */ do { status = ccg_read(uc, CCGX_RAB_INTR_REG, &data, sizeof(data)); if (status < 0) return status; if (!data) return 0; status = ccg_write(uc, CCGX_RAB_INTR_REG, &data, sizeof(data)); if (status < 0) return status; usleep_range(10000, 11000); } while (--count); return -ETIMEDOUT; } static int ucsi_ccg_send_data(struct ucsi_ccg *uc) { u8 *ppm = (u8 *)uc->ppm.data; int status; u16 rab; rab = CCGX_RAB_UCSI_DATA_BLOCK(offsetof(struct ucsi_data, message_out)); status = ccg_write(uc, rab, ppm + offsetof(struct ucsi_data, message_out), sizeof(uc->ppm.data->message_out)); if (status < 0) return status; rab = CCGX_RAB_UCSI_DATA_BLOCK(offsetof(struct ucsi_data, ctrl)); return ccg_write(uc, rab, ppm + offsetof(struct ucsi_data, ctrl), sizeof(uc->ppm.data->ctrl)); } static int ucsi_ccg_recv_data(struct ucsi_ccg *uc) { u8 *ppm = (u8 *)uc->ppm.data; int status; u16 rab; rab = CCGX_RAB_UCSI_DATA_BLOCK(offsetof(struct ucsi_data, cci)); status = ccg_read(uc, rab, ppm + offsetof(struct ucsi_data, cci), sizeof(uc->ppm.data->cci)); if (status < 0) return status; rab = CCGX_RAB_UCSI_DATA_BLOCK(offsetof(struct ucsi_data, message_in)); return ccg_read(uc, rab, ppm + offsetof(struct ucsi_data, message_in), sizeof(uc->ppm.data->message_in)); } static int ucsi_ccg_ack_interrupt(struct ucsi_ccg *uc) { int status; unsigned char data; status = ccg_read(uc, CCGX_RAB_INTR_REG, &data, sizeof(data)); if (status < 0) return status; return ccg_write(uc, CCGX_RAB_INTR_REG, &data, sizeof(data)); } static int ucsi_ccg_sync(struct ucsi_ppm *ppm) { struct ucsi_ccg *uc = container_of(ppm, struct ucsi_ccg, ppm); int status; status = ucsi_ccg_recv_data(uc); if (status < 0) return status; /* ack interrupt to allow next command to run */ return ucsi_ccg_ack_interrupt(uc); } static int ucsi_ccg_cmd(struct ucsi_ppm *ppm, struct ucsi_control *ctrl) { struct ucsi_ccg *uc = container_of(ppm, struct ucsi_ccg, ppm); ppm->data->ctrl.raw_cmd = ctrl->raw_cmd; return ucsi_ccg_send_data(uc); } static irqreturn_t ccg_irq_handler(int irq, void *data) { struct ucsi_ccg *uc = data; ucsi_notify(uc->ucsi); return IRQ_HANDLED; } static void ccg_pm_workaround_work(struct work_struct *pm_work) { struct ucsi_ccg *uc = container_of(pm_work, struct ucsi_ccg, pm_work); ucsi_notify(uc->ucsi); } static int get_fw_info(struct ucsi_ccg *uc) { int err; err = ccg_read(uc, CCGX_RAB_READ_ALL_VER, (u8 *)(&uc->version), sizeof(uc->version)); if (err < 0) return err; uc->fw_version = CCG_VERSION(uc->version[FW2].app.ver) | CCG_VERSION_PATCH(uc->version[FW2].app.patch); err = ccg_read(uc, CCGX_RAB_DEVICE_MODE, (u8 *)(&uc->info), sizeof(uc->info)); if (err < 0) return err; return 0; } static inline bool invalid_async_evt(int code) { return (code >= CCG_EVENT_MAX) || (code < EVENT_INDEX); } static void ccg_process_response(struct ucsi_ccg *uc) { struct device *dev = uc->dev; if (uc->dev_resp.code & ASYNC_EVENT) { if (uc->dev_resp.code == RESET_COMPLETE) { if (test_bit(RESET_PENDING, &uc->flags)) uc->cmd_resp = uc->dev_resp.code; get_fw_info(uc); } if (invalid_async_evt(uc->dev_resp.code)) dev_err(dev, "invalid async evt %d\n", uc->dev_resp.code); } else { if (test_bit(DEV_CMD_PENDING, &uc->flags)) { uc->cmd_resp = uc->dev_resp.code; clear_bit(DEV_CMD_PENDING, &uc->flags); } else { dev_err(dev, "dev resp 0x%04x but no cmd pending\n", uc->dev_resp.code); } } } static int ccg_read_response(struct ucsi_ccg *uc) { unsigned long target = jiffies + msecs_to_jiffies(1000); struct device *dev = uc->dev; u8 intval; int status; /* wait for interrupt status to get updated */ do { status = ccg_read(uc, CCGX_RAB_INTR_REG, &intval, sizeof(intval)); if (status < 0) return status; if (intval & DEV_INT) break; usleep_range(500, 600); } while (time_is_after_jiffies(target)); if (time_is_before_jiffies(target)) { dev_err(dev, "response timeout error\n"); return -ETIME; } status = ccg_read(uc, CCGX_RAB_RESPONSE, (u8 *)&uc->dev_resp, sizeof(uc->dev_resp)); if (status < 0) return status; status = ccg_write(uc, CCGX_RAB_INTR_REG, &intval, sizeof(intval)); if (status < 0) return status; return 0; } /* Caller must hold uc->lock */ static int ccg_send_command(struct ucsi_ccg *uc, struct ccg_cmd *cmd) { struct device *dev = uc->dev; int ret; switch (cmd->reg & 0xF000) { case DEV_REG_IDX: set_bit(DEV_CMD_PENDING, &uc->flags); break; default: dev_err(dev, "invalid cmd register\n"); break; } ret = ccg_write(uc, cmd->reg, (u8 *)&cmd->data, cmd->len); if (ret < 0) return ret; msleep(cmd->delay); ret = ccg_read_response(uc); if (ret < 0) { dev_err(dev, "response read error\n"); switch (cmd->reg & 0xF000) { case DEV_REG_IDX: clear_bit(DEV_CMD_PENDING, &uc->flags); break; default: dev_err(dev, "invalid cmd register\n"); break; } return -EIO; } ccg_process_response(uc); return uc->cmd_resp; } static int ccg_cmd_enter_flashing(struct ucsi_ccg *uc) { struct ccg_cmd cmd; int ret; cmd.reg = CCGX_RAB_ENTER_FLASHING; cmd.data = FLASH_ENTER_SIG; cmd.len = 1; cmd.delay = 50; mutex_lock(&uc->lock); ret = ccg_send_command(uc, &cmd); mutex_unlock(&uc->lock); if (ret != CMD_SUCCESS) { dev_err(uc->dev, "enter flashing failed ret=%d\n", ret); return ret; } return 0; } static int ccg_cmd_reset(struct ucsi_ccg *uc) { struct ccg_cmd cmd; u8 *p; int ret; p = (u8 *)&cmd.data; cmd.reg = CCGX_RAB_RESET_REQ; p[0] = RESET_SIG; p[1] = CMD_RESET_DEV; cmd.len = 2; cmd.delay = 5000; mutex_lock(&uc->lock); set_bit(RESET_PENDING, &uc->flags); ret = ccg_send_command(uc, &cmd); if (ret != RESET_COMPLETE) goto err_clear_flag; ret = 0; err_clear_flag: clear_bit(RESET_PENDING, &uc->flags); mutex_unlock(&uc->lock); return ret; } static int ccg_cmd_port_control(struct ucsi_ccg *uc, bool enable) { struct ccg_cmd cmd; int ret; cmd.reg = CCGX_RAB_PDPORT_ENABLE; if (enable) cmd.data = (uc->port_num == 1) ? PDPORT_1 : (PDPORT_1 | PDPORT_2); else cmd.data = 0x0; cmd.len = 1; cmd.delay = 10; mutex_lock(&uc->lock); ret = ccg_send_command(uc, &cmd); mutex_unlock(&uc->lock); if (ret != CMD_SUCCESS) { dev_err(uc->dev, "port control failed ret=%d\n", ret); return ret; } return 0; } static int ccg_cmd_jump_boot_mode(struct ucsi_ccg *uc, int bl_mode) { struct ccg_cmd cmd; int ret; cmd.reg = CCGX_RAB_JUMP_TO_BOOT; if (bl_mode) cmd.data = TO_BOOT; else cmd.data = TO_ALT_FW; cmd.len = 1; cmd.delay = 100; mutex_lock(&uc->lock); set_bit(RESET_PENDING, &uc->flags); ret = ccg_send_command(uc, &cmd); if (ret != RESET_COMPLETE) goto err_clear_flag; ret = 0; err_clear_flag: clear_bit(RESET_PENDING, &uc->flags); mutex_unlock(&uc->lock); return ret; } static int ccg_cmd_write_flash_row(struct ucsi_ccg *uc, u16 row, const void *data, u8 fcmd) { struct i2c_client *client = uc->client; struct ccg_cmd cmd; u8 buf[CCG4_ROW_SIZE + 2]; u8 *p; int ret; /* Copy the data into the flash read/write memory. */ put_unaligned_le16(REG_FLASH_RW_MEM, buf); memcpy(buf + 2, data, CCG4_ROW_SIZE); mutex_lock(&uc->lock); ret = i2c_master_send(client, buf, CCG4_ROW_SIZE + 2); if (ret != CCG4_ROW_SIZE + 2) { dev_err(uc->dev, "REG_FLASH_RW_MEM write fail %d\n", ret); mutex_unlock(&uc->lock); return ret < 0 ? ret : -EIO; } /* Use the FLASH_ROW_READ_WRITE register to trigger */ /* writing of data to the desired flash row */ p = (u8 *)&cmd.data; cmd.reg = CCGX_RAB_FLASH_ROW_RW; p[0] = FLASH_SIG; p[1] = fcmd; put_unaligned_le16(row, &p[2]); cmd.len = 4; cmd.delay = 50; if (fcmd == FLASH_FWCT_SIG_WR_CMD) cmd.delay += 400; if (row == 510) cmd.delay += 220; ret = ccg_send_command(uc, &cmd); mutex_unlock(&uc->lock); if (ret != CMD_SUCCESS) { dev_err(uc->dev, "write flash row failed ret=%d\n", ret); return ret; } return 0; } static int ccg_cmd_validate_fw(struct ucsi_ccg *uc, unsigned int fwid) { struct ccg_cmd cmd; int ret; cmd.reg = CCGX_RAB_VALIDATE_FW; cmd.data = fwid; cmd.len = 1; cmd.delay = 500; mutex_lock(&uc->lock); ret = ccg_send_command(uc, &cmd); mutex_unlock(&uc->lock); if (ret != CMD_SUCCESS) return ret; return 0; } static bool ccg_check_vendor_version(struct ucsi_ccg *uc, struct version_format *app, struct fw_config_table *fw_cfg) { struct device *dev = uc->dev; /* Check if the fw build is for supported vendors */ if (le16_to_cpu(app->build) != uc->fw_build) { dev_info(dev, "current fw is not from supported vendor\n"); return false; } /* Check if the new fw build is for supported vendors */ if (le16_to_cpu(fw_cfg->app.build) != uc->fw_build) { dev_info(dev, "new fw is not from supported vendor\n"); return false; } return true; } static bool ccg_check_fw_version(struct ucsi_ccg *uc, const char *fw_name, struct version_format *app) { const struct firmware *fw = NULL; struct device *dev = uc->dev; struct fw_config_table fw_cfg; u32 cur_version, new_version; bool is_later = false; if (request_firmware(&fw, fw_name, dev) != 0) { dev_err(dev, "error: Failed to open cyacd file %s\n", fw_name); return false; } /* * check if signed fw * last part of fw image is fw cfg table and signature */ if (fw->size < sizeof(fw_cfg) + FW_CFG_TABLE_SIG_SIZE) goto out_release_firmware; memcpy((uint8_t *)&fw_cfg, fw->data + fw->size - sizeof(fw_cfg) - FW_CFG_TABLE_SIG_SIZE, sizeof(fw_cfg)); if (fw_cfg.identity != ('F' | 'W' << 8 | 'C' << 16 | 'T' << 24)) { dev_info(dev, "not a signed image\n"); goto out_release_firmware; } /* compare input version with FWCT version */ cur_version = le16_to_cpu(app->build) | CCG_VERSION_PATCH(app->patch) | CCG_VERSION(app->ver); new_version = le16_to_cpu(fw_cfg.app.build) | CCG_VERSION_PATCH(fw_cfg.app.patch) | CCG_VERSION(fw_cfg.app.ver); if (!ccg_check_vendor_version(uc, app, &fw_cfg)) goto out_release_firmware; if (new_version > cur_version) is_later = true; out_release_firmware: release_firmware(fw); return is_later; } static int ccg_fw_update_needed(struct ucsi_ccg *uc, enum enum_flash_mode *mode) { struct device *dev = uc->dev; int err; struct version_info version[3]; err = ccg_read(uc, CCGX_RAB_DEVICE_MODE, (u8 *)(&uc->info), sizeof(uc->info)); if (err) { dev_err(dev, "read device mode failed\n"); return err; } err = ccg_read(uc, CCGX_RAB_READ_ALL_VER, (u8 *)version, sizeof(version)); if (err) { dev_err(dev, "read device mode failed\n"); return err; } if (memcmp(&version[FW1], "\0\0\0\0\0\0\0\0", sizeof(struct version_info)) == 0) { dev_info(dev, "secondary fw is not flashed\n"); *mode = SECONDARY_BL; } else if (le16_to_cpu(version[FW1].base.build) < secondary_fw_min_ver) { dev_info(dev, "secondary fw version is too low (< %d)\n", secondary_fw_min_ver); *mode = SECONDARY; } else if (memcmp(&version[FW2], "\0\0\0\0\0\0\0\0", sizeof(struct version_info)) == 0) { dev_info(dev, "primary fw is not flashed\n"); *mode = PRIMARY; } else if (ccg_check_fw_version(uc, ccg_fw_names[PRIMARY], &version[FW2].app)) { dev_info(dev, "found primary fw with later version\n"); *mode = PRIMARY; } else { dev_info(dev, "secondary and primary fw are the latest\n"); *mode = FLASH_NOT_NEEDED; } return 0; } static int do_flash(struct ucsi_ccg *uc, enum enum_flash_mode mode) { struct device *dev = uc->dev; const struct firmware *fw = NULL; const char *p, *s; const char *eof; int err, row, len, line_sz, line_cnt = 0; unsigned long start_time = jiffies; struct fw_config_table fw_cfg; u8 fw_cfg_sig[FW_CFG_TABLE_SIG_SIZE]; u8 *wr_buf; err = request_firmware(&fw, ccg_fw_names[mode], dev); if (err) { dev_err(dev, "request %s failed err=%d\n", ccg_fw_names[mode], err); return err; } if (((uc->info.mode & CCG_DEVINFO_FWMODE_MASK) >> CCG_DEVINFO_FWMODE_SHIFT) == FW2) { err = ccg_cmd_port_control(uc, false); if (err < 0) goto release_fw; err = ccg_cmd_jump_boot_mode(uc, 0); if (err < 0) goto release_fw; } eof = fw->data + fw->size; /* * check if signed fw * last part of fw image is fw cfg table and signature */ if (fw->size < sizeof(fw_cfg) + sizeof(fw_cfg_sig)) goto not_signed_fw; memcpy((uint8_t *)&fw_cfg, fw->data + fw->size - sizeof(fw_cfg) - sizeof(fw_cfg_sig), sizeof(fw_cfg)); if (fw_cfg.identity != ('F' | ('W' << 8) | ('C' << 16) | ('T' << 24))) { dev_info(dev, "not a signed image\n"); goto not_signed_fw; } eof = fw->data + fw->size - sizeof(fw_cfg) - sizeof(fw_cfg_sig); memcpy((uint8_t *)&fw_cfg_sig, fw->data + fw->size - sizeof(fw_cfg_sig), sizeof(fw_cfg_sig)); /* flash fw config table and signature first */ err = ccg_cmd_write_flash_row(uc, 0, (u8 *)&fw_cfg, FLASH_FWCT1_WR_CMD); if (err) goto release_fw; err = ccg_cmd_write_flash_row(uc, 0, (u8 *)&fw_cfg + CCG4_ROW_SIZE, FLASH_FWCT2_WR_CMD); if (err) goto release_fw; err = ccg_cmd_write_flash_row(uc, 0, &fw_cfg_sig, FLASH_FWCT_SIG_WR_CMD); if (err) goto release_fw; not_signed_fw: wr_buf = kzalloc(CCG4_ROW_SIZE + 4, GFP_KERNEL); if (!wr_buf) { err = -ENOMEM; goto release_fw; } err = ccg_cmd_enter_flashing(uc); if (err) goto release_mem; /***************************************************************** * CCG firmware image (.cyacd) file line format * * :00rrrrllll[dd....]cc/r/n * * :00 header * rrrr is row number to flash (4 char) * llll is data len to flash (4 char) * dd is a data field represents one byte of data (512 char) * cc is checksum (2 char) * \r\n newline * * Total length: 3 + 4 + 4 + 512 + 2 + 2 = 527 * *****************************************************************/ p = strnchr(fw->data, fw->size, ':'); while (p < eof) { s = strnchr(p + 1, eof - p - 1, ':'); if (!s) s = eof; line_sz = s - p; if (line_sz != CYACD_LINE_SIZE) { dev_err(dev, "Bad FW format line_sz=%d\n", line_sz); err = -EINVAL; goto release_mem; } if (hex2bin(wr_buf, p + 3, CCG4_ROW_SIZE + 4)) { err = -EINVAL; goto release_mem; } row = get_unaligned_be16(wr_buf); len = get_unaligned_be16(&wr_buf[2]); if (len != CCG4_ROW_SIZE) { err = -EINVAL; goto release_mem; } err = ccg_cmd_write_flash_row(uc, row, wr_buf + 4, FLASH_WR_CMD); if (err) goto release_mem; line_cnt++; p = s; } dev_info(dev, "total %d row flashed. time: %dms\n", line_cnt, jiffies_to_msecs(jiffies - start_time)); err = ccg_cmd_validate_fw(uc, (mode == PRIMARY) ? FW2 : FW1); if (err) dev_err(dev, "%s validation failed err=%d\n", (mode == PRIMARY) ? "FW2" : "FW1", err); else dev_info(dev, "%s validated\n", (mode == PRIMARY) ? "FW2" : "FW1"); err = ccg_cmd_port_control(uc, false); if (err < 0) goto release_mem; err = ccg_cmd_reset(uc); if (err < 0) goto release_mem; err = ccg_cmd_port_control(uc, true); if (err < 0) goto release_mem; release_mem: kfree(wr_buf); release_fw: release_firmware(fw); return err; } /******************************************************************************* * CCG4 has two copies of the firmware in addition to the bootloader. * If the device is running FW1, FW2 can be updated with the new version. * Dual firmware mode allows the CCG device to stay in a PD contract and support * USB PD and Type-C functionality while a firmware update is in progress. ******************************************************************************/ static int ccg_fw_update(struct ucsi_ccg *uc, enum enum_flash_mode flash_mode) { int err = 0; while (flash_mode != FLASH_NOT_NEEDED) { err = do_flash(uc, flash_mode); if (err < 0) return err; err = ccg_fw_update_needed(uc, &flash_mode); if (err < 0) return err; } dev_info(uc->dev, "CCG FW update successful\n"); return err; } static int ccg_restart(struct ucsi_ccg *uc) { struct device *dev = uc->dev; int status; status = ucsi_ccg_init(uc); if (status < 0) { dev_err(dev, "ucsi_ccg_start fail, err=%d\n", status); return status; } status = request_threaded_irq(uc->irq, NULL, ccg_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, dev_name(dev), uc); if (status < 0) { dev_err(dev, "request_threaded_irq failed - %d\n", status); return status; } uc->ucsi = ucsi_register_ppm(dev, &uc->ppm); if (IS_ERR(uc->ucsi)) { dev_err(uc->dev, "ucsi_register_ppm failed\n"); return PTR_ERR(uc->ucsi); } return 0; } static void ccg_update_firmware(struct work_struct *work) { struct ucsi_ccg *uc = container_of(work, struct ucsi_ccg, work); enum enum_flash_mode flash_mode; int status; status = ccg_fw_update_needed(uc, &flash_mode); if (status < 0) return; if (flash_mode != FLASH_NOT_NEEDED) { ucsi_unregister_ppm(uc->ucsi); free_irq(uc->irq, uc); ccg_fw_update(uc, flash_mode); ccg_restart(uc); } } static ssize_t do_flash_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t n) { struct ucsi_ccg *uc = i2c_get_clientdata(to_i2c_client(dev)); bool flash; if (kstrtobool(buf, &flash)) return -EINVAL; if (!flash) return n; if (uc->fw_build == 0x0) { dev_err(dev, "fail to flash FW due to missing FW build info\n"); return -EINVAL; } schedule_work(&uc->work); return n; } static DEVICE_ATTR_WO(do_flash); static struct attribute *ucsi_ccg_attrs[] = { &dev_attr_do_flash.attr, NULL, }; ATTRIBUTE_GROUPS(ucsi_ccg); static int ucsi_ccg_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct ucsi_ccg *uc; int status; u16 rab; uc = devm_kzalloc(dev, sizeof(*uc), GFP_KERNEL); if (!uc) return -ENOMEM; uc->ppm.data = devm_kzalloc(dev, sizeof(struct ucsi_data), GFP_KERNEL); if (!uc->ppm.data) return -ENOMEM; uc->ppm.cmd = ucsi_ccg_cmd; uc->ppm.sync = ucsi_ccg_sync; uc->dev = dev; uc->client = client; uc->run_isr = true; mutex_init(&uc->lock); INIT_WORK(&uc->work, ccg_update_firmware); INIT_WORK(&uc->pm_work, ccg_pm_workaround_work); /* Only fail FW flashing when FW build information is not provided */ status = device_property_read_u16(dev, "ccgx,firmware-build", &uc->fw_build); if (status) dev_err(uc->dev, "failed to get FW build information\n"); /* reset ccg device and initialize ucsi */ status = ucsi_ccg_init(uc); if (status < 0) { dev_err(uc->dev, "ucsi_ccg_init failed - %d\n", status); return status; } status = get_fw_info(uc); if (status < 0) { dev_err(uc->dev, "get_fw_info failed - %d\n", status); return status; } uc->port_num = 1; if (uc->info.mode & CCG_DEVINFO_PDPORTS_MASK) uc->port_num++; status = request_threaded_irq(client->irq, NULL, ccg_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, dev_name(dev), uc); if (status < 0) { dev_err(uc->dev, "request_threaded_irq failed - %d\n", status); return status; } uc->irq = client->irq; uc->ucsi = ucsi_register_ppm(dev, &uc->ppm); if (IS_ERR(uc->ucsi)) { dev_err(uc->dev, "ucsi_register_ppm failed\n"); return PTR_ERR(uc->ucsi); } rab = CCGX_RAB_UCSI_DATA_BLOCK(offsetof(struct ucsi_data, version)); status = ccg_read(uc, rab, (u8 *)(uc->ppm.data) + offsetof(struct ucsi_data, version), sizeof(uc->ppm.data->version)); if (status < 0) { ucsi_unregister_ppm(uc->ucsi); return status; } i2c_set_clientdata(client, uc); pm_runtime_set_active(uc->dev); pm_runtime_enable(uc->dev); pm_runtime_idle(uc->dev); return 0; } static int ucsi_ccg_remove(struct i2c_client *client) { struct ucsi_ccg *uc = i2c_get_clientdata(client); cancel_work_sync(&uc->pm_work); cancel_work_sync(&uc->work); ucsi_unregister_ppm(uc->ucsi); pm_runtime_disable(uc->dev); free_irq(uc->irq, uc); return 0; } static const struct i2c_device_id ucsi_ccg_device_id[] = { {"ccgx-ucsi", 0}, {} }; MODULE_DEVICE_TABLE(i2c, ucsi_ccg_device_id); static int ucsi_ccg_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct ucsi_ccg *uc = i2c_get_clientdata(client); return ucsi_resume(uc->ucsi); } static int ucsi_ccg_runtime_suspend(struct device *dev) { return 0; } static int ucsi_ccg_runtime_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct ucsi_ccg *uc = i2c_get_clientdata(client); bool schedule = true; /* * Firmware version 3.1.10 or earlier, built for NVIDIA has known issue * of missing interrupt when a device is connected for runtime resume. * Schedule a work to call ISR as a workaround. */ if (uc->fw_build == CCG_FW_BUILD_NVIDIA && uc->fw_version <= CCG_OLD_FW_VERSION) { mutex_lock(&uc->lock); if (!uc->run_isr) { uc->run_isr = true; schedule = false; } mutex_unlock(&uc->lock); if (schedule) schedule_work(&uc->pm_work); } return 0; } static const struct dev_pm_ops ucsi_ccg_pm = { .resume = ucsi_ccg_resume, .runtime_suspend = ucsi_ccg_runtime_suspend, .runtime_resume = ucsi_ccg_runtime_resume, }; static struct i2c_driver ucsi_ccg_driver = { .driver = { .name = "ucsi_ccg", .pm = &ucsi_ccg_pm, .dev_groups = ucsi_ccg_groups, }, .probe = ucsi_ccg_probe, .remove = ucsi_ccg_remove, .id_table = ucsi_ccg_device_id, }; module_i2c_driver(ucsi_ccg_driver); MODULE_AUTHOR("Ajay Gupta "); MODULE_DESCRIPTION("UCSI driver for Cypress CCGx Type-C controller"); MODULE_LICENSE("GPL v2");