// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2008 Oracle. All rights reserved. */ #include #include #include #include #include #include "misc.h" #include "ctree.h" #include "extent_io.h" #include "locking.h" #ifdef CONFIG_BTRFS_DEBUG static inline void btrfs_assert_spinning_writers_get(struct extent_buffer *eb) { WARN_ON(eb->spinning_writers); eb->spinning_writers++; } static inline void btrfs_assert_spinning_writers_put(struct extent_buffer *eb) { WARN_ON(eb->spinning_writers != 1); eb->spinning_writers--; } static inline void btrfs_assert_no_spinning_writers(struct extent_buffer *eb) { WARN_ON(eb->spinning_writers); } static inline void btrfs_assert_spinning_readers_get(struct extent_buffer *eb) { atomic_inc(&eb->spinning_readers); } static inline void btrfs_assert_spinning_readers_put(struct extent_buffer *eb) { WARN_ON(atomic_read(&eb->spinning_readers) == 0); atomic_dec(&eb->spinning_readers); } static inline void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb) { atomic_inc(&eb->read_locks); } static inline void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb) { atomic_dec(&eb->read_locks); } static inline void btrfs_assert_tree_read_locked(struct extent_buffer *eb) { BUG_ON(!atomic_read(&eb->read_locks)); } static inline void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb) { eb->write_locks++; } static inline void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb) { eb->write_locks--; } #else static void btrfs_assert_spinning_writers_get(struct extent_buffer *eb) { } static void btrfs_assert_spinning_writers_put(struct extent_buffer *eb) { } static void btrfs_assert_no_spinning_writers(struct extent_buffer *eb) { } static void btrfs_assert_spinning_readers_put(struct extent_buffer *eb) { } static void btrfs_assert_spinning_readers_get(struct extent_buffer *eb) { } static void btrfs_assert_tree_read_locked(struct extent_buffer *eb) { } static void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb) { } static void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb) { } static void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb) { } static void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb) { } #endif void btrfs_set_lock_blocking_read(struct extent_buffer *eb) { trace_btrfs_set_lock_blocking_read(eb); /* * No lock is required. The lock owner may change if we have a read * lock, but it won't change to or away from us. If we have the write * lock, we are the owner and it'll never change. */ if (eb->lock_nested && current->pid == eb->lock_owner) return; btrfs_assert_tree_read_locked(eb); atomic_inc(&eb->blocking_readers); btrfs_assert_spinning_readers_put(eb); read_unlock(&eb->lock); } void btrfs_set_lock_blocking_write(struct extent_buffer *eb) { trace_btrfs_set_lock_blocking_write(eb); /* * No lock is required. The lock owner may change if we have a read * lock, but it won't change to or away from us. If we have the write * lock, we are the owner and it'll never change. */ if (eb->lock_nested && current->pid == eb->lock_owner) return; if (eb->blocking_writers == 0) { btrfs_assert_spinning_writers_put(eb); btrfs_assert_tree_locked(eb); eb->blocking_writers++; write_unlock(&eb->lock); } } /* * take a spinning read lock. This will wait for any blocking * writers */ void btrfs_tree_read_lock(struct extent_buffer *eb) { u64 start_ns = 0; if (trace_btrfs_tree_read_lock_enabled()) start_ns = ktime_get_ns(); again: read_lock(&eb->lock); BUG_ON(eb->blocking_writers == 0 && current->pid == eb->lock_owner); if (eb->blocking_writers && current->pid == eb->lock_owner) { /* * This extent is already write-locked by our thread. We allow * an additional read lock to be added because it's for the same * thread. btrfs_find_all_roots() depends on this as it may be * called on a partly (write-)locked tree. */ BUG_ON(eb->lock_nested); eb->lock_nested = true; read_unlock(&eb->lock); trace_btrfs_tree_read_lock(eb, start_ns); return; } if (eb->blocking_writers) { read_unlock(&eb->lock); wait_event(eb->write_lock_wq, eb->blocking_writers == 0); goto again; } btrfs_assert_tree_read_locks_get(eb); btrfs_assert_spinning_readers_get(eb); trace_btrfs_tree_read_lock(eb, start_ns); } /* * take a spinning read lock. * returns 1 if we get the read lock and 0 if we don't * this won't wait for blocking writers */ int btrfs_tree_read_lock_atomic(struct extent_buffer *eb) { if (eb->blocking_writers) return 0; read_lock(&eb->lock); if (eb->blocking_writers) { read_unlock(&eb->lock); return 0; } btrfs_assert_tree_read_locks_get(eb); btrfs_assert_spinning_readers_get(eb); trace_btrfs_tree_read_lock_atomic(eb); return 1; } /* * returns 1 if we get the read lock and 0 if we don't * this won't wait for blocking writers */ int btrfs_try_tree_read_lock(struct extent_buffer *eb) { if (eb->blocking_writers) return 0; if (!read_trylock(&eb->lock)) return 0; if (eb->blocking_writers) { read_unlock(&eb->lock); return 0; } btrfs_assert_tree_read_locks_get(eb); btrfs_assert_spinning_readers_get(eb); trace_btrfs_try_tree_read_lock(eb); return 1; } /* * returns 1 if we get the read lock and 0 if we don't * this won't wait for blocking writers or readers */ int btrfs_try_tree_write_lock(struct extent_buffer *eb) { if (eb->blocking_writers || atomic_read(&eb->blocking_readers)) return 0; write_lock(&eb->lock); if (eb->blocking_writers || atomic_read(&eb->blocking_readers)) { write_unlock(&eb->lock); return 0; } btrfs_assert_tree_write_locks_get(eb); btrfs_assert_spinning_writers_get(eb); eb->lock_owner = current->pid; trace_btrfs_try_tree_write_lock(eb); return 1; } /* * drop a spinning read lock */ void btrfs_tree_read_unlock(struct extent_buffer *eb) { trace_btrfs_tree_read_unlock(eb); /* * if we're nested, we have the write lock. No new locking * is needed as long as we are the lock owner. * The write unlock will do a barrier for us, and the lock_nested * field only matters to the lock owner. */ if (eb->lock_nested && current->pid == eb->lock_owner) { eb->lock_nested = false; return; } btrfs_assert_tree_read_locked(eb); btrfs_assert_spinning_readers_put(eb); btrfs_assert_tree_read_locks_put(eb); read_unlock(&eb->lock); } /* * drop a blocking read lock */ void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb) { trace_btrfs_tree_read_unlock_blocking(eb); /* * if we're nested, we have the write lock. No new locking * is needed as long as we are the lock owner. * The write unlock will do a barrier for us, and the lock_nested * field only matters to the lock owner. */ if (eb->lock_nested && current->pid == eb->lock_owner) { eb->lock_nested = false; return; } btrfs_assert_tree_read_locked(eb); WARN_ON(atomic_read(&eb->blocking_readers) == 0); /* atomic_dec_and_test implies a barrier */ if (atomic_dec_and_test(&eb->blocking_readers)) cond_wake_up_nomb(&eb->read_lock_wq); btrfs_assert_tree_read_locks_put(eb); } /* * take a spinning write lock. This will wait for both * blocking readers or writers */ void btrfs_tree_lock(struct extent_buffer *eb) { u64 start_ns = 0; if (trace_btrfs_tree_lock_enabled()) start_ns = ktime_get_ns(); WARN_ON(eb->lock_owner == current->pid); again: wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0); wait_event(eb->write_lock_wq, eb->blocking_writers == 0); write_lock(&eb->lock); if (atomic_read(&eb->blocking_readers) || eb->blocking_writers) { write_unlock(&eb->lock); goto again; } btrfs_assert_spinning_writers_get(eb); btrfs_assert_tree_write_locks_get(eb); eb->lock_owner = current->pid; trace_btrfs_tree_lock(eb, start_ns); } /* * drop a spinning or a blocking write lock. */ void btrfs_tree_unlock(struct extent_buffer *eb) { int blockers = eb->blocking_writers; BUG_ON(blockers > 1); btrfs_assert_tree_locked(eb); trace_btrfs_tree_unlock(eb); eb->lock_owner = 0; btrfs_assert_tree_write_locks_put(eb); if (blockers) { btrfs_assert_no_spinning_writers(eb); eb->blocking_writers--; /* * We need to order modifying blocking_writers above with * actually waking up the sleepers to ensure they see the * updated value of blocking_writers */ cond_wake_up(&eb->write_lock_wq); } else { btrfs_assert_spinning_writers_put(eb); write_unlock(&eb->lock); } } /* * Set all locked nodes in the path to blocking locks. This should be done * before scheduling */ void btrfs_set_path_blocking(struct btrfs_path *p) { int i; for (i = 0; i < BTRFS_MAX_LEVEL; i++) { if (!p->nodes[i] || !p->locks[i]) continue; /* * If we currently have a spinning reader or writer lock this * will bump the count of blocking holders and drop the * spinlock. */ if (p->locks[i] == BTRFS_READ_LOCK) { btrfs_set_lock_blocking_read(p->nodes[i]); p->locks[i] = BTRFS_READ_LOCK_BLOCKING; } else if (p->locks[i] == BTRFS_WRITE_LOCK) { btrfs_set_lock_blocking_write(p->nodes[i]); p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; } } } /* * This releases any locks held in the path starting at level and going all the * way up to the root. * * btrfs_search_slot will keep the lock held on higher nodes in a few corner * cases, such as COW of the block at slot zero in the node. This ignores * those rules, and it should only be called when there are no more updates to * be done higher up in the tree. */ void btrfs_unlock_up_safe(struct btrfs_path *path, int level) { int i; if (path->keep_locks) return; for (i = level; i < BTRFS_MAX_LEVEL; i++) { if (!path->nodes[i]) continue; if (!path->locks[i]) continue; btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); path->locks[i] = 0; } }