/* * key management facility for FS encryption support. * * Copyright (C) 2015, Google, Inc. * * This contains encryption key functions. * * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015. */ #include #include #include "fscrypt_private.h" static void derive_crypt_complete(struct crypto_async_request *req, int rc) { struct fscrypt_completion_result *ecr = req->data; if (rc == -EINPROGRESS) return; ecr->res = rc; complete(&ecr->completion); } /** * derive_key_aes() - Derive a key using AES-128-ECB * @deriving_key: Encryption key used for derivation. * @source_key: Source key to which to apply derivation. * @derived_key: Derived key. * * Return: Zero on success; non-zero otherwise. */ static int derive_key_aes(u8 deriving_key[FS_AES_128_ECB_KEY_SIZE], u8 source_key[FS_AES_256_XTS_KEY_SIZE], u8 derived_key[FS_AES_256_XTS_KEY_SIZE]) { int res = 0; struct skcipher_request *req = NULL; DECLARE_FS_COMPLETION_RESULT(ecr); struct scatterlist src_sg, dst_sg; struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0); if (IS_ERR(tfm)) { res = PTR_ERR(tfm); tfm = NULL; goto out; } crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); req = skcipher_request_alloc(tfm, GFP_NOFS); if (!req) { res = -ENOMEM; goto out; } skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, derive_crypt_complete, &ecr); res = crypto_skcipher_setkey(tfm, deriving_key, FS_AES_128_ECB_KEY_SIZE); if (res < 0) goto out; sg_init_one(&src_sg, source_key, FS_AES_256_XTS_KEY_SIZE); sg_init_one(&dst_sg, derived_key, FS_AES_256_XTS_KEY_SIZE); skcipher_request_set_crypt(req, &src_sg, &dst_sg, FS_AES_256_XTS_KEY_SIZE, NULL); res = crypto_skcipher_encrypt(req); if (res == -EINPROGRESS || res == -EBUSY) { wait_for_completion(&ecr.completion); res = ecr.res; } out: skcipher_request_free(req); crypto_free_skcipher(tfm); return res; } static int validate_user_key(struct fscrypt_info *crypt_info, struct fscrypt_context *ctx, u8 *raw_key, const char *prefix) { char *description; struct key *keyring_key; struct fscrypt_key *master_key; const struct user_key_payload *ukp; int res; description = kasprintf(GFP_NOFS, "%s%*phN", prefix, FS_KEY_DESCRIPTOR_SIZE, ctx->master_key_descriptor); if (!description) return -ENOMEM; keyring_key = request_key(&key_type_logon, description, NULL); kfree(description); if (IS_ERR(keyring_key)) return PTR_ERR(keyring_key); if (keyring_key->type != &key_type_logon) { printk_once(KERN_WARNING "%s: key type must be logon\n", __func__); res = -ENOKEY; goto out; } down_read(&keyring_key->sem); ukp = user_key_payload_locked(keyring_key); if (ukp->datalen != sizeof(struct fscrypt_key)) { res = -EINVAL; up_read(&keyring_key->sem); goto out; } master_key = (struct fscrypt_key *)ukp->data; BUILD_BUG_ON(FS_AES_128_ECB_KEY_SIZE != FS_KEY_DERIVATION_NONCE_SIZE); if (master_key->size != FS_AES_256_XTS_KEY_SIZE) { printk_once(KERN_WARNING "%s: key size incorrect: %d\n", __func__, master_key->size); res = -ENOKEY; up_read(&keyring_key->sem); goto out; } res = derive_key_aes(ctx->nonce, master_key->raw, raw_key); up_read(&keyring_key->sem); if (res) goto out; crypt_info->ci_keyring_key = keyring_key; return 0; out: key_put(keyring_key); return res; } static int determine_cipher_type(struct fscrypt_info *ci, struct inode *inode, const char **cipher_str_ret, int *keysize_ret) { if (S_ISREG(inode->i_mode)) { if (ci->ci_data_mode == FS_ENCRYPTION_MODE_AES_256_XTS) { *cipher_str_ret = "xts(aes)"; *keysize_ret = FS_AES_256_XTS_KEY_SIZE; return 0; } pr_warn_once("fscrypto: unsupported contents encryption mode " "%d for inode %lu\n", ci->ci_data_mode, inode->i_ino); return -ENOKEY; } if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) { if (ci->ci_filename_mode == FS_ENCRYPTION_MODE_AES_256_CTS) { *cipher_str_ret = "cts(cbc(aes))"; *keysize_ret = FS_AES_256_CTS_KEY_SIZE; return 0; } pr_warn_once("fscrypto: unsupported filenames encryption mode " "%d for inode %lu\n", ci->ci_filename_mode, inode->i_ino); return -ENOKEY; } pr_warn_once("fscrypto: unsupported file type %d for inode %lu\n", (inode->i_mode & S_IFMT), inode->i_ino); return -ENOKEY; } static void put_crypt_info(struct fscrypt_info *ci) { if (!ci) return; key_put(ci->ci_keyring_key); crypto_free_skcipher(ci->ci_ctfm); kmem_cache_free(fscrypt_info_cachep, ci); } int fscrypt_get_crypt_info(struct inode *inode) { struct fscrypt_info *crypt_info; struct fscrypt_context ctx; struct crypto_skcipher *ctfm; const char *cipher_str; int keysize; u8 *raw_key = NULL; int res; res = fscrypt_initialize(inode->i_sb->s_cop->flags); if (res) return res; if (!inode->i_sb->s_cop->get_context) return -EOPNOTSUPP; retry: crypt_info = ACCESS_ONCE(inode->i_crypt_info); if (crypt_info) { if (!crypt_info->ci_keyring_key || key_validate(crypt_info->ci_keyring_key) == 0) return 0; fscrypt_put_encryption_info(inode, crypt_info); goto retry; } res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); if (res < 0) { if (!fscrypt_dummy_context_enabled(inode) || inode->i_sb->s_cop->is_encrypted(inode)) return res; /* Fake up a context for an unencrypted directory */ memset(&ctx, 0, sizeof(ctx)); ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1; ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS; ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS; memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE); } else if (res != sizeof(ctx)) { return -EINVAL; } if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1) return -EINVAL; if (ctx.flags & ~FS_POLICY_FLAGS_VALID) return -EINVAL; crypt_info = kmem_cache_alloc(fscrypt_info_cachep, GFP_NOFS); if (!crypt_info) return -ENOMEM; crypt_info->ci_flags = ctx.flags; crypt_info->ci_data_mode = ctx.contents_encryption_mode; crypt_info->ci_filename_mode = ctx.filenames_encryption_mode; crypt_info->ci_ctfm = NULL; crypt_info->ci_keyring_key = NULL; memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor, sizeof(crypt_info->ci_master_key)); res = determine_cipher_type(crypt_info, inode, &cipher_str, &keysize); if (res) goto out; /* * This cannot be a stack buffer because it is passed to the scatterlist * crypto API as part of key derivation. */ res = -ENOMEM; raw_key = kmalloc(FS_MAX_KEY_SIZE, GFP_NOFS); if (!raw_key) goto out; res = validate_user_key(crypt_info, &ctx, raw_key, FS_KEY_DESC_PREFIX); if (res && inode->i_sb->s_cop->key_prefix) { int res2 = validate_user_key(crypt_info, &ctx, raw_key, inode->i_sb->s_cop->key_prefix); if (res2) { if (res2 == -ENOKEY) res = -ENOKEY; goto out; } } else if (res) { goto out; } ctfm = crypto_alloc_skcipher(cipher_str, 0, 0); if (!ctfm || IS_ERR(ctfm)) { res = ctfm ? PTR_ERR(ctfm) : -ENOMEM; printk(KERN_DEBUG "%s: error %d (inode %u) allocating crypto tfm\n", __func__, res, (unsigned) inode->i_ino); goto out; } crypt_info->ci_ctfm = ctfm; crypto_skcipher_clear_flags(ctfm, ~0); crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_REQ_WEAK_KEY); res = crypto_skcipher_setkey(ctfm, raw_key, keysize); if (res) goto out; kzfree(raw_key); raw_key = NULL; if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) != NULL) { put_crypt_info(crypt_info); goto retry; } return 0; out: if (res == -ENOKEY) res = 0; put_crypt_info(crypt_info); kzfree(raw_key); return res; } void fscrypt_put_encryption_info(struct inode *inode, struct fscrypt_info *ci) { struct fscrypt_info *prev; if (ci == NULL) ci = ACCESS_ONCE(inode->i_crypt_info); if (ci == NULL) return; prev = cmpxchg(&inode->i_crypt_info, ci, NULL); if (prev != ci) return; put_crypt_info(ci); } EXPORT_SYMBOL(fscrypt_put_encryption_info); int fscrypt_get_encryption_info(struct inode *inode) { struct fscrypt_info *ci = inode->i_crypt_info; if (!ci || (ci->ci_keyring_key && (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | (1 << KEY_FLAG_REVOKED) | (1 << KEY_FLAG_DEAD))))) return fscrypt_get_crypt_info(inode); return 0; } EXPORT_SYMBOL(fscrypt_get_encryption_info);