/* * Device operations for the pnfs nfs4 file layout driver. * * Copyright (c) 2002 * The Regents of the University of Michigan * All Rights Reserved * * Dean Hildebrand * Garth Goodson * * Permission is granted to use, copy, create derivative works, and * redistribute this software and such derivative works for any purpose, * so long as the name of the University of Michigan is not used in * any advertising or publicity pertaining to the use or distribution * of this software without specific, written prior authorization. If * the above copyright notice or any other identification of the * University of Michigan is included in any copy of any portion of * this software, then the disclaimer below must also be included. * * This software is provided as is, without representation or warranty * of any kind either express or implied, including without limitation * the implied warranties of merchantability, fitness for a particular * purpose, or noninfringement. The Regents of the University of * Michigan shall not be liable for any damages, including special, * indirect, incidental, or consequential damages, with respect to any * claim arising out of or in connection with the use of the software, * even if it has been or is hereafter advised of the possibility of * such damages. */ #include #include #include "internal.h" #include "nfs4filelayout.h" #define NFSDBG_FACILITY NFSDBG_PNFS_LD /* * Data server cache * * Data servers can be mapped to different device ids. * nfs4_pnfs_ds reference counting * - set to 1 on allocation * - incremented when a device id maps a data server already in the cache. * - decremented when deviceid is removed from the cache. */ DEFINE_SPINLOCK(nfs4_ds_cache_lock); static LIST_HEAD(nfs4_data_server_cache); /* Debug routines */ void print_ds(struct nfs4_pnfs_ds *ds) { if (ds == NULL) { printk("%s NULL device\n", __func__); return; } printk(" ip_addr %x port %hu\n" " ref count %d\n" " client %p\n" " cl_exchange_flags %x\n", ntohl(ds->ds_ip_addr), ntohs(ds->ds_port), atomic_read(&ds->ds_count), ds->ds_clp, ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0); } /* nfs4_ds_cache_lock is held */ static struct nfs4_pnfs_ds * _data_server_lookup_locked(u32 ip_addr, u32 port) { struct nfs4_pnfs_ds *ds; dprintk("_data_server_lookup: ip_addr=%x port=%hu\n", ntohl(ip_addr), ntohs(port)); list_for_each_entry(ds, &nfs4_data_server_cache, ds_node) { if (ds->ds_ip_addr == ip_addr && ds->ds_port == port) { return ds; } } return NULL; } /* * Create an rpc connection to the nfs4_pnfs_ds data server * Currently only support IPv4 */ static int nfs4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds) { struct nfs_client *clp; struct sockaddr_in sin; int status = 0; dprintk("--> %s ip:port %x:%hu au_flavor %d\n", __func__, ntohl(ds->ds_ip_addr), ntohs(ds->ds_port), mds_srv->nfs_client->cl_rpcclient->cl_auth->au_flavor); sin.sin_family = AF_INET; sin.sin_addr.s_addr = ds->ds_ip_addr; sin.sin_port = ds->ds_port; clp = nfs4_set_ds_client(mds_srv->nfs_client, (struct sockaddr *)&sin, sizeof(sin), IPPROTO_TCP); if (IS_ERR(clp)) { status = PTR_ERR(clp); goto out; } if ((clp->cl_exchange_flags & EXCHGID4_FLAG_MASK_PNFS) != 0) { if (!is_ds_client(clp)) { status = -ENODEV; goto out_put; } ds->ds_clp = clp; dprintk("%s [existing] ip=%x, port=%hu\n", __func__, ntohl(ds->ds_ip_addr), ntohs(ds->ds_port)); goto out; } /* * Do not set NFS_CS_CHECK_LEASE_TIME instead set the DS lease to * be equal to the MDS lease. Renewal is scheduled in create_session. */ spin_lock(&mds_srv->nfs_client->cl_lock); clp->cl_lease_time = mds_srv->nfs_client->cl_lease_time; spin_unlock(&mds_srv->nfs_client->cl_lock); clp->cl_last_renewal = jiffies; /* New nfs_client */ status = nfs4_init_ds_session(clp); if (status) goto out_put; ds->ds_clp = clp; dprintk("%s [new] ip=%x, port=%hu\n", __func__, ntohl(ds->ds_ip_addr), ntohs(ds->ds_port)); out: return status; out_put: nfs_put_client(clp); goto out; } static void destroy_ds(struct nfs4_pnfs_ds *ds) { dprintk("--> %s\n", __func__); ifdebug(FACILITY) print_ds(ds); if (ds->ds_clp) nfs_put_client(ds->ds_clp); kfree(ds); } static void nfs4_fl_free_deviceid(struct nfs4_file_layout_dsaddr *dsaddr) { struct nfs4_pnfs_ds *ds; int i; nfs4_print_deviceid(&dsaddr->id_node.deviceid); for (i = 0; i < dsaddr->ds_num; i++) { ds = dsaddr->ds_list[i]; if (ds != NULL) { if (atomic_dec_and_lock(&ds->ds_count, &nfs4_ds_cache_lock)) { list_del_init(&ds->ds_node); spin_unlock(&nfs4_ds_cache_lock); destroy_ds(ds); } } } kfree(dsaddr->stripe_indices); kfree(dsaddr); } static struct nfs4_pnfs_ds * nfs4_pnfs_ds_add(struct inode *inode, u32 ip_addr, u32 port, gfp_t gfp_flags) { struct nfs4_pnfs_ds *tmp_ds, *ds; ds = kzalloc(sizeof(*tmp_ds), gfp_flags); if (!ds) goto out; spin_lock(&nfs4_ds_cache_lock); tmp_ds = _data_server_lookup_locked(ip_addr, port); if (tmp_ds == NULL) { ds->ds_ip_addr = ip_addr; ds->ds_port = port; atomic_set(&ds->ds_count, 1); INIT_LIST_HEAD(&ds->ds_node); ds->ds_clp = NULL; list_add(&ds->ds_node, &nfs4_data_server_cache); dprintk("%s add new data server ip 0x%x\n", __func__, ds->ds_ip_addr); } else { kfree(ds); atomic_inc(&tmp_ds->ds_count); dprintk("%s data server found ip 0x%x, inc'ed ds_count to %d\n", __func__, tmp_ds->ds_ip_addr, atomic_read(&tmp_ds->ds_count)); ds = tmp_ds; } spin_unlock(&nfs4_ds_cache_lock); out: return ds; } /* * Currently only support ipv4, and one multi-path address. */ static struct nfs4_pnfs_ds * decode_and_add_ds(struct xdr_stream *streamp, struct inode *inode, gfp_t gfp_flags) { struct nfs4_pnfs_ds *ds = NULL; char *buf; const char *ipend, *pstr; u32 ip_addr, port; int nlen, rlen, i; int tmp[2]; __be32 *p; /* r_netid */ p = xdr_inline_decode(streamp, 4); if (unlikely(!p)) goto out_err; nlen = be32_to_cpup(p++); p = xdr_inline_decode(streamp, nlen); if (unlikely(!p)) goto out_err; /* Check that netid is "tcp" */ if (nlen != 3 || memcmp((char *)p, "tcp", 3)) { dprintk("%s: ERROR: non ipv4 TCP r_netid\n", __func__); goto out_err; } /* r_addr */ p = xdr_inline_decode(streamp, 4); if (unlikely(!p)) goto out_err; rlen = be32_to_cpup(p); p = xdr_inline_decode(streamp, rlen); if (unlikely(!p)) goto out_err; /* ipv6 length plus port is legal */ if (rlen > INET6_ADDRSTRLEN + 8) { dprintk("%s: Invalid address, length %d\n", __func__, rlen); goto out_err; } buf = kmalloc(rlen + 1, gfp_flags); if (!buf) { dprintk("%s: Not enough memory\n", __func__); goto out_err; } buf[rlen] = '\0'; memcpy(buf, p, rlen); /* replace the port dots with dashes for the in4_pton() delimiter*/ for (i = 0; i < 2; i++) { char *res = strrchr(buf, '.'); if (!res) { dprintk("%s: Failed finding expected dots in port\n", __func__); goto out_free; } *res = '-'; } /* Currently only support ipv4 address */ if (in4_pton(buf, rlen, (u8 *)&ip_addr, '-', &ipend) == 0) { dprintk("%s: Only ipv4 addresses supported\n", __func__); goto out_free; } /* port */ pstr = ipend; sscanf(pstr, "-%d-%d", &tmp[0], &tmp[1]); port = htons((tmp[0] << 8) | (tmp[1])); ds = nfs4_pnfs_ds_add(inode, ip_addr, port, gfp_flags); dprintk("%s: Decoded address and port %s\n", __func__, buf); out_free: kfree(buf); out_err: return ds; } /* Decode opaque device data and return the result */ static struct nfs4_file_layout_dsaddr* decode_device(struct inode *ino, struct pnfs_device *pdev, gfp_t gfp_flags) { int i; u32 cnt, num; u8 *indexp; __be32 *p; u8 *stripe_indices; u8 max_stripe_index; struct nfs4_file_layout_dsaddr *dsaddr = NULL; struct xdr_stream stream; struct xdr_buf buf = { .pages = pdev->pages, .page_len = pdev->pglen, .buflen = pdev->pglen, .len = pdev->pglen, }; struct page *scratch; /* set up xdr stream */ scratch = alloc_page(gfp_flags); if (!scratch) goto out_err; xdr_init_decode(&stream, &buf, NULL); xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); /* Get the stripe count (number of stripe index) */ p = xdr_inline_decode(&stream, 4); if (unlikely(!p)) goto out_err_free_scratch; cnt = be32_to_cpup(p); dprintk("%s stripe count %d\n", __func__, cnt); if (cnt > NFS4_PNFS_MAX_STRIPE_CNT) { printk(KERN_WARNING "%s: stripe count %d greater than " "supported maximum %d\n", __func__, cnt, NFS4_PNFS_MAX_STRIPE_CNT); goto out_err_free_scratch; } /* read stripe indices */ stripe_indices = kcalloc(cnt, sizeof(u8), gfp_flags); if (!stripe_indices) goto out_err_free_scratch; p = xdr_inline_decode(&stream, cnt << 2); if (unlikely(!p)) goto out_err_free_stripe_indices; indexp = &stripe_indices[0]; max_stripe_index = 0; for (i = 0; i < cnt; i++) { *indexp = be32_to_cpup(p++); max_stripe_index = max(max_stripe_index, *indexp); indexp++; } /* Check the multipath list count */ p = xdr_inline_decode(&stream, 4); if (unlikely(!p)) goto out_err_free_stripe_indices; num = be32_to_cpup(p); dprintk("%s ds_num %u\n", __func__, num); if (num > NFS4_PNFS_MAX_MULTI_CNT) { printk(KERN_WARNING "%s: multipath count %d greater than " "supported maximum %d\n", __func__, num, NFS4_PNFS_MAX_MULTI_CNT); goto out_err_free_stripe_indices; } /* validate stripe indices are all < num */ if (max_stripe_index >= num) { printk(KERN_WARNING "%s: stripe index %u >= num ds %u\n", __func__, max_stripe_index, num); goto out_err_free_stripe_indices; } dsaddr = kzalloc(sizeof(*dsaddr) + (sizeof(struct nfs4_pnfs_ds *) * (num - 1)), gfp_flags); if (!dsaddr) goto out_err_free_stripe_indices; dsaddr->stripe_count = cnt; dsaddr->stripe_indices = stripe_indices; stripe_indices = NULL; dsaddr->ds_num = num; nfs4_init_deviceid_node(&dsaddr->id_node, NFS_SERVER(ino)->nfs_client, &pdev->dev_id); for (i = 0; i < dsaddr->ds_num; i++) { int j; u32 mp_count; p = xdr_inline_decode(&stream, 4); if (unlikely(!p)) goto out_err_free_deviceid; mp_count = be32_to_cpup(p); /* multipath count */ if (mp_count > 1) { printk(KERN_WARNING "%s: Multipath count %d not supported, " "skipping all greater than 1\n", __func__, mp_count); } for (j = 0; j < mp_count; j++) { if (j == 0) { dsaddr->ds_list[i] = decode_and_add_ds(&stream, ino, gfp_flags); if (dsaddr->ds_list[i] == NULL) goto out_err_free_deviceid; } else { u32 len; /* skip extra multipath */ /* read len, skip */ p = xdr_inline_decode(&stream, 4); if (unlikely(!p)) goto out_err_free_deviceid; len = be32_to_cpup(p); p = xdr_inline_decode(&stream, len); if (unlikely(!p)) goto out_err_free_deviceid; /* read len, skip */ p = xdr_inline_decode(&stream, 4); if (unlikely(!p)) goto out_err_free_deviceid; len = be32_to_cpup(p); p = xdr_inline_decode(&stream, len); if (unlikely(!p)) goto out_err_free_deviceid; } } } __free_page(scratch); return dsaddr; out_err_free_deviceid: nfs4_fl_free_deviceid(dsaddr); /* stripe_indicies was part of dsaddr */ goto out_err_free_scratch; out_err_free_stripe_indices: kfree(stripe_indices); out_err_free_scratch: __free_page(scratch); out_err: dprintk("%s ERROR: returning NULL\n", __func__); return NULL; } /* * Decode the opaque device specified in 'dev' and add it to the cache of * available devices. */ static struct nfs4_file_layout_dsaddr * decode_and_add_device(struct inode *inode, struct pnfs_device *dev, gfp_t gfp_flags) { struct nfs4_deviceid_node *d; struct nfs4_file_layout_dsaddr *n, *new; new = decode_device(inode, dev, gfp_flags); if (!new) { printk(KERN_WARNING "%s: Could not decode or add device\n", __func__); return NULL; } d = nfs4_insert_deviceid_node(&new->id_node); n = container_of(d, struct nfs4_file_layout_dsaddr, id_node); if (n != new) { nfs4_fl_free_deviceid(new); return n; } return new; } /* * Retrieve the information for dev_id, add it to the list * of available devices, and return it. */ struct nfs4_file_layout_dsaddr * get_device_info(struct inode *inode, struct nfs4_deviceid *dev_id, gfp_t gfp_flags) { struct pnfs_device *pdev = NULL; u32 max_resp_sz; int max_pages; struct page **pages = NULL; struct nfs4_file_layout_dsaddr *dsaddr = NULL; int rc, i; struct nfs_server *server = NFS_SERVER(inode); /* * Use the session max response size as the basis for setting * GETDEVICEINFO's maxcount */ max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz; max_pages = max_resp_sz >> PAGE_SHIFT; dprintk("%s inode %p max_resp_sz %u max_pages %d\n", __func__, inode, max_resp_sz, max_pages); pdev = kzalloc(sizeof(struct pnfs_device), gfp_flags); if (pdev == NULL) return NULL; pages = kzalloc(max_pages * sizeof(struct page *), gfp_flags); if (pages == NULL) { kfree(pdev); return NULL; } for (i = 0; i < max_pages; i++) { pages[i] = alloc_page(gfp_flags); if (!pages[i]) goto out_free; } memcpy(&pdev->dev_id, dev_id, sizeof(*dev_id)); pdev->layout_type = LAYOUT_NFSV4_1_FILES; pdev->pages = pages; pdev->pgbase = 0; pdev->pglen = PAGE_SIZE * max_pages; pdev->mincount = 0; rc = nfs4_proc_getdeviceinfo(server, pdev); dprintk("%s getdevice info returns %d\n", __func__, rc); if (rc) goto out_free; /* * Found new device, need to decode it and then add it to the * list of known devices for this mountpoint. */ dsaddr = decode_and_add_device(inode, pdev, gfp_flags); out_free: for (i = 0; i < max_pages; i++) __free_page(pages[i]); kfree(pages); kfree(pdev); dprintk("<-- %s dsaddr %p\n", __func__, dsaddr); return dsaddr; } void nfs4_fl_put_deviceid(struct nfs4_file_layout_dsaddr *dsaddr) { if (nfs4_put_deviceid_node(&dsaddr->id_node)) nfs4_fl_free_deviceid(dsaddr); } /* * Want res = (offset - layout->pattern_offset)/ layout->stripe_unit * Then: ((res + fsi) % dsaddr->stripe_count) */ u32 nfs4_fl_calc_j_index(struct pnfs_layout_segment *lseg, loff_t offset) { struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg); u64 tmp; tmp = offset - flseg->pattern_offset; do_div(tmp, flseg->stripe_unit); tmp += flseg->first_stripe_index; return do_div(tmp, flseg->dsaddr->stripe_count); } u32 nfs4_fl_calc_ds_index(struct pnfs_layout_segment *lseg, u32 j) { return FILELAYOUT_LSEG(lseg)->dsaddr->stripe_indices[j]; } struct nfs_fh * nfs4_fl_select_ds_fh(struct pnfs_layout_segment *lseg, u32 j) { struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg); u32 i; if (flseg->stripe_type == STRIPE_SPARSE) { if (flseg->num_fh == 1) i = 0; else if (flseg->num_fh == 0) /* Use the MDS OPEN fh set in nfs_read_rpcsetup */ return NULL; else i = nfs4_fl_calc_ds_index(lseg, j); } else i = j; return flseg->fh_array[i]; } static void filelayout_mark_devid_negative(struct nfs4_file_layout_dsaddr *dsaddr, int err, u32 ds_addr) { u32 *p = (u32 *)&dsaddr->id_node.deviceid; printk(KERN_ERR "NFS: data server %x connection error %d." " Deviceid [%x%x%x%x] marked out of use.\n", ds_addr, err, p[0], p[1], p[2], p[3]); spin_lock(&nfs4_ds_cache_lock); dsaddr->flags |= NFS4_DEVICE_ID_NEG_ENTRY; spin_unlock(&nfs4_ds_cache_lock); } struct nfs4_pnfs_ds * nfs4_fl_prepare_ds(struct pnfs_layout_segment *lseg, u32 ds_idx) { struct nfs4_file_layout_dsaddr *dsaddr = FILELAYOUT_LSEG(lseg)->dsaddr; struct nfs4_pnfs_ds *ds = dsaddr->ds_list[ds_idx]; if (ds == NULL) { printk(KERN_ERR "%s: No data server for offset index %d\n", __func__, ds_idx); return NULL; } if (!ds->ds_clp) { struct nfs_server *s = NFS_SERVER(lseg->pls_layout->plh_inode); int err; if (dsaddr->flags & NFS4_DEVICE_ID_NEG_ENTRY) { /* Already tried to connect, don't try again */ dprintk("%s Deviceid marked out of use\n", __func__); return NULL; } err = nfs4_ds_connect(s, ds); if (err) { filelayout_mark_devid_negative(dsaddr, err, ntohl(ds->ds_ip_addr)); return NULL; } } return ds; }