// SPDX-License-Identifier: GPL-2.0 /* * * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. * */ #include #include #include #include #include "debug.h" #include "ntfs.h" #include "ntfs_fs.h" // clang-format off const struct cpu_str NAME_MFT = { 4, 0, { '$', 'M', 'F', 'T' }, }; const struct cpu_str NAME_MIRROR = { 8, 0, { '$', 'M', 'F', 'T', 'M', 'i', 'r', 'r' }, }; const struct cpu_str NAME_LOGFILE = { 8, 0, { '$', 'L', 'o', 'g', 'F', 'i', 'l', 'e' }, }; const struct cpu_str NAME_VOLUME = { 7, 0, { '$', 'V', 'o', 'l', 'u', 'm', 'e' }, }; const struct cpu_str NAME_ATTRDEF = { 8, 0, { '$', 'A', 't', 't', 'r', 'D', 'e', 'f' }, }; const struct cpu_str NAME_ROOT = { 1, 0, { '.' }, }; const struct cpu_str NAME_BITMAP = { 7, 0, { '$', 'B', 'i', 't', 'm', 'a', 'p' }, }; const struct cpu_str NAME_BOOT = { 5, 0, { '$', 'B', 'o', 'o', 't' }, }; const struct cpu_str NAME_BADCLUS = { 8, 0, { '$', 'B', 'a', 'd', 'C', 'l', 'u', 's' }, }; const struct cpu_str NAME_QUOTA = { 6, 0, { '$', 'Q', 'u', 'o', 't', 'a' }, }; const struct cpu_str NAME_SECURE = { 7, 0, { '$', 'S', 'e', 'c', 'u', 'r', 'e' }, }; const struct cpu_str NAME_UPCASE = { 7, 0, { '$', 'U', 'p', 'C', 'a', 's', 'e' }, }; const struct cpu_str NAME_EXTEND = { 7, 0, { '$', 'E', 'x', 't', 'e', 'n', 'd' }, }; const struct cpu_str NAME_OBJID = { 6, 0, { '$', 'O', 'b', 'j', 'I', 'd' }, }; const struct cpu_str NAME_REPARSE = { 8, 0, { '$', 'R', 'e', 'p', 'a', 'r', 's', 'e' }, }; const struct cpu_str NAME_USNJRNL = { 8, 0, { '$', 'U', 's', 'n', 'J', 'r', 'n', 'l' }, }; const __le16 BAD_NAME[4] = { cpu_to_le16('$'), cpu_to_le16('B'), cpu_to_le16('a'), cpu_to_le16('d'), }; const __le16 I30_NAME[4] = { cpu_to_le16('$'), cpu_to_le16('I'), cpu_to_le16('3'), cpu_to_le16('0'), }; const __le16 SII_NAME[4] = { cpu_to_le16('$'), cpu_to_le16('S'), cpu_to_le16('I'), cpu_to_le16('I'), }; const __le16 SDH_NAME[4] = { cpu_to_le16('$'), cpu_to_le16('S'), cpu_to_le16('D'), cpu_to_le16('H'), }; const __le16 SDS_NAME[4] = { cpu_to_le16('$'), cpu_to_le16('S'), cpu_to_le16('D'), cpu_to_le16('S'), }; const __le16 SO_NAME[2] = { cpu_to_le16('$'), cpu_to_le16('O'), }; const __le16 SQ_NAME[2] = { cpu_to_le16('$'), cpu_to_le16('Q'), }; const __le16 SR_NAME[2] = { cpu_to_le16('$'), cpu_to_le16('R'), }; #ifdef CONFIG_NTFS3_LZX_XPRESS const __le16 WOF_NAME[17] = { cpu_to_le16('W'), cpu_to_le16('o'), cpu_to_le16('f'), cpu_to_le16('C'), cpu_to_le16('o'), cpu_to_le16('m'), cpu_to_le16('p'), cpu_to_le16('r'), cpu_to_le16('e'), cpu_to_le16('s'), cpu_to_le16('s'), cpu_to_le16('e'), cpu_to_le16('d'), cpu_to_le16('D'), cpu_to_le16('a'), cpu_to_le16('t'), cpu_to_le16('a'), }; #endif // clang-format on /* * ntfs_fix_pre_write - Insert fixups into @rhdr before writing to disk. */ bool ntfs_fix_pre_write(struct NTFS_RECORD_HEADER *rhdr, size_t bytes) { u16 *fixup, *ptr; u16 sample; u16 fo = le16_to_cpu(rhdr->fix_off); u16 fn = le16_to_cpu(rhdr->fix_num); if ((fo & 1) || fo + fn * sizeof(short) > SECTOR_SIZE || !fn-- || fn * SECTOR_SIZE > bytes) { return false; } /* Get fixup pointer. */ fixup = Add2Ptr(rhdr, fo); if (*fixup >= 0x7FFF) *fixup = 1; else *fixup += 1; sample = *fixup; ptr = Add2Ptr(rhdr, SECTOR_SIZE - sizeof(short)); while (fn--) { *++fixup = *ptr; *ptr = sample; ptr += SECTOR_SIZE / sizeof(short); } return true; } /* * ntfs_fix_post_read - Remove fixups after reading from disk. * * Return: < 0 if error, 0 if ok, 1 if need to update fixups. */ int ntfs_fix_post_read(struct NTFS_RECORD_HEADER *rhdr, size_t bytes, bool simple) { int ret; u16 *fixup, *ptr; u16 sample, fo, fn; fo = le16_to_cpu(rhdr->fix_off); fn = simple ? ((bytes >> SECTOR_SHIFT) + 1) : le16_to_cpu(rhdr->fix_num); /* Check errors. */ if ((fo & 1) || fo + fn * sizeof(short) > SECTOR_SIZE || !fn-- || fn * SECTOR_SIZE > bytes) { return -EINVAL; /* Native chkntfs returns ok! */ } /* Get fixup pointer. */ fixup = Add2Ptr(rhdr, fo); sample = *fixup; ptr = Add2Ptr(rhdr, SECTOR_SIZE - sizeof(short)); ret = 0; while (fn--) { /* Test current word. */ if (*ptr != sample) { /* Fixup does not match! Is it serious error? */ ret = -E_NTFS_FIXUP; } /* Replace fixup. */ *ptr = *++fixup; ptr += SECTOR_SIZE / sizeof(short); } return ret; } /* * ntfs_extend_init - Load $Extend file. */ int ntfs_extend_init(struct ntfs_sb_info *sbi) { int err; struct super_block *sb = sbi->sb; struct inode *inode, *inode2; struct MFT_REF ref; if (sbi->volume.major_ver < 3) { ntfs_notice(sb, "Skip $Extend 'cause NTFS version"); return 0; } ref.low = cpu_to_le32(MFT_REC_EXTEND); ref.high = 0; ref.seq = cpu_to_le16(MFT_REC_EXTEND); inode = ntfs_iget5(sb, &ref, &NAME_EXTEND); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load $Extend."); inode = NULL; goto out; } /* If ntfs_iget5() reads from disk it never returns bad inode. */ if (!S_ISDIR(inode->i_mode)) { err = -EINVAL; goto out; } /* Try to find $ObjId */ inode2 = dir_search_u(inode, &NAME_OBJID, NULL); if (inode2 && !IS_ERR(inode2)) { if (is_bad_inode(inode2)) { iput(inode2); } else { sbi->objid.ni = ntfs_i(inode2); sbi->objid_no = inode2->i_ino; } } /* Try to find $Quota */ inode2 = dir_search_u(inode, &NAME_QUOTA, NULL); if (inode2 && !IS_ERR(inode2)) { sbi->quota_no = inode2->i_ino; iput(inode2); } /* Try to find $Reparse */ inode2 = dir_search_u(inode, &NAME_REPARSE, NULL); if (inode2 && !IS_ERR(inode2)) { sbi->reparse.ni = ntfs_i(inode2); sbi->reparse_no = inode2->i_ino; } /* Try to find $UsnJrnl */ inode2 = dir_search_u(inode, &NAME_USNJRNL, NULL); if (inode2 && !IS_ERR(inode2)) { sbi->usn_jrnl_no = inode2->i_ino; iput(inode2); } err = 0; out: iput(inode); return err; } int ntfs_loadlog_and_replay(struct ntfs_inode *ni, struct ntfs_sb_info *sbi) { int err = 0; struct super_block *sb = sbi->sb; bool initialized = false; struct MFT_REF ref; struct inode *inode; /* Check for 4GB. */ if (ni->vfs_inode.i_size >= 0x100000000ull) { ntfs_err(sb, "\x24LogFile is too big"); err = -EINVAL; goto out; } sbi->flags |= NTFS_FLAGS_LOG_REPLAYING; ref.low = cpu_to_le32(MFT_REC_MFT); ref.high = 0; ref.seq = cpu_to_le16(1); inode = ntfs_iget5(sb, &ref, NULL); if (IS_ERR(inode)) inode = NULL; if (!inode) { /* Try to use MFT copy. */ u64 t64 = sbi->mft.lbo; sbi->mft.lbo = sbi->mft.lbo2; inode = ntfs_iget5(sb, &ref, NULL); sbi->mft.lbo = t64; if (IS_ERR(inode)) inode = NULL; } if (!inode) { err = -EINVAL; ntfs_err(sb, "Failed to load $MFT."); goto out; } sbi->mft.ni = ntfs_i(inode); /* LogFile should not contains attribute list. */ err = ni_load_all_mi(sbi->mft.ni); if (!err) err = log_replay(ni, &initialized); iput(inode); sbi->mft.ni = NULL; sync_blockdev(sb->s_bdev); invalidate_bdev(sb->s_bdev); if (sbi->flags & NTFS_FLAGS_NEED_REPLAY) { err = 0; goto out; } if (sb_rdonly(sb) || !initialized) goto out; /* Fill LogFile by '-1' if it is initialized. */ err = ntfs_bio_fill_1(sbi, &ni->file.run); out: sbi->flags &= ~NTFS_FLAGS_LOG_REPLAYING; return err; } /* * ntfs_query_def * * Return: Current ATTR_DEF_ENTRY for given attribute type. */ const struct ATTR_DEF_ENTRY *ntfs_query_def(struct ntfs_sb_info *sbi, enum ATTR_TYPE type) { int type_in = le32_to_cpu(type); size_t min_idx = 0; size_t max_idx = sbi->def_entries - 1; while (min_idx <= max_idx) { size_t i = min_idx + ((max_idx - min_idx) >> 1); const struct ATTR_DEF_ENTRY *entry = sbi->def_table + i; int diff = le32_to_cpu(entry->type) - type_in; if (!diff) return entry; if (diff < 0) min_idx = i + 1; else if (i) max_idx = i - 1; else return NULL; } return NULL; } /* * ntfs_look_for_free_space - Look for a free space in bitmap. */ int ntfs_look_for_free_space(struct ntfs_sb_info *sbi, CLST lcn, CLST len, CLST *new_lcn, CLST *new_len, enum ALLOCATE_OPT opt) { int err; CLST alen; struct super_block *sb = sbi->sb; size_t alcn, zlen, zeroes, zlcn, zlen2, ztrim, new_zlen; struct wnd_bitmap *wnd = &sbi->used.bitmap; down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS); if (opt & ALLOCATE_MFT) { zlen = wnd_zone_len(wnd); if (!zlen) { err = ntfs_refresh_zone(sbi); if (err) goto up_write; zlen = wnd_zone_len(wnd); } if (!zlen) { ntfs_err(sbi->sb, "no free space to extend mft"); err = -ENOSPC; goto up_write; } lcn = wnd_zone_bit(wnd); alen = min_t(CLST, len, zlen); wnd_zone_set(wnd, lcn + alen, zlen - alen); err = wnd_set_used(wnd, lcn, alen); if (err) goto up_write; alcn = lcn; goto space_found; } /* * 'Cause cluster 0 is always used this value means that we should use * cached value of 'next_free_lcn' to improve performance. */ if (!lcn) lcn = sbi->used.next_free_lcn; if (lcn >= wnd->nbits) lcn = 0; alen = wnd_find(wnd, len, lcn, BITMAP_FIND_MARK_AS_USED, &alcn); if (alen) goto space_found; /* Try to use clusters from MftZone. */ zlen = wnd_zone_len(wnd); zeroes = wnd_zeroes(wnd); /* Check too big request */ if (len > zeroes + zlen || zlen <= NTFS_MIN_MFT_ZONE) { err = -ENOSPC; goto up_write; } /* How many clusters to cat from zone. */ zlcn = wnd_zone_bit(wnd); zlen2 = zlen >> 1; ztrim = clamp_val(len, zlen2, zlen); new_zlen = max_t(size_t, zlen - ztrim, NTFS_MIN_MFT_ZONE); wnd_zone_set(wnd, zlcn, new_zlen); /* Allocate continues clusters. */ alen = wnd_find(wnd, len, 0, BITMAP_FIND_MARK_AS_USED | BITMAP_FIND_FULL, &alcn); if (!alen) { err = -ENOSPC; goto up_write; } space_found: err = 0; *new_len = alen; *new_lcn = alcn; ntfs_unmap_meta(sb, alcn, alen); /* Set hint for next requests. */ if (!(opt & ALLOCATE_MFT)) sbi->used.next_free_lcn = alcn + alen; up_write: up_write(&wnd->rw_lock); return err; } /* * ntfs_extend_mft - Allocate additional MFT records. * * sbi->mft.bitmap is locked for write. * * NOTE: recursive: * ntfs_look_free_mft -> * ntfs_extend_mft -> * attr_set_size -> * ni_insert_nonresident -> * ni_insert_attr -> * ni_ins_attr_ext -> * ntfs_look_free_mft -> * ntfs_extend_mft * * To avoid recursive always allocate space for two new MFT records * see attrib.c: "at least two MFT to avoid recursive loop". */ static int ntfs_extend_mft(struct ntfs_sb_info *sbi) { int err; struct ntfs_inode *ni = sbi->mft.ni; size_t new_mft_total; u64 new_mft_bytes, new_bitmap_bytes; struct ATTRIB *attr; struct wnd_bitmap *wnd = &sbi->mft.bitmap; new_mft_total = (wnd->nbits + MFT_INCREASE_CHUNK + 127) & (CLST)~127; new_mft_bytes = (u64)new_mft_total << sbi->record_bits; /* Step 1: Resize $MFT::DATA. */ down_write(&ni->file.run_lock); err = attr_set_size(ni, ATTR_DATA, NULL, 0, &ni->file.run, new_mft_bytes, NULL, false, &attr); if (err) { up_write(&ni->file.run_lock); goto out; } attr->nres.valid_size = attr->nres.data_size; new_mft_total = le64_to_cpu(attr->nres.alloc_size) >> sbi->record_bits; ni->mi.dirty = true; /* Step 2: Resize $MFT::BITMAP. */ new_bitmap_bytes = bitmap_size(new_mft_total); err = attr_set_size(ni, ATTR_BITMAP, NULL, 0, &sbi->mft.bitmap.run, new_bitmap_bytes, &new_bitmap_bytes, true, NULL); /* Refresh MFT Zone if necessary. */ down_write_nested(&sbi->used.bitmap.rw_lock, BITMAP_MUTEX_CLUSTERS); ntfs_refresh_zone(sbi); up_write(&sbi->used.bitmap.rw_lock); up_write(&ni->file.run_lock); if (err) goto out; err = wnd_extend(wnd, new_mft_total); if (err) goto out; ntfs_clear_mft_tail(sbi, sbi->mft.used, new_mft_total); err = _ni_write_inode(&ni->vfs_inode, 0); out: return err; } /* * ntfs_look_free_mft - Look for a free MFT record. */ int ntfs_look_free_mft(struct ntfs_sb_info *sbi, CLST *rno, bool mft, struct ntfs_inode *ni, struct mft_inode **mi) { int err = 0; size_t zbit, zlen, from, to, fr; size_t mft_total; struct MFT_REF ref; struct super_block *sb = sbi->sb; struct wnd_bitmap *wnd = &sbi->mft.bitmap; u32 ir; static_assert(sizeof(sbi->mft.reserved_bitmap) * 8 >= MFT_REC_FREE - MFT_REC_RESERVED); if (!mft) down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_MFT); zlen = wnd_zone_len(wnd); /* Always reserve space for MFT. */ if (zlen) { if (mft) { zbit = wnd_zone_bit(wnd); *rno = zbit; wnd_zone_set(wnd, zbit + 1, zlen - 1); } goto found; } /* No MFT zone. Find the nearest to '0' free MFT. */ if (!wnd_find(wnd, 1, MFT_REC_FREE, 0, &zbit)) { /* Resize MFT */ mft_total = wnd->nbits; err = ntfs_extend_mft(sbi); if (!err) { zbit = mft_total; goto reserve_mft; } if (!mft || MFT_REC_FREE == sbi->mft.next_reserved) goto out; err = 0; /* * Look for free record reserved area [11-16) == * [MFT_REC_RESERVED, MFT_REC_FREE ) MFT bitmap always * marks it as used. */ if (!sbi->mft.reserved_bitmap) { /* Once per session create internal bitmap for 5 bits. */ sbi->mft.reserved_bitmap = 0xFF; ref.high = 0; for (ir = MFT_REC_RESERVED; ir < MFT_REC_FREE; ir++) { struct inode *i; struct ntfs_inode *ni; struct MFT_REC *mrec; ref.low = cpu_to_le32(ir); ref.seq = cpu_to_le16(ir); i = ntfs_iget5(sb, &ref, NULL); if (IS_ERR(i)) { next: ntfs_notice( sb, "Invalid reserved record %x", ref.low); continue; } if (is_bad_inode(i)) { iput(i); goto next; } ni = ntfs_i(i); mrec = ni->mi.mrec; if (!is_rec_base(mrec)) goto next; if (mrec->hard_links) goto next; if (!ni_std(ni)) goto next; if (ni_find_attr(ni, NULL, NULL, ATTR_NAME, NULL, 0, NULL, NULL)) goto next; __clear_bit(ir - MFT_REC_RESERVED, &sbi->mft.reserved_bitmap); } } /* Scan 5 bits for zero. Bit 0 == MFT_REC_RESERVED */ zbit = find_next_zero_bit(&sbi->mft.reserved_bitmap, MFT_REC_FREE, MFT_REC_RESERVED); if (zbit >= MFT_REC_FREE) { sbi->mft.next_reserved = MFT_REC_FREE; goto out; } zlen = 1; sbi->mft.next_reserved = zbit; } else { reserve_mft: zlen = zbit == MFT_REC_FREE ? (MFT_REC_USER - MFT_REC_FREE) : 4; if (zbit + zlen > wnd->nbits) zlen = wnd->nbits - zbit; while (zlen > 1 && !wnd_is_free(wnd, zbit, zlen)) zlen -= 1; /* [zbit, zbit + zlen) will be used for MFT itself. */ from = sbi->mft.used; if (from < zbit) from = zbit; to = zbit + zlen; if (from < to) { ntfs_clear_mft_tail(sbi, from, to); sbi->mft.used = to; } } if (mft) { *rno = zbit; zbit += 1; zlen -= 1; } wnd_zone_set(wnd, zbit, zlen); found: if (!mft) { /* The request to get record for general purpose. */ if (sbi->mft.next_free < MFT_REC_USER) sbi->mft.next_free = MFT_REC_USER; for (;;) { if (sbi->mft.next_free >= sbi->mft.bitmap.nbits) { } else if (!wnd_find(wnd, 1, MFT_REC_USER, 0, &fr)) { sbi->mft.next_free = sbi->mft.bitmap.nbits; } else { *rno = fr; sbi->mft.next_free = *rno + 1; break; } err = ntfs_extend_mft(sbi); if (err) goto out; } } if (ni && !ni_add_subrecord(ni, *rno, mi)) { err = -ENOMEM; goto out; } /* We have found a record that are not reserved for next MFT. */ if (*rno >= MFT_REC_FREE) wnd_set_used(wnd, *rno, 1); else if (*rno >= MFT_REC_RESERVED && sbi->mft.reserved_bitmap_inited) __set_bit(*rno - MFT_REC_RESERVED, &sbi->mft.reserved_bitmap); out: if (!mft) up_write(&wnd->rw_lock); return err; } /* * ntfs_mark_rec_free - Mark record as free. */ void ntfs_mark_rec_free(struct ntfs_sb_info *sbi, CLST rno) { struct wnd_bitmap *wnd = &sbi->mft.bitmap; down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_MFT); if (rno >= wnd->nbits) goto out; if (rno >= MFT_REC_FREE) { if (!wnd_is_used(wnd, rno, 1)) ntfs_set_state(sbi, NTFS_DIRTY_ERROR); else wnd_set_free(wnd, rno, 1); } else if (rno >= MFT_REC_RESERVED && sbi->mft.reserved_bitmap_inited) { __clear_bit(rno - MFT_REC_RESERVED, &sbi->mft.reserved_bitmap); } if (rno < wnd_zone_bit(wnd)) wnd_zone_set(wnd, rno, 1); else if (rno < sbi->mft.next_free && rno >= MFT_REC_USER) sbi->mft.next_free = rno; out: up_write(&wnd->rw_lock); } /* * ntfs_clear_mft_tail - Format empty records [from, to). * * sbi->mft.bitmap is locked for write. */ int ntfs_clear_mft_tail(struct ntfs_sb_info *sbi, size_t from, size_t to) { int err; u32 rs; u64 vbo; struct runs_tree *run; struct ntfs_inode *ni; if (from >= to) return 0; rs = sbi->record_size; ni = sbi->mft.ni; run = &ni->file.run; down_read(&ni->file.run_lock); vbo = (u64)from * rs; for (; from < to; from++, vbo += rs) { struct ntfs_buffers nb; err = ntfs_get_bh(sbi, run, vbo, rs, &nb); if (err) goto out; err = ntfs_write_bh(sbi, &sbi->new_rec->rhdr, &nb, 0); nb_put(&nb); if (err) goto out; } out: sbi->mft.used = from; up_read(&ni->file.run_lock); return err; } /* * ntfs_refresh_zone - Refresh MFT zone. * * sbi->used.bitmap is locked for rw. * sbi->mft.bitmap is locked for write. * sbi->mft.ni->file.run_lock for write. */ int ntfs_refresh_zone(struct ntfs_sb_info *sbi) { CLST zone_limit, zone_max, lcn, vcn, len; size_t lcn_s, zlen; struct wnd_bitmap *wnd = &sbi->used.bitmap; struct ntfs_inode *ni = sbi->mft.ni; /* Do not change anything unless we have non empty MFT zone. */ if (wnd_zone_len(wnd)) return 0; /* * Compute the MFT zone at two steps. * It would be nice if we are able to allocate 1/8 of * total clusters for MFT but not more then 512 MB. */ zone_limit = (512 * 1024 * 1024) >> sbi->cluster_bits; zone_max = wnd->nbits >> 3; if (zone_max > zone_limit) zone_max = zone_limit; vcn = bytes_to_cluster(sbi, (u64)sbi->mft.bitmap.nbits << sbi->record_bits); if (!run_lookup_entry(&ni->file.run, vcn - 1, &lcn, &len, NULL)) lcn = SPARSE_LCN; /* We should always find Last Lcn for MFT. */ if (lcn == SPARSE_LCN) return -EINVAL; lcn_s = lcn + 1; /* Try to allocate clusters after last MFT run. */ zlen = wnd_find(wnd, zone_max, lcn_s, 0, &lcn_s); if (!zlen) { ntfs_notice(sbi->sb, "MftZone: unavailable"); return 0; } /* Truncate too large zone. */ wnd_zone_set(wnd, lcn_s, zlen); return 0; } /* * ntfs_update_mftmirr - Update $MFTMirr data. */ int ntfs_update_mftmirr(struct ntfs_sb_info *sbi, int wait) { int err; struct super_block *sb = sbi->sb; u32 blocksize = sb->s_blocksize; sector_t block1, block2; u32 bytes; if (!(sbi->flags & NTFS_FLAGS_MFTMIRR)) return 0; err = 0; bytes = sbi->mft.recs_mirr << sbi->record_bits; block1 = sbi->mft.lbo >> sb->s_blocksize_bits; block2 = sbi->mft.lbo2 >> sb->s_blocksize_bits; for (; bytes >= blocksize; bytes -= blocksize) { struct buffer_head *bh1, *bh2; bh1 = sb_bread(sb, block1++); if (!bh1) { err = -EIO; goto out; } bh2 = sb_getblk(sb, block2++); if (!bh2) { put_bh(bh1); err = -EIO; goto out; } if (buffer_locked(bh2)) __wait_on_buffer(bh2); lock_buffer(bh2); memcpy(bh2->b_data, bh1->b_data, blocksize); set_buffer_uptodate(bh2); mark_buffer_dirty(bh2); unlock_buffer(bh2); put_bh(bh1); bh1 = NULL; if (wait) err = sync_dirty_buffer(bh2); put_bh(bh2); if (err) goto out; } sbi->flags &= ~NTFS_FLAGS_MFTMIRR; out: return err; } /* * ntfs_set_state * * Mount: ntfs_set_state(NTFS_DIRTY_DIRTY) * Umount: ntfs_set_state(NTFS_DIRTY_CLEAR) * NTFS error: ntfs_set_state(NTFS_DIRTY_ERROR) */ int ntfs_set_state(struct ntfs_sb_info *sbi, enum NTFS_DIRTY_FLAGS dirty) { int err; struct ATTRIB *attr; struct VOLUME_INFO *info; struct mft_inode *mi; struct ntfs_inode *ni; /* * Do not change state if fs was real_dirty. * Do not change state if fs already dirty(clear). * Do not change any thing if mounted read only. */ if (sbi->volume.real_dirty || sb_rdonly(sbi->sb)) return 0; /* Check cached value. */ if ((dirty == NTFS_DIRTY_CLEAR ? 0 : VOLUME_FLAG_DIRTY) == (sbi->volume.flags & VOLUME_FLAG_DIRTY)) return 0; ni = sbi->volume.ni; if (!ni) return -EINVAL; mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_DIRTY); attr = ni_find_attr(ni, NULL, NULL, ATTR_VOL_INFO, NULL, 0, NULL, &mi); if (!attr) { err = -EINVAL; goto out; } info = resident_data_ex(attr, SIZEOF_ATTRIBUTE_VOLUME_INFO); if (!info) { err = -EINVAL; goto out; } switch (dirty) { case NTFS_DIRTY_ERROR: ntfs_notice(sbi->sb, "Mark volume as dirty due to NTFS errors"); sbi->volume.real_dirty = true; fallthrough; case NTFS_DIRTY_DIRTY: info->flags |= VOLUME_FLAG_DIRTY; break; case NTFS_DIRTY_CLEAR: info->flags &= ~VOLUME_FLAG_DIRTY; break; } /* Cache current volume flags. */ sbi->volume.flags = info->flags; mi->dirty = true; err = 0; out: ni_unlock(ni); if (err) return err; mark_inode_dirty(&ni->vfs_inode); /* verify(!ntfs_update_mftmirr()); */ /* * If we used wait=1, sync_inode_metadata waits for the io for the * inode to finish. It hangs when media is removed. * So wait=0 is sent down to sync_inode_metadata * and filemap_fdatawrite is used for the data blocks. */ err = sync_inode_metadata(&ni->vfs_inode, 0); if (!err) err = filemap_fdatawrite(ni->vfs_inode.i_mapping); return err; } /* * security_hash - Calculates a hash of security descriptor. */ static inline __le32 security_hash(const void *sd, size_t bytes) { u32 hash = 0; const __le32 *ptr = sd; bytes >>= 2; while (bytes--) hash = ((hash >> 0x1D) | (hash << 3)) + le32_to_cpu(*ptr++); return cpu_to_le32(hash); } int ntfs_sb_read(struct super_block *sb, u64 lbo, size_t bytes, void *buffer) { struct block_device *bdev = sb->s_bdev; u32 blocksize = sb->s_blocksize; u64 block = lbo >> sb->s_blocksize_bits; u32 off = lbo & (blocksize - 1); u32 op = blocksize - off; for (; bytes; block += 1, off = 0, op = blocksize) { struct buffer_head *bh = __bread(bdev, block, blocksize); if (!bh) return -EIO; if (op > bytes) op = bytes; memcpy(buffer, bh->b_data + off, op); put_bh(bh); bytes -= op; buffer = Add2Ptr(buffer, op); } return 0; } int ntfs_sb_write(struct super_block *sb, u64 lbo, size_t bytes, const void *buf, int wait) { u32 blocksize = sb->s_blocksize; struct block_device *bdev = sb->s_bdev; sector_t block = lbo >> sb->s_blocksize_bits; u32 off = lbo & (blocksize - 1); u32 op = blocksize - off; struct buffer_head *bh; if (!wait && (sb->s_flags & SB_SYNCHRONOUS)) wait = 1; for (; bytes; block += 1, off = 0, op = blocksize) { if (op > bytes) op = bytes; if (op < blocksize) { bh = __bread(bdev, block, blocksize); if (!bh) { ntfs_err(sb, "failed to read block %llx", (u64)block); return -EIO; } } else { bh = __getblk(bdev, block, blocksize); if (!bh) return -ENOMEM; } if (buffer_locked(bh)) __wait_on_buffer(bh); lock_buffer(bh); if (buf) { memcpy(bh->b_data + off, buf, op); buf = Add2Ptr(buf, op); } else { memset(bh->b_data + off, -1, op); } set_buffer_uptodate(bh); mark_buffer_dirty(bh); unlock_buffer(bh); if (wait) { int err = sync_dirty_buffer(bh); if (err) { ntfs_err( sb, "failed to sync buffer at block %llx, error %d", (u64)block, err); put_bh(bh); return err; } } put_bh(bh); bytes -= op; } return 0; } int ntfs_sb_write_run(struct ntfs_sb_info *sbi, const struct runs_tree *run, u64 vbo, const void *buf, size_t bytes, int sync) { struct super_block *sb = sbi->sb; u8 cluster_bits = sbi->cluster_bits; u32 off = vbo & sbi->cluster_mask; CLST lcn, clen, vcn = vbo >> cluster_bits, vcn_next; u64 lbo, len; size_t idx; if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) return -ENOENT; if (lcn == SPARSE_LCN) return -EINVAL; lbo = ((u64)lcn << cluster_bits) + off; len = ((u64)clen << cluster_bits) - off; for (;;) { u32 op = min_t(u64, len, bytes); int err = ntfs_sb_write(sb, lbo, op, buf, sync); if (err) return err; bytes -= op; if (!bytes) break; vcn_next = vcn + clen; if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) || vcn != vcn_next) return -ENOENT; if (lcn == SPARSE_LCN) return -EINVAL; if (buf) buf = Add2Ptr(buf, op); lbo = ((u64)lcn << cluster_bits); len = ((u64)clen << cluster_bits); } return 0; } struct buffer_head *ntfs_bread_run(struct ntfs_sb_info *sbi, const struct runs_tree *run, u64 vbo) { struct super_block *sb = sbi->sb; u8 cluster_bits = sbi->cluster_bits; CLST lcn; u64 lbo; if (!run_lookup_entry(run, vbo >> cluster_bits, &lcn, NULL, NULL)) return ERR_PTR(-ENOENT); lbo = ((u64)lcn << cluster_bits) + (vbo & sbi->cluster_mask); return ntfs_bread(sb, lbo >> sb->s_blocksize_bits); } int ntfs_read_run_nb(struct ntfs_sb_info *sbi, const struct runs_tree *run, u64 vbo, void *buf, u32 bytes, struct ntfs_buffers *nb) { int err; struct super_block *sb = sbi->sb; u32 blocksize = sb->s_blocksize; u8 cluster_bits = sbi->cluster_bits; u32 off = vbo & sbi->cluster_mask; u32 nbh = 0; CLST vcn_next, vcn = vbo >> cluster_bits; CLST lcn, clen; u64 lbo, len; size_t idx; struct buffer_head *bh; if (!run) { /* First reading of $Volume + $MFTMirr + $LogFile goes here. */ if (vbo > MFT_REC_VOL * sbi->record_size) { err = -ENOENT; goto out; } /* Use absolute boot's 'MFTCluster' to read record. */ lbo = vbo + sbi->mft.lbo; len = sbi->record_size; } else if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) { err = -ENOENT; goto out; } else { if (lcn == SPARSE_LCN) { err = -EINVAL; goto out; } lbo = ((u64)lcn << cluster_bits) + off; len = ((u64)clen << cluster_bits) - off; } off = lbo & (blocksize - 1); if (nb) { nb->off = off; nb->bytes = bytes; } for (;;) { u32 len32 = len >= bytes ? bytes : len; sector_t block = lbo >> sb->s_blocksize_bits; do { u32 op = blocksize - off; if (op > len32) op = len32; bh = ntfs_bread(sb, block); if (!bh) { err = -EIO; goto out; } if (buf) { memcpy(buf, bh->b_data + off, op); buf = Add2Ptr(buf, op); } if (!nb) { put_bh(bh); } else if (nbh >= ARRAY_SIZE(nb->bh)) { err = -EINVAL; goto out; } else { nb->bh[nbh++] = bh; nb->nbufs = nbh; } bytes -= op; if (!bytes) return 0; len32 -= op; block += 1; off = 0; } while (len32); vcn_next = vcn + clen; if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) || vcn != vcn_next) { err = -ENOENT; goto out; } if (lcn == SPARSE_LCN) { err = -EINVAL; goto out; } lbo = ((u64)lcn << cluster_bits); len = ((u64)clen << cluster_bits); } out: if (!nbh) return err; while (nbh) { put_bh(nb->bh[--nbh]); nb->bh[nbh] = NULL; } nb->nbufs = 0; return err; } /* * ntfs_read_bh * * Return: < 0 if error, 0 if ok, -E_NTFS_FIXUP if need to update fixups. */ int ntfs_read_bh(struct ntfs_sb_info *sbi, const struct runs_tree *run, u64 vbo, struct NTFS_RECORD_HEADER *rhdr, u32 bytes, struct ntfs_buffers *nb) { int err = ntfs_read_run_nb(sbi, run, vbo, rhdr, bytes, nb); if (err) return err; return ntfs_fix_post_read(rhdr, nb->bytes, true); } int ntfs_get_bh(struct ntfs_sb_info *sbi, const struct runs_tree *run, u64 vbo, u32 bytes, struct ntfs_buffers *nb) { int err = 0; struct super_block *sb = sbi->sb; u32 blocksize = sb->s_blocksize; u8 cluster_bits = sbi->cluster_bits; CLST vcn_next, vcn = vbo >> cluster_bits; u32 off; u32 nbh = 0; CLST lcn, clen; u64 lbo, len; size_t idx; nb->bytes = bytes; if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) { err = -ENOENT; goto out; } off = vbo & sbi->cluster_mask; lbo = ((u64)lcn << cluster_bits) + off; len = ((u64)clen << cluster_bits) - off; nb->off = off = lbo & (blocksize - 1); for (;;) { u32 len32 = min_t(u64, len, bytes); sector_t block = lbo >> sb->s_blocksize_bits; do { u32 op; struct buffer_head *bh; if (nbh >= ARRAY_SIZE(nb->bh)) { err = -EINVAL; goto out; } op = blocksize - off; if (op > len32) op = len32; if (op == blocksize) { bh = sb_getblk(sb, block); if (!bh) { err = -ENOMEM; goto out; } if (buffer_locked(bh)) __wait_on_buffer(bh); set_buffer_uptodate(bh); } else { bh = ntfs_bread(sb, block); if (!bh) { err = -EIO; goto out; } } nb->bh[nbh++] = bh; bytes -= op; if (!bytes) { nb->nbufs = nbh; return 0; } block += 1; len32 -= op; off = 0; } while (len32); vcn_next = vcn + clen; if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) || vcn != vcn_next) { err = -ENOENT; goto out; } lbo = ((u64)lcn << cluster_bits); len = ((u64)clen << cluster_bits); } out: while (nbh) { put_bh(nb->bh[--nbh]); nb->bh[nbh] = NULL; } nb->nbufs = 0; return err; } int ntfs_write_bh(struct ntfs_sb_info *sbi, struct NTFS_RECORD_HEADER *rhdr, struct ntfs_buffers *nb, int sync) { int err = 0; struct super_block *sb = sbi->sb; u32 block_size = sb->s_blocksize; u32 bytes = nb->bytes; u32 off = nb->off; u16 fo = le16_to_cpu(rhdr->fix_off); u16 fn = le16_to_cpu(rhdr->fix_num); u32 idx; __le16 *fixup; __le16 sample; if ((fo & 1) || fo + fn * sizeof(short) > SECTOR_SIZE || !fn-- || fn * SECTOR_SIZE > bytes) { return -EINVAL; } for (idx = 0; bytes && idx < nb->nbufs; idx += 1, off = 0) { u32 op = block_size - off; char *bh_data; struct buffer_head *bh = nb->bh[idx]; __le16 *ptr, *end_data; if (op > bytes) op = bytes; if (buffer_locked(bh)) __wait_on_buffer(bh); lock_buffer(nb->bh[idx]); bh_data = bh->b_data + off; end_data = Add2Ptr(bh_data, op); memcpy(bh_data, rhdr, op); if (!idx) { u16 t16; fixup = Add2Ptr(bh_data, fo); sample = *fixup; t16 = le16_to_cpu(sample); if (t16 >= 0x7FFF) { sample = *fixup = cpu_to_le16(1); } else { sample = cpu_to_le16(t16 + 1); *fixup = sample; } *(__le16 *)Add2Ptr(rhdr, fo) = sample; } ptr = Add2Ptr(bh_data, SECTOR_SIZE - sizeof(short)); do { *++fixup = *ptr; *ptr = sample; ptr += SECTOR_SIZE / sizeof(short); } while (ptr < end_data); set_buffer_uptodate(bh); mark_buffer_dirty(bh); unlock_buffer(bh); if (sync) { int err2 = sync_dirty_buffer(bh); if (!err && err2) err = err2; } bytes -= op; rhdr = Add2Ptr(rhdr, op); } return err; } static inline struct bio *ntfs_alloc_bio(u32 nr_vecs) { struct bio *bio = bio_alloc(GFP_NOFS | __GFP_HIGH, nr_vecs); if (!bio && (current->flags & PF_MEMALLOC)) { while (!bio && (nr_vecs /= 2)) bio = bio_alloc(GFP_NOFS | __GFP_HIGH, nr_vecs); } return bio; } /* * ntfs_bio_pages - Read/write pages from/to disk. */ int ntfs_bio_pages(struct ntfs_sb_info *sbi, const struct runs_tree *run, struct page **pages, u32 nr_pages, u64 vbo, u32 bytes, u32 op) { int err = 0; struct bio *new, *bio = NULL; struct super_block *sb = sbi->sb; struct block_device *bdev = sb->s_bdev; struct page *page; u8 cluster_bits = sbi->cluster_bits; CLST lcn, clen, vcn, vcn_next; u32 add, off, page_idx; u64 lbo, len; size_t run_idx; struct blk_plug plug; if (!bytes) return 0; blk_start_plug(&plug); /* Align vbo and bytes to be 512 bytes aligned. */ lbo = (vbo + bytes + 511) & ~511ull; vbo = vbo & ~511ull; bytes = lbo - vbo; vcn = vbo >> cluster_bits; if (!run_lookup_entry(run, vcn, &lcn, &clen, &run_idx)) { err = -ENOENT; goto out; } off = vbo & sbi->cluster_mask; page_idx = 0; page = pages[0]; for (;;) { lbo = ((u64)lcn << cluster_bits) + off; len = ((u64)clen << cluster_bits) - off; new_bio: new = ntfs_alloc_bio(nr_pages - page_idx); if (!new) { err = -ENOMEM; goto out; } if (bio) { bio_chain(bio, new); submit_bio(bio); } bio = new; bio_set_dev(bio, bdev); bio->bi_iter.bi_sector = lbo >> 9; bio->bi_opf = op; while (len) { off = vbo & (PAGE_SIZE - 1); add = off + len > PAGE_SIZE ? (PAGE_SIZE - off) : len; if (bio_add_page(bio, page, add, off) < add) goto new_bio; if (bytes <= add) goto out; bytes -= add; vbo += add; if (add + off == PAGE_SIZE) { page_idx += 1; if (WARN_ON(page_idx >= nr_pages)) { err = -EINVAL; goto out; } page = pages[page_idx]; } if (len <= add) break; len -= add; lbo += add; } vcn_next = vcn + clen; if (!run_get_entry(run, ++run_idx, &vcn, &lcn, &clen) || vcn != vcn_next) { err = -ENOENT; goto out; } off = 0; } out: if (bio) { if (!err) err = submit_bio_wait(bio); bio_put(bio); } blk_finish_plug(&plug); return err; } /* * ntfs_bio_fill_1 - Helper for ntfs_loadlog_and_replay(). * * Fill on-disk logfile range by (-1) * this means empty logfile. */ int ntfs_bio_fill_1(struct ntfs_sb_info *sbi, const struct runs_tree *run) { int err = 0; struct super_block *sb = sbi->sb; struct block_device *bdev = sb->s_bdev; u8 cluster_bits = sbi->cluster_bits; struct bio *new, *bio = NULL; CLST lcn, clen; u64 lbo, len; size_t run_idx; struct page *fill; void *kaddr; struct blk_plug plug; fill = alloc_page(GFP_KERNEL); if (!fill) return -ENOMEM; kaddr = kmap_atomic(fill); memset(kaddr, -1, PAGE_SIZE); kunmap_atomic(kaddr); flush_dcache_page(fill); lock_page(fill); if (!run_lookup_entry(run, 0, &lcn, &clen, &run_idx)) { err = -ENOENT; goto out; } /* * TODO: Try blkdev_issue_write_same. */ blk_start_plug(&plug); do { lbo = (u64)lcn << cluster_bits; len = (u64)clen << cluster_bits; new_bio: new = ntfs_alloc_bio(BIO_MAX_VECS); if (!new) { err = -ENOMEM; break; } if (bio) { bio_chain(bio, new); submit_bio(bio); } bio = new; bio_set_dev(bio, bdev); bio->bi_opf = REQ_OP_WRITE; bio->bi_iter.bi_sector = lbo >> 9; for (;;) { u32 add = len > PAGE_SIZE ? PAGE_SIZE : len; if (bio_add_page(bio, fill, add, 0) < add) goto new_bio; lbo += add; if (len <= add) break; len -= add; } } while (run_get_entry(run, ++run_idx, NULL, &lcn, &clen)); if (bio) { if (!err) err = submit_bio_wait(bio); bio_put(bio); } blk_finish_plug(&plug); out: unlock_page(fill); put_page(fill); return err; } int ntfs_vbo_to_lbo(struct ntfs_sb_info *sbi, const struct runs_tree *run, u64 vbo, u64 *lbo, u64 *bytes) { u32 off; CLST lcn, len; u8 cluster_bits = sbi->cluster_bits; if (!run_lookup_entry(run, vbo >> cluster_bits, &lcn, &len, NULL)) return -ENOENT; off = vbo & sbi->cluster_mask; *lbo = lcn == SPARSE_LCN ? -1 : (((u64)lcn << cluster_bits) + off); *bytes = ((u64)len << cluster_bits) - off; return 0; } struct ntfs_inode *ntfs_new_inode(struct ntfs_sb_info *sbi, CLST rno, bool dir) { int err = 0; struct super_block *sb = sbi->sb; struct inode *inode = new_inode(sb); struct ntfs_inode *ni; if (!inode) return ERR_PTR(-ENOMEM); ni = ntfs_i(inode); err = mi_format_new(&ni->mi, sbi, rno, dir ? RECORD_FLAG_DIR : 0, false); if (err) goto out; inode->i_ino = rno; if (insert_inode_locked(inode) < 0) { err = -EIO; goto out; } out: if (err) { iput(inode); ni = ERR_PTR(err); } return ni; } /* * O:BAG:BAD:(A;OICI;FA;;;WD) * Owner S-1-5-32-544 (Administrators) * Group S-1-5-32-544 (Administrators) * ACE: allow S-1-1-0 (Everyone) with FILE_ALL_ACCESS */ const u8 s_default_security[] __aligned(8) = { 0x01, 0x00, 0x04, 0x80, 0x30, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x02, 0x00, 0x1C, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x03, 0x14, 0x00, 0xFF, 0x01, 0x1F, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x20, 0x00, 0x00, 0x00, 0x20, 0x02, 0x00, 0x00, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x20, 0x00, 0x00, 0x00, 0x20, 0x02, 0x00, 0x00, }; static_assert(sizeof(s_default_security) == 0x50); static inline u32 sid_length(const struct SID *sid) { return struct_size(sid, SubAuthority, sid->SubAuthorityCount); } /* * is_acl_valid * * Thanks Mark Harmstone for idea. */ static bool is_acl_valid(const struct ACL *acl, u32 len) { const struct ACE_HEADER *ace; u32 i; u16 ace_count, ace_size; if (acl->AclRevision != ACL_REVISION && acl->AclRevision != ACL_REVISION_DS) { /* * This value should be ACL_REVISION, unless the ACL contains an * object-specific ACE, in which case this value must be ACL_REVISION_DS. * All ACEs in an ACL must be at the same revision level. */ return false; } if (acl->Sbz1) return false; if (le16_to_cpu(acl->AclSize) > len) return false; if (acl->Sbz2) return false; len -= sizeof(struct ACL); ace = (struct ACE_HEADER *)&acl[1]; ace_count = le16_to_cpu(acl->AceCount); for (i = 0; i < ace_count; i++) { if (len < sizeof(struct ACE_HEADER)) return false; ace_size = le16_to_cpu(ace->AceSize); if (len < ace_size) return false; len -= ace_size; ace = Add2Ptr(ace, ace_size); } return true; } bool is_sd_valid(const struct SECURITY_DESCRIPTOR_RELATIVE *sd, u32 len) { u32 sd_owner, sd_group, sd_sacl, sd_dacl; if (len < sizeof(struct SECURITY_DESCRIPTOR_RELATIVE)) return false; if (sd->Revision != 1) return false; if (sd->Sbz1) return false; if (!(sd->Control & SE_SELF_RELATIVE)) return false; sd_owner = le32_to_cpu(sd->Owner); if (sd_owner) { const struct SID *owner = Add2Ptr(sd, sd_owner); if (sd_owner + offsetof(struct SID, SubAuthority) > len) return false; if (owner->Revision != 1) return false; if (sd_owner + sid_length(owner) > len) return false; } sd_group = le32_to_cpu(sd->Group); if (sd_group) { const struct SID *group = Add2Ptr(sd, sd_group); if (sd_group + offsetof(struct SID, SubAuthority) > len) return false; if (group->Revision != 1) return false; if (sd_group + sid_length(group) > len) return false; } sd_sacl = le32_to_cpu(sd->Sacl); if (sd_sacl) { const struct ACL *sacl = Add2Ptr(sd, sd_sacl); if (sd_sacl + sizeof(struct ACL) > len) return false; if (!is_acl_valid(sacl, len - sd_sacl)) return false; } sd_dacl = le32_to_cpu(sd->Dacl); if (sd_dacl) { const struct ACL *dacl = Add2Ptr(sd, sd_dacl); if (sd_dacl + sizeof(struct ACL) > len) return false; if (!is_acl_valid(dacl, len - sd_dacl)) return false; } return true; } /* * ntfs_security_init - Load and parse $Secure. */ int ntfs_security_init(struct ntfs_sb_info *sbi) { int err; struct super_block *sb = sbi->sb; struct inode *inode; struct ntfs_inode *ni; struct MFT_REF ref; struct ATTRIB *attr; struct ATTR_LIST_ENTRY *le; u64 sds_size; size_t off; struct NTFS_DE *ne; struct NTFS_DE_SII *sii_e; struct ntfs_fnd *fnd_sii = NULL; const struct INDEX_ROOT *root_sii; const struct INDEX_ROOT *root_sdh; struct ntfs_index *indx_sdh = &sbi->security.index_sdh; struct ntfs_index *indx_sii = &sbi->security.index_sii; ref.low = cpu_to_le32(MFT_REC_SECURE); ref.high = 0; ref.seq = cpu_to_le16(MFT_REC_SECURE); inode = ntfs_iget5(sb, &ref, &NAME_SECURE); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load $Secure."); inode = NULL; goto out; } ni = ntfs_i(inode); le = NULL; attr = ni_find_attr(ni, NULL, &le, ATTR_ROOT, SDH_NAME, ARRAY_SIZE(SDH_NAME), NULL, NULL); if (!attr) { err = -EINVAL; goto out; } root_sdh = resident_data(attr); if (root_sdh->type != ATTR_ZERO || root_sdh->rule != NTFS_COLLATION_TYPE_SECURITY_HASH) { err = -EINVAL; goto out; } err = indx_init(indx_sdh, sbi, attr, INDEX_MUTEX_SDH); if (err) goto out; attr = ni_find_attr(ni, attr, &le, ATTR_ROOT, SII_NAME, ARRAY_SIZE(SII_NAME), NULL, NULL); if (!attr) { err = -EINVAL; goto out; } root_sii = resident_data(attr); if (root_sii->type != ATTR_ZERO || root_sii->rule != NTFS_COLLATION_TYPE_UINT) { err = -EINVAL; goto out; } err = indx_init(indx_sii, sbi, attr, INDEX_MUTEX_SII); if (err) goto out; fnd_sii = fnd_get(); if (!fnd_sii) { err = -ENOMEM; goto out; } sds_size = inode->i_size; /* Find the last valid Id. */ sbi->security.next_id = SECURITY_ID_FIRST; /* Always write new security at the end of bucket. */ sbi->security.next_off = ALIGN(sds_size - SecurityDescriptorsBlockSize, 16); off = 0; ne = NULL; for (;;) { u32 next_id; err = indx_find_raw(indx_sii, ni, root_sii, &ne, &off, fnd_sii); if (err || !ne) break; sii_e = (struct NTFS_DE_SII *)ne; if (le16_to_cpu(ne->view.data_size) < SIZEOF_SECURITY_HDR) continue; next_id = le32_to_cpu(sii_e->sec_id) + 1; if (next_id >= sbi->security.next_id) sbi->security.next_id = next_id; } sbi->security.ni = ni; inode = NULL; out: iput(inode); fnd_put(fnd_sii); return err; } /* * ntfs_get_security_by_id - Read security descriptor by id. */ int ntfs_get_security_by_id(struct ntfs_sb_info *sbi, __le32 security_id, struct SECURITY_DESCRIPTOR_RELATIVE **sd, size_t *size) { int err; int diff; struct ntfs_inode *ni = sbi->security.ni; struct ntfs_index *indx = &sbi->security.index_sii; void *p = NULL; struct NTFS_DE_SII *sii_e; struct ntfs_fnd *fnd_sii; struct SECURITY_HDR d_security; const struct INDEX_ROOT *root_sii; u32 t32; *sd = NULL; mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_SECURITY); fnd_sii = fnd_get(); if (!fnd_sii) { err = -ENOMEM; goto out; } root_sii = indx_get_root(indx, ni, NULL, NULL); if (!root_sii) { err = -EINVAL; goto out; } /* Try to find this SECURITY descriptor in SII indexes. */ err = indx_find(indx, ni, root_sii, &security_id, sizeof(security_id), NULL, &diff, (struct NTFS_DE **)&sii_e, fnd_sii); if (err) goto out; if (diff) goto out; t32 = le32_to_cpu(sii_e->sec_hdr.size); if (t32 < SIZEOF_SECURITY_HDR) { err = -EINVAL; goto out; } if (t32 > SIZEOF_SECURITY_HDR + 0x10000) { /* Looks like too big security. 0x10000 - is arbitrary big number. */ err = -EFBIG; goto out; } *size = t32 - SIZEOF_SECURITY_HDR; p = kmalloc(*size, GFP_NOFS); if (!p) { err = -ENOMEM; goto out; } err = ntfs_read_run_nb(sbi, &ni->file.run, le64_to_cpu(sii_e->sec_hdr.off), &d_security, sizeof(d_security), NULL); if (err) goto out; if (memcmp(&d_security, &sii_e->sec_hdr, SIZEOF_SECURITY_HDR)) { err = -EINVAL; goto out; } err = ntfs_read_run_nb(sbi, &ni->file.run, le64_to_cpu(sii_e->sec_hdr.off) + SIZEOF_SECURITY_HDR, p, *size, NULL); if (err) goto out; *sd = p; p = NULL; out: kfree(p); fnd_put(fnd_sii); ni_unlock(ni); return err; } /* * ntfs_insert_security - Insert security descriptor into $Secure::SDS. * * SECURITY Descriptor Stream data is organized into chunks of 256K bytes * and it contains a mirror copy of each security descriptor. When writing * to a security descriptor at location X, another copy will be written at * location (X+256K). * When writing a security descriptor that will cross the 256K boundary, * the pointer will be advanced by 256K to skip * over the mirror portion. */ int ntfs_insert_security(struct ntfs_sb_info *sbi, const struct SECURITY_DESCRIPTOR_RELATIVE *sd, u32 size_sd, __le32 *security_id, bool *inserted) { int err, diff; struct ntfs_inode *ni = sbi->security.ni; struct ntfs_index *indx_sdh = &sbi->security.index_sdh; struct ntfs_index *indx_sii = &sbi->security.index_sii; struct NTFS_DE_SDH *e; struct NTFS_DE_SDH sdh_e; struct NTFS_DE_SII sii_e; struct SECURITY_HDR *d_security; u32 new_sec_size = size_sd + SIZEOF_SECURITY_HDR; u32 aligned_sec_size = ALIGN(new_sec_size, 16); struct SECURITY_KEY hash_key; struct ntfs_fnd *fnd_sdh = NULL; const struct INDEX_ROOT *root_sdh; const struct INDEX_ROOT *root_sii; u64 mirr_off, new_sds_size; u32 next, left; static_assert((1 << Log2OfSecurityDescriptorsBlockSize) == SecurityDescriptorsBlockSize); hash_key.hash = security_hash(sd, size_sd); hash_key.sec_id = SECURITY_ID_INVALID; if (inserted) *inserted = false; *security_id = SECURITY_ID_INVALID; /* Allocate a temporal buffer. */ d_security = kzalloc(aligned_sec_size, GFP_NOFS); if (!d_security) return -ENOMEM; mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_SECURITY); fnd_sdh = fnd_get(); if (!fnd_sdh) { err = -ENOMEM; goto out; } root_sdh = indx_get_root(indx_sdh, ni, NULL, NULL); if (!root_sdh) { err = -EINVAL; goto out; } root_sii = indx_get_root(indx_sii, ni, NULL, NULL); if (!root_sii) { err = -EINVAL; goto out; } /* * Check if such security already exists. * Use "SDH" and hash -> to get the offset in "SDS". */ err = indx_find(indx_sdh, ni, root_sdh, &hash_key, sizeof(hash_key), &d_security->key.sec_id, &diff, (struct NTFS_DE **)&e, fnd_sdh); if (err) goto out; while (e) { if (le32_to_cpu(e->sec_hdr.size) == new_sec_size) { err = ntfs_read_run_nb(sbi, &ni->file.run, le64_to_cpu(e->sec_hdr.off), d_security, new_sec_size, NULL); if (err) goto out; if (le32_to_cpu(d_security->size) == new_sec_size && d_security->key.hash == hash_key.hash && !memcmp(d_security + 1, sd, size_sd)) { *security_id = d_security->key.sec_id; /* Such security already exists. */ err = 0; goto out; } } err = indx_find_sort(indx_sdh, ni, root_sdh, (struct NTFS_DE **)&e, fnd_sdh); if (err) goto out; if (!e || e->key.hash != hash_key.hash) break; } /* Zero unused space. */ next = sbi->security.next_off & (SecurityDescriptorsBlockSize - 1); left = SecurityDescriptorsBlockSize - next; /* Zero gap until SecurityDescriptorsBlockSize. */ if (left < new_sec_size) { /* Zero "left" bytes from sbi->security.next_off. */ sbi->security.next_off += SecurityDescriptorsBlockSize + left; } /* Zero tail of previous security. */ //used = ni->vfs_inode.i_size & (SecurityDescriptorsBlockSize - 1); /* * Example: * 0x40438 == ni->vfs_inode.i_size * 0x00440 == sbi->security.next_off * need to zero [0x438-0x440) * if (next > used) { * u32 tozero = next - used; * zero "tozero" bytes from sbi->security.next_off - tozero */ /* Format new security descriptor. */ d_security->key.hash = hash_key.hash; d_security->key.sec_id = cpu_to_le32(sbi->security.next_id); d_security->off = cpu_to_le64(sbi->security.next_off); d_security->size = cpu_to_le32(new_sec_size); memcpy(d_security + 1, sd, size_sd); /* Write main SDS bucket. */ err = ntfs_sb_write_run(sbi, &ni->file.run, sbi->security.next_off, d_security, aligned_sec_size, 0); if (err) goto out; mirr_off = sbi->security.next_off + SecurityDescriptorsBlockSize; new_sds_size = mirr_off + aligned_sec_size; if (new_sds_size > ni->vfs_inode.i_size) { err = attr_set_size(ni, ATTR_DATA, SDS_NAME, ARRAY_SIZE(SDS_NAME), &ni->file.run, new_sds_size, &new_sds_size, false, NULL); if (err) goto out; } /* Write copy SDS bucket. */ err = ntfs_sb_write_run(sbi, &ni->file.run, mirr_off, d_security, aligned_sec_size, 0); if (err) goto out; /* Fill SII entry. */ sii_e.de.view.data_off = cpu_to_le16(offsetof(struct NTFS_DE_SII, sec_hdr)); sii_e.de.view.data_size = cpu_to_le16(SIZEOF_SECURITY_HDR); sii_e.de.view.res = 0; sii_e.de.size = cpu_to_le16(SIZEOF_SII_DIRENTRY); sii_e.de.key_size = cpu_to_le16(sizeof(d_security->key.sec_id)); sii_e.de.flags = 0; sii_e.de.res = 0; sii_e.sec_id = d_security->key.sec_id; memcpy(&sii_e.sec_hdr, d_security, SIZEOF_SECURITY_HDR); err = indx_insert_entry(indx_sii, ni, &sii_e.de, NULL, NULL, 0); if (err) goto out; /* Fill SDH entry. */ sdh_e.de.view.data_off = cpu_to_le16(offsetof(struct NTFS_DE_SDH, sec_hdr)); sdh_e.de.view.data_size = cpu_to_le16(SIZEOF_SECURITY_HDR); sdh_e.de.view.res = 0; sdh_e.de.size = cpu_to_le16(SIZEOF_SDH_DIRENTRY); sdh_e.de.key_size = cpu_to_le16(sizeof(sdh_e.key)); sdh_e.de.flags = 0; sdh_e.de.res = 0; sdh_e.key.hash = d_security->key.hash; sdh_e.key.sec_id = d_security->key.sec_id; memcpy(&sdh_e.sec_hdr, d_security, SIZEOF_SECURITY_HDR); sdh_e.magic[0] = cpu_to_le16('I'); sdh_e.magic[1] = cpu_to_le16('I'); fnd_clear(fnd_sdh); err = indx_insert_entry(indx_sdh, ni, &sdh_e.de, (void *)(size_t)1, fnd_sdh, 0); if (err) goto out; *security_id = d_security->key.sec_id; if (inserted) *inserted = true; /* Update Id and offset for next descriptor. */ sbi->security.next_id += 1; sbi->security.next_off += aligned_sec_size; out: fnd_put(fnd_sdh); mark_inode_dirty(&ni->vfs_inode); ni_unlock(ni); kfree(d_security); return err; } /* * ntfs_reparse_init - Load and parse $Extend/$Reparse. */ int ntfs_reparse_init(struct ntfs_sb_info *sbi) { int err; struct ntfs_inode *ni = sbi->reparse.ni; struct ntfs_index *indx = &sbi->reparse.index_r; struct ATTRIB *attr; struct ATTR_LIST_ENTRY *le; const struct INDEX_ROOT *root_r; if (!ni) return 0; le = NULL; attr = ni_find_attr(ni, NULL, &le, ATTR_ROOT, SR_NAME, ARRAY_SIZE(SR_NAME), NULL, NULL); if (!attr) { err = -EINVAL; goto out; } root_r = resident_data(attr); if (root_r->type != ATTR_ZERO || root_r->rule != NTFS_COLLATION_TYPE_UINTS) { err = -EINVAL; goto out; } err = indx_init(indx, sbi, attr, INDEX_MUTEX_SR); if (err) goto out; out: return err; } /* * ntfs_objid_init - Load and parse $Extend/$ObjId. */ int ntfs_objid_init(struct ntfs_sb_info *sbi) { int err; struct ntfs_inode *ni = sbi->objid.ni; struct ntfs_index *indx = &sbi->objid.index_o; struct ATTRIB *attr; struct ATTR_LIST_ENTRY *le; const struct INDEX_ROOT *root; if (!ni) return 0; le = NULL; attr = ni_find_attr(ni, NULL, &le, ATTR_ROOT, SO_NAME, ARRAY_SIZE(SO_NAME), NULL, NULL); if (!attr) { err = -EINVAL; goto out; } root = resident_data(attr); if (root->type != ATTR_ZERO || root->rule != NTFS_COLLATION_TYPE_UINTS) { err = -EINVAL; goto out; } err = indx_init(indx, sbi, attr, INDEX_MUTEX_SO); if (err) goto out; out: return err; } int ntfs_objid_remove(struct ntfs_sb_info *sbi, struct GUID *guid) { int err; struct ntfs_inode *ni = sbi->objid.ni; struct ntfs_index *indx = &sbi->objid.index_o; if (!ni) return -EINVAL; mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_OBJID); err = indx_delete_entry(indx, ni, guid, sizeof(*guid), NULL); mark_inode_dirty(&ni->vfs_inode); ni_unlock(ni); return err; } int ntfs_insert_reparse(struct ntfs_sb_info *sbi, __le32 rtag, const struct MFT_REF *ref) { int err; struct ntfs_inode *ni = sbi->reparse.ni; struct ntfs_index *indx = &sbi->reparse.index_r; struct NTFS_DE_R re; if (!ni) return -EINVAL; memset(&re, 0, sizeof(re)); re.de.view.data_off = cpu_to_le16(offsetof(struct NTFS_DE_R, zero)); re.de.size = cpu_to_le16(sizeof(struct NTFS_DE_R)); re.de.key_size = cpu_to_le16(sizeof(re.key)); re.key.ReparseTag = rtag; memcpy(&re.key.ref, ref, sizeof(*ref)); mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_REPARSE); err = indx_insert_entry(indx, ni, &re.de, NULL, NULL, 0); mark_inode_dirty(&ni->vfs_inode); ni_unlock(ni); return err; } int ntfs_remove_reparse(struct ntfs_sb_info *sbi, __le32 rtag, const struct MFT_REF *ref) { int err, diff; struct ntfs_inode *ni = sbi->reparse.ni; struct ntfs_index *indx = &sbi->reparse.index_r; struct ntfs_fnd *fnd = NULL; struct REPARSE_KEY rkey; struct NTFS_DE_R *re; struct INDEX_ROOT *root_r; if (!ni) return -EINVAL; rkey.ReparseTag = rtag; rkey.ref = *ref; mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_REPARSE); if (rtag) { err = indx_delete_entry(indx, ni, &rkey, sizeof(rkey), NULL); goto out1; } fnd = fnd_get(); if (!fnd) { err = -ENOMEM; goto out1; } root_r = indx_get_root(indx, ni, NULL, NULL); if (!root_r) { err = -EINVAL; goto out; } /* 1 - forces to ignore rkey.ReparseTag when comparing keys. */ err = indx_find(indx, ni, root_r, &rkey, sizeof(rkey), (void *)1, &diff, (struct NTFS_DE **)&re, fnd); if (err) goto out; if (memcmp(&re->key.ref, ref, sizeof(*ref))) { /* Impossible. Looks like volume corrupt? */ goto out; } memcpy(&rkey, &re->key, sizeof(rkey)); fnd_put(fnd); fnd = NULL; err = indx_delete_entry(indx, ni, &rkey, sizeof(rkey), NULL); if (err) goto out; out: fnd_put(fnd); out1: mark_inode_dirty(&ni->vfs_inode); ni_unlock(ni); return err; } static inline void ntfs_unmap_and_discard(struct ntfs_sb_info *sbi, CLST lcn, CLST len) { ntfs_unmap_meta(sbi->sb, lcn, len); ntfs_discard(sbi, lcn, len); } void mark_as_free_ex(struct ntfs_sb_info *sbi, CLST lcn, CLST len, bool trim) { CLST end, i; struct wnd_bitmap *wnd = &sbi->used.bitmap; down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS); if (!wnd_is_used(wnd, lcn, len)) { ntfs_set_state(sbi, NTFS_DIRTY_ERROR); end = lcn + len; len = 0; for (i = lcn; i < end; i++) { if (wnd_is_used(wnd, i, 1)) { if (!len) lcn = i; len += 1; continue; } if (!len) continue; if (trim) ntfs_unmap_and_discard(sbi, lcn, len); wnd_set_free(wnd, lcn, len); len = 0; } if (!len) goto out; } if (trim) ntfs_unmap_and_discard(sbi, lcn, len); wnd_set_free(wnd, lcn, len); out: up_write(&wnd->rw_lock); } /* * run_deallocate - Deallocate clusters. */ int run_deallocate(struct ntfs_sb_info *sbi, struct runs_tree *run, bool trim) { CLST lcn, len; size_t idx = 0; while (run_get_entry(run, idx++, NULL, &lcn, &len)) { if (lcn == SPARSE_LCN) continue; mark_as_free_ex(sbi, lcn, len, trim); } return 0; }