// SPDX-License-Identifier: GPL-2.0 /* * * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. * */ #include #include #include #include #include #include #include #include #include #include "debug.h" #include "ntfs.h" #include "ntfs_fs.h" /* * ntfs_read_mft - Read record and parses MFT. */ static struct inode *ntfs_read_mft(struct inode *inode, const struct cpu_str *name, const struct MFT_REF *ref) { int err = 0; struct ntfs_inode *ni = ntfs_i(inode); struct super_block *sb = inode->i_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; mode_t mode = 0; struct ATTR_STD_INFO5 *std5 = NULL; struct ATTR_LIST_ENTRY *le; struct ATTRIB *attr; bool is_match = false; bool is_root = false; bool is_dir; unsigned long ino = inode->i_ino; u32 rp_fa = 0, asize, t32; u16 roff, rsize, names = 0; const struct ATTR_FILE_NAME *fname = NULL; const struct INDEX_ROOT *root; struct REPARSE_DATA_BUFFER rp; // 0x18 bytes u64 t64; struct MFT_REC *rec; struct runs_tree *run; inode->i_op = NULL; /* Setup 'uid' and 'gid' */ inode->i_uid = sbi->options.fs_uid; inode->i_gid = sbi->options.fs_gid; err = mi_init(&ni->mi, sbi, ino); if (err) goto out; if (!sbi->mft.ni && ino == MFT_REC_MFT && !sb->s_root) { t64 = sbi->mft.lbo >> sbi->cluster_bits; t32 = bytes_to_cluster(sbi, MFT_REC_VOL * sbi->record_size); sbi->mft.ni = ni; init_rwsem(&ni->file.run_lock); if (!run_add_entry(&ni->file.run, 0, t64, t32, true)) { err = -ENOMEM; goto out; } } err = mi_read(&ni->mi, ino == MFT_REC_MFT); if (err) goto out; rec = ni->mi.mrec; if (sbi->flags & NTFS_FLAGS_LOG_REPLAYING) { ; } else if (ref->seq != rec->seq) { err = -EINVAL; ntfs_err(sb, "MFT: r=%lx, expect seq=%x instead of %x!", ino, le16_to_cpu(ref->seq), le16_to_cpu(rec->seq)); goto out; } else if (!is_rec_inuse(rec)) { err = -EINVAL; ntfs_err(sb, "Inode r=%x is not in use!", (u32)ino); goto out; } if (le32_to_cpu(rec->total) != sbi->record_size) { /* Bad inode? */ err = -EINVAL; goto out; } if (!is_rec_base(rec)) goto Ok; /* Record should contain $I30 root. */ is_dir = rec->flags & RECORD_FLAG_DIR; inode->i_generation = le16_to_cpu(rec->seq); /* Enumerate all struct Attributes MFT. */ le = NULL; attr = NULL; /* * To reduce tab pressure use goto instead of * while( (attr = ni_enum_attr_ex(ni, attr, &le, NULL) )) */ next_attr: run = NULL; err = -EINVAL; attr = ni_enum_attr_ex(ni, attr, &le, NULL); if (!attr) goto end_enum; if (le && le->vcn) { /* This is non primary attribute segment. Ignore if not MFT. */ if (ino != MFT_REC_MFT || attr->type != ATTR_DATA) goto next_attr; run = &ni->file.run; asize = le32_to_cpu(attr->size); goto attr_unpack_run; } roff = attr->non_res ? 0 : le16_to_cpu(attr->res.data_off); rsize = attr->non_res ? 0 : le32_to_cpu(attr->res.data_size); asize = le32_to_cpu(attr->size); switch (attr->type) { case ATTR_STD: if (attr->non_res || asize < sizeof(struct ATTR_STD_INFO) + roff || rsize < sizeof(struct ATTR_STD_INFO)) goto out; if (std5) goto next_attr; std5 = Add2Ptr(attr, roff); #ifdef STATX_BTIME nt2kernel(std5->cr_time, &ni->i_crtime); #endif nt2kernel(std5->a_time, &inode->i_atime); nt2kernel(std5->c_time, &inode->i_ctime); nt2kernel(std5->m_time, &inode->i_mtime); ni->std_fa = std5->fa; if (asize >= sizeof(struct ATTR_STD_INFO5) + roff && rsize >= sizeof(struct ATTR_STD_INFO5)) ni->std_security_id = std5->security_id; goto next_attr; case ATTR_LIST: if (attr->name_len || le || ino == MFT_REC_LOG) goto out; err = ntfs_load_attr_list(ni, attr); if (err) goto out; le = NULL; attr = NULL; goto next_attr; case ATTR_NAME: if (attr->non_res || asize < SIZEOF_ATTRIBUTE_FILENAME + roff || rsize < SIZEOF_ATTRIBUTE_FILENAME) goto out; fname = Add2Ptr(attr, roff); if (fname->type == FILE_NAME_DOS) goto next_attr; names += 1; if (name && name->len == fname->name_len && !ntfs_cmp_names_cpu(name, (struct le_str *)&fname->name_len, NULL, false)) is_match = true; goto next_attr; case ATTR_DATA: if (is_dir) { /* Ignore data attribute in dir record. */ goto next_attr; } if (ino == MFT_REC_BADCLUST && !attr->non_res) goto next_attr; if (attr->name_len && ((ino != MFT_REC_BADCLUST || !attr->non_res || attr->name_len != ARRAY_SIZE(BAD_NAME) || memcmp(attr_name(attr), BAD_NAME, sizeof(BAD_NAME))) && (ino != MFT_REC_SECURE || !attr->non_res || attr->name_len != ARRAY_SIZE(SDS_NAME) || memcmp(attr_name(attr), SDS_NAME, sizeof(SDS_NAME))))) { /* File contains stream attribute. Ignore it. */ goto next_attr; } if (is_attr_sparsed(attr)) ni->std_fa |= FILE_ATTRIBUTE_SPARSE_FILE; else ni->std_fa &= ~FILE_ATTRIBUTE_SPARSE_FILE; if (is_attr_compressed(attr)) ni->std_fa |= FILE_ATTRIBUTE_COMPRESSED; else ni->std_fa &= ~FILE_ATTRIBUTE_COMPRESSED; if (is_attr_encrypted(attr)) ni->std_fa |= FILE_ATTRIBUTE_ENCRYPTED; else ni->std_fa &= ~FILE_ATTRIBUTE_ENCRYPTED; if (!attr->non_res) { ni->i_valid = inode->i_size = rsize; inode_set_bytes(inode, rsize); t32 = asize; } else { t32 = le16_to_cpu(attr->nres.run_off); } mode = S_IFREG | (0777 & sbi->options.fs_fmask_inv); if (!attr->non_res) { ni->ni_flags |= NI_FLAG_RESIDENT; goto next_attr; } inode_set_bytes(inode, attr_ondisk_size(attr)); ni->i_valid = le64_to_cpu(attr->nres.valid_size); inode->i_size = le64_to_cpu(attr->nres.data_size); if (!attr->nres.alloc_size) goto next_attr; run = ino == MFT_REC_BITMAP ? &sbi->used.bitmap.run : &ni->file.run; break; case ATTR_ROOT: if (attr->non_res) goto out; root = Add2Ptr(attr, roff); is_root = true; if (attr->name_len != ARRAY_SIZE(I30_NAME) || memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) goto next_attr; if (root->type != ATTR_NAME || root->rule != NTFS_COLLATION_TYPE_FILENAME) goto out; if (!is_dir) goto next_attr; ni->ni_flags |= NI_FLAG_DIR; err = indx_init(&ni->dir, sbi, attr, INDEX_MUTEX_I30); if (err) goto out; mode = sb->s_root ? (S_IFDIR | (0777 & sbi->options.fs_dmask_inv)) : (S_IFDIR | 0777); goto next_attr; case ATTR_ALLOC: if (!is_root || attr->name_len != ARRAY_SIZE(I30_NAME) || memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) goto next_attr; inode->i_size = le64_to_cpu(attr->nres.data_size); ni->i_valid = le64_to_cpu(attr->nres.valid_size); inode_set_bytes(inode, le64_to_cpu(attr->nres.alloc_size)); run = &ni->dir.alloc_run; break; case ATTR_BITMAP: if (ino == MFT_REC_MFT) { if (!attr->non_res) goto out; #ifndef CONFIG_NTFS3_64BIT_CLUSTER /* 0x20000000 = 2^32 / 8 */ if (le64_to_cpu(attr->nres.alloc_size) >= 0x20000000) goto out; #endif run = &sbi->mft.bitmap.run; break; } else if (is_dir && attr->name_len == ARRAY_SIZE(I30_NAME) && !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME)) && attr->non_res) { run = &ni->dir.bitmap_run; break; } goto next_attr; case ATTR_REPARSE: if (attr->name_len) goto next_attr; rp_fa = ni_parse_reparse(ni, attr, &rp); switch (rp_fa) { case REPARSE_LINK: if (!attr->non_res) { inode->i_size = rsize; inode_set_bytes(inode, rsize); t32 = asize; } else { inode->i_size = le64_to_cpu(attr->nres.data_size); t32 = le16_to_cpu(attr->nres.run_off); } /* Looks like normal symlink. */ ni->i_valid = inode->i_size; /* Clear directory bit. */ if (ni->ni_flags & NI_FLAG_DIR) { indx_clear(&ni->dir); memset(&ni->dir, 0, sizeof(ni->dir)); ni->ni_flags &= ~NI_FLAG_DIR; } else { run_close(&ni->file.run); } mode = S_IFLNK | 0777; is_dir = false; if (attr->non_res) { run = &ni->file.run; goto attr_unpack_run; // Double break. } break; case REPARSE_COMPRESSED: break; case REPARSE_DEDUPLICATED: break; } goto next_attr; case ATTR_EA_INFO: if (!attr->name_len && resident_data_ex(attr, sizeof(struct EA_INFO))) { ni->ni_flags |= NI_FLAG_EA; /* * ntfs_get_wsl_perm updates inode->i_uid, inode->i_gid, inode->i_mode */ inode->i_mode = mode; ntfs_get_wsl_perm(inode); mode = inode->i_mode; } goto next_attr; default: goto next_attr; } attr_unpack_run: roff = le16_to_cpu(attr->nres.run_off); t64 = le64_to_cpu(attr->nres.svcn); err = run_unpack_ex(run, sbi, ino, t64, le64_to_cpu(attr->nres.evcn), t64, Add2Ptr(attr, roff), asize - roff); if (err < 0) goto out; err = 0; goto next_attr; end_enum: if (!std5) goto out; if (!is_match && name) { /* Reuse rec as buffer for ascii name. */ err = -ENOENT; goto out; } if (std5->fa & FILE_ATTRIBUTE_READONLY) mode &= ~0222; if (!names) { err = -EINVAL; goto out; } if (names != le16_to_cpu(rec->hard_links)) { /* Correct minor error on the fly. Do not mark inode as dirty. */ rec->hard_links = cpu_to_le16(names); ni->mi.dirty = true; } set_nlink(inode, names); if (S_ISDIR(mode)) { ni->std_fa |= FILE_ATTRIBUTE_DIRECTORY; /* * Dot and dot-dot should be included in count but was not * included in enumeration. * Usually a hard links to directories are disabled. */ inode->i_op = &ntfs_dir_inode_operations; inode->i_fop = &ntfs_dir_operations; ni->i_valid = 0; } else if (S_ISLNK(mode)) { ni->std_fa &= ~FILE_ATTRIBUTE_DIRECTORY; inode->i_op = &ntfs_link_inode_operations; inode->i_fop = NULL; inode_nohighmem(inode); // ?? } else if (S_ISREG(mode)) { ni->std_fa &= ~FILE_ATTRIBUTE_DIRECTORY; inode->i_op = &ntfs_file_inode_operations; inode->i_fop = &ntfs_file_operations; inode->i_mapping->a_ops = is_compressed(ni) ? &ntfs_aops_cmpr : &ntfs_aops; if (ino != MFT_REC_MFT) init_rwsem(&ni->file.run_lock); } else if (S_ISCHR(mode) || S_ISBLK(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) { inode->i_op = &ntfs_special_inode_operations; init_special_inode(inode, mode, inode->i_rdev); } else if (fname && fname->home.low == cpu_to_le32(MFT_REC_EXTEND) && fname->home.seq == cpu_to_le16(MFT_REC_EXTEND)) { /* Records in $Extend are not a files or general directories. */ } else { err = -EINVAL; goto out; } if ((sbi->options.sys_immutable && (std5->fa & FILE_ATTRIBUTE_SYSTEM)) && !S_ISFIFO(mode) && !S_ISSOCK(mode) && !S_ISLNK(mode)) { inode->i_flags |= S_IMMUTABLE; } else { inode->i_flags &= ~S_IMMUTABLE; } inode->i_mode = mode; if (!(ni->ni_flags & NI_FLAG_EA)) { /* If no xattr then no security (stored in xattr). */ inode->i_flags |= S_NOSEC; } Ok: if (ino == MFT_REC_MFT && !sb->s_root) sbi->mft.ni = NULL; unlock_new_inode(inode); return inode; out: if (ino == MFT_REC_MFT && !sb->s_root) sbi->mft.ni = NULL; iget_failed(inode); return ERR_PTR(err); } /* * ntfs_test_inode * * Return: 1 if match. */ static int ntfs_test_inode(struct inode *inode, void *data) { struct MFT_REF *ref = data; return ino_get(ref) == inode->i_ino; } static int ntfs_set_inode(struct inode *inode, void *data) { const struct MFT_REF *ref = data; inode->i_ino = ino_get(ref); return 0; } struct inode *ntfs_iget5(struct super_block *sb, const struct MFT_REF *ref, const struct cpu_str *name) { struct inode *inode; inode = iget5_locked(sb, ino_get(ref), ntfs_test_inode, ntfs_set_inode, (void *)ref); if (unlikely(!inode)) return ERR_PTR(-ENOMEM); /* If this is a freshly allocated inode, need to read it now. */ if (inode->i_state & I_NEW) inode = ntfs_read_mft(inode, name, ref); else if (ref->seq != ntfs_i(inode)->mi.mrec->seq) { /* Inode overlaps? */ make_bad_inode(inode); } return inode; } enum get_block_ctx { GET_BLOCK_GENERAL = 0, GET_BLOCK_WRITE_BEGIN = 1, GET_BLOCK_DIRECT_IO_R = 2, GET_BLOCK_DIRECT_IO_W = 3, GET_BLOCK_BMAP = 4, }; static noinline int ntfs_get_block_vbo(struct inode *inode, u64 vbo, struct buffer_head *bh, int create, enum get_block_ctx ctx) { struct super_block *sb = inode->i_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; struct ntfs_inode *ni = ntfs_i(inode); struct page *page = bh->b_page; u8 cluster_bits = sbi->cluster_bits; u32 block_size = sb->s_blocksize; u64 bytes, lbo, valid; u32 off; int err; CLST vcn, lcn, len; bool new; /* Clear previous state. */ clear_buffer_new(bh); clear_buffer_uptodate(bh); /* Direct write uses 'create=0'. */ if (!create && vbo >= ni->i_valid) { /* Out of valid. */ return 0; } if (vbo >= inode->i_size) { /* Out of size. */ return 0; } if (is_resident(ni)) { ni_lock(ni); err = attr_data_read_resident(ni, page); ni_unlock(ni); if (!err) set_buffer_uptodate(bh); bh->b_size = block_size; return err; } vcn = vbo >> cluster_bits; off = vbo & sbi->cluster_mask; new = false; err = attr_data_get_block(ni, vcn, 1, &lcn, &len, create ? &new : NULL); if (err) goto out; if (!len) return 0; bytes = ((u64)len << cluster_bits) - off; if (lcn == SPARSE_LCN) { if (!create) { if (bh->b_size > bytes) bh->b_size = bytes; return 0; } WARN_ON(1); } if (new) { set_buffer_new(bh); if ((len << cluster_bits) > block_size) ntfs_sparse_cluster(inode, page, vcn, len); } lbo = ((u64)lcn << cluster_bits) + off; set_buffer_mapped(bh); bh->b_bdev = sb->s_bdev; bh->b_blocknr = lbo >> sb->s_blocksize_bits; valid = ni->i_valid; if (ctx == GET_BLOCK_DIRECT_IO_W) { /* ntfs_direct_IO will update ni->i_valid. */ if (vbo >= valid) set_buffer_new(bh); } else if (create) { /* Normal write. */ if (bytes > bh->b_size) bytes = bh->b_size; if (vbo >= valid) set_buffer_new(bh); if (vbo + bytes > valid) { ni->i_valid = vbo + bytes; mark_inode_dirty(inode); } } else if (vbo >= valid) { /* Read out of valid data. */ /* Should never be here 'cause already checked. */ clear_buffer_mapped(bh); } else if (vbo + bytes <= valid) { /* Normal read. */ } else if (vbo + block_size <= valid) { /* Normal short read. */ bytes = block_size; } else { /* * Read across valid size: vbo < valid && valid < vbo + block_size */ bytes = block_size; if (page) { u32 voff = valid - vbo; bh->b_size = block_size; off = vbo & (PAGE_SIZE - 1); set_bh_page(bh, page, off); ll_rw_block(REQ_OP_READ, 0, 1, &bh); wait_on_buffer(bh); if (!buffer_uptodate(bh)) { err = -EIO; goto out; } zero_user_segment(page, off + voff, off + block_size); } } if (bh->b_size > bytes) bh->b_size = bytes; #ifndef __LP64__ if (ctx == GET_BLOCK_DIRECT_IO_W || ctx == GET_BLOCK_DIRECT_IO_R) { static_assert(sizeof(size_t) < sizeof(loff_t)); if (bytes > 0x40000000u) bh->b_size = 0x40000000u; } #endif return 0; out: return err; } int ntfs_get_block(struct inode *inode, sector_t vbn, struct buffer_head *bh_result, int create) { return ntfs_get_block_vbo(inode, (u64)vbn << inode->i_blkbits, bh_result, create, GET_BLOCK_GENERAL); } static int ntfs_get_block_bmap(struct inode *inode, sector_t vsn, struct buffer_head *bh_result, int create) { return ntfs_get_block_vbo(inode, (u64)vsn << inode->i_sb->s_blocksize_bits, bh_result, create, GET_BLOCK_BMAP); } static sector_t ntfs_bmap(struct address_space *mapping, sector_t block) { return generic_block_bmap(mapping, block, ntfs_get_block_bmap); } static int ntfs_readpage(struct file *file, struct page *page) { int err; struct address_space *mapping = page->mapping; struct inode *inode = mapping->host; struct ntfs_inode *ni = ntfs_i(inode); if (is_resident(ni)) { ni_lock(ni); err = attr_data_read_resident(ni, page); ni_unlock(ni); if (err != E_NTFS_NONRESIDENT) { unlock_page(page); return err; } } if (is_compressed(ni)) { ni_lock(ni); err = ni_readpage_cmpr(ni, page); ni_unlock(ni); return err; } /* Normal + sparse files. */ return mpage_readpage(page, ntfs_get_block); } static void ntfs_readahead(struct readahead_control *rac) { struct address_space *mapping = rac->mapping; struct inode *inode = mapping->host; struct ntfs_inode *ni = ntfs_i(inode); u64 valid; loff_t pos; if (is_resident(ni)) { /* No readahead for resident. */ return; } if (is_compressed(ni)) { /* No readahead for compressed. */ return; } valid = ni->i_valid; pos = readahead_pos(rac); if (valid < i_size_read(inode) && pos <= valid && valid < pos + readahead_length(rac)) { /* Range cross 'valid'. Read it page by page. */ return; } mpage_readahead(rac, ntfs_get_block); } static int ntfs_get_block_direct_IO_R(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return ntfs_get_block_vbo(inode, (u64)iblock << inode->i_blkbits, bh_result, create, GET_BLOCK_DIRECT_IO_R); } static int ntfs_get_block_direct_IO_W(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return ntfs_get_block_vbo(inode, (u64)iblock << inode->i_blkbits, bh_result, create, GET_BLOCK_DIRECT_IO_W); } static ssize_t ntfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; struct ntfs_inode *ni = ntfs_i(inode); loff_t vbo = iocb->ki_pos; loff_t end; int wr = iov_iter_rw(iter) & WRITE; loff_t valid; ssize_t ret; if (is_resident(ni)) { /* Switch to buffered write. */ ret = 0; goto out; } ret = blockdev_direct_IO(iocb, inode, iter, wr ? ntfs_get_block_direct_IO_W : ntfs_get_block_direct_IO_R); if (ret <= 0) goto out; end = vbo + ret; valid = ni->i_valid; if (wr) { if (end > valid && !S_ISBLK(inode->i_mode)) { ni->i_valid = end; mark_inode_dirty(inode); } } else if (vbo < valid && valid < end) { /* Fix page. */ iov_iter_revert(iter, end - valid); iov_iter_zero(end - valid, iter); } out: return ret; } int ntfs_set_size(struct inode *inode, u64 new_size) { struct super_block *sb = inode->i_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; struct ntfs_inode *ni = ntfs_i(inode); int err; /* Check for maximum file size. */ if (is_sparsed(ni) || is_compressed(ni)) { if (new_size > sbi->maxbytes_sparse) { err = -EFBIG; goto out; } } else if (new_size > sbi->maxbytes) { err = -EFBIG; goto out; } ni_lock(ni); down_write(&ni->file.run_lock); err = attr_set_size(ni, ATTR_DATA, NULL, 0, &ni->file.run, new_size, &ni->i_valid, true, NULL); up_write(&ni->file.run_lock); ni_unlock(ni); mark_inode_dirty(inode); out: return err; } static int ntfs_writepage(struct page *page, struct writeback_control *wbc) { struct address_space *mapping = page->mapping; struct inode *inode = mapping->host; struct ntfs_inode *ni = ntfs_i(inode); int err; if (is_resident(ni)) { ni_lock(ni); err = attr_data_write_resident(ni, page); ni_unlock(ni); if (err != E_NTFS_NONRESIDENT) { unlock_page(page); return err; } } return block_write_full_page(page, ntfs_get_block, wbc); } static int ntfs_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct inode *inode = mapping->host; struct ntfs_inode *ni = ntfs_i(inode); /* Redirect call to 'ntfs_writepage' for resident files. */ get_block_t *get_block = is_resident(ni) ? NULL : &ntfs_get_block; return mpage_writepages(mapping, wbc, get_block); } static int ntfs_get_block_write_begin(struct inode *inode, sector_t vbn, struct buffer_head *bh_result, int create) { return ntfs_get_block_vbo(inode, (u64)vbn << inode->i_blkbits, bh_result, create, GET_BLOCK_WRITE_BEGIN); } static int ntfs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, u32 len, u32 flags, struct page **pagep, void **fsdata) { int err; struct inode *inode = mapping->host; struct ntfs_inode *ni = ntfs_i(inode); *pagep = NULL; if (is_resident(ni)) { struct page *page = grab_cache_page_write_begin( mapping, pos >> PAGE_SHIFT, flags); if (!page) { err = -ENOMEM; goto out; } ni_lock(ni); err = attr_data_read_resident(ni, page); ni_unlock(ni); if (!err) { *pagep = page; goto out; } unlock_page(page); put_page(page); if (err != E_NTFS_NONRESIDENT) goto out; } err = block_write_begin(mapping, pos, len, flags, pagep, ntfs_get_block_write_begin); out: return err; } /* * ntfs_write_end - Address_space_operations::write_end. */ static int ntfs_write_end(struct file *file, struct address_space *mapping, loff_t pos, u32 len, u32 copied, struct page *page, void *fsdata) { struct inode *inode = mapping->host; struct ntfs_inode *ni = ntfs_i(inode); u64 valid = ni->i_valid; bool dirty = false; int err; if (is_resident(ni)) { ni_lock(ni); err = attr_data_write_resident(ni, page); ni_unlock(ni); if (!err) { dirty = true; /* Clear any buffers in page. */ if (page_has_buffers(page)) { struct buffer_head *head, *bh; bh = head = page_buffers(page); do { clear_buffer_dirty(bh); clear_buffer_mapped(bh); set_buffer_uptodate(bh); } while (head != (bh = bh->b_this_page)); } SetPageUptodate(page); err = copied; } unlock_page(page); put_page(page); } else { err = generic_write_end(file, mapping, pos, len, copied, page, fsdata); } if (err >= 0) { if (!(ni->std_fa & FILE_ATTRIBUTE_ARCHIVE)) { inode->i_ctime = inode->i_mtime = current_time(inode); ni->std_fa |= FILE_ATTRIBUTE_ARCHIVE; dirty = true; } if (valid != ni->i_valid) { /* ni->i_valid is changed in ntfs_get_block_vbo. */ dirty = true; } if (dirty) mark_inode_dirty(inode); } return err; } int reset_log_file(struct inode *inode) { int err; loff_t pos = 0; u32 log_size = inode->i_size; struct address_space *mapping = inode->i_mapping; for (;;) { u32 len; void *kaddr; struct page *page; len = pos + PAGE_SIZE > log_size ? (log_size - pos) : PAGE_SIZE; err = block_write_begin(mapping, pos, len, 0, &page, ntfs_get_block_write_begin); if (err) goto out; kaddr = kmap_atomic(page); memset(kaddr, -1, len); kunmap_atomic(kaddr); flush_dcache_page(page); err = block_write_end(NULL, mapping, pos, len, len, page, NULL); if (err < 0) goto out; pos += len; if (pos >= log_size) break; balance_dirty_pages_ratelimited(mapping); } out: mark_inode_dirty_sync(inode); return err; } int ntfs3_write_inode(struct inode *inode, struct writeback_control *wbc) { return _ni_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL); } int ntfs_sync_inode(struct inode *inode) { return _ni_write_inode(inode, 1); } /* * writeback_inode - Helper function for ntfs_flush_inodes(). * * This writes both the inode and the file data blocks, waiting * for in flight data blocks before the start of the call. It * does not wait for any io started during the call. */ static int writeback_inode(struct inode *inode) { int ret = sync_inode_metadata(inode, 0); if (!ret) ret = filemap_fdatawrite(inode->i_mapping); return ret; } /* * ntfs_flush_inodes * * Write data and metadata corresponding to i1 and i2. The io is * started but we do not wait for any of it to finish. * * filemap_flush() is used for the block device, so if there is a dirty * page for a block already in flight, we will not wait and start the * io over again. */ int ntfs_flush_inodes(struct super_block *sb, struct inode *i1, struct inode *i2) { int ret = 0; if (i1) ret = writeback_inode(i1); if (!ret && i2) ret = writeback_inode(i2); if (!ret) ret = filemap_flush(sb->s_bdev->bd_inode->i_mapping); return ret; } int inode_write_data(struct inode *inode, const void *data, size_t bytes) { pgoff_t idx; /* Write non resident data. */ for (idx = 0; bytes; idx++) { size_t op = bytes > PAGE_SIZE ? PAGE_SIZE : bytes; struct page *page = ntfs_map_page(inode->i_mapping, idx); if (IS_ERR(page)) return PTR_ERR(page); lock_page(page); WARN_ON(!PageUptodate(page)); ClearPageUptodate(page); memcpy(page_address(page), data, op); flush_dcache_page(page); SetPageUptodate(page); unlock_page(page); ntfs_unmap_page(page); bytes -= op; data = Add2Ptr(data, PAGE_SIZE); } return 0; } /* * ntfs_reparse_bytes * * Number of bytes for REPARSE_DATA_BUFFER(IO_REPARSE_TAG_SYMLINK) * for unicode string of @uni_len length. */ static inline u32 ntfs_reparse_bytes(u32 uni_len) { /* Header + unicode string + decorated unicode string. */ return sizeof(short) * (2 * uni_len + 4) + offsetof(struct REPARSE_DATA_BUFFER, SymbolicLinkReparseBuffer.PathBuffer); } static struct REPARSE_DATA_BUFFER * ntfs_create_reparse_buffer(struct ntfs_sb_info *sbi, const char *symname, u32 size, u16 *nsize) { int i, err; struct REPARSE_DATA_BUFFER *rp; __le16 *rp_name; typeof(rp->SymbolicLinkReparseBuffer) *rs; rp = kzalloc(ntfs_reparse_bytes(2 * size + 2), GFP_NOFS); if (!rp) return ERR_PTR(-ENOMEM); rs = &rp->SymbolicLinkReparseBuffer; rp_name = rs->PathBuffer; /* Convert link name to UTF-16. */ err = ntfs_nls_to_utf16(sbi, symname, size, (struct cpu_str *)(rp_name - 1), 2 * size, UTF16_LITTLE_ENDIAN); if (err < 0) goto out; /* err = the length of unicode name of symlink. */ *nsize = ntfs_reparse_bytes(err); if (*nsize > sbi->reparse.max_size) { err = -EFBIG; goto out; } /* Translate Linux '/' into Windows '\'. */ for (i = 0; i < err; i++) { if (rp_name[i] == cpu_to_le16('/')) rp_name[i] = cpu_to_le16('\\'); } rp->ReparseTag = IO_REPARSE_TAG_SYMLINK; rp->ReparseDataLength = cpu_to_le16(*nsize - offsetof(struct REPARSE_DATA_BUFFER, SymbolicLinkReparseBuffer)); /* PrintName + SubstituteName. */ rs->SubstituteNameOffset = cpu_to_le16(sizeof(short) * err); rs->SubstituteNameLength = cpu_to_le16(sizeof(short) * err + 8); rs->PrintNameLength = rs->SubstituteNameOffset; /* * TODO: Use relative path if possible to allow Windows to * parse this path. * 0-absolute path 1- relative path (SYMLINK_FLAG_RELATIVE). */ rs->Flags = 0; memmove(rp_name + err + 4, rp_name, sizeof(short) * err); /* Decorate SubstituteName. */ rp_name += err; rp_name[0] = cpu_to_le16('\\'); rp_name[1] = cpu_to_le16('?'); rp_name[2] = cpu_to_le16('?'); rp_name[3] = cpu_to_le16('\\'); return rp; out: kfree(rp); return ERR_PTR(err); } struct inode *ntfs_create_inode(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, const struct cpu_str *uni, umode_t mode, dev_t dev, const char *symname, u32 size, struct ntfs_fnd *fnd) { int err; struct super_block *sb = dir->i_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; const struct qstr *name = &dentry->d_name; CLST ino = 0; struct ntfs_inode *dir_ni = ntfs_i(dir); struct ntfs_inode *ni = NULL; struct inode *inode = NULL; struct ATTRIB *attr; struct ATTR_STD_INFO5 *std5; struct ATTR_FILE_NAME *fname; struct MFT_REC *rec; u32 asize, dsize, sd_size; enum FILE_ATTRIBUTE fa; __le32 security_id = SECURITY_ID_INVALID; CLST vcn; const void *sd; u16 t16, nsize = 0, aid = 0; struct INDEX_ROOT *root, *dir_root; struct NTFS_DE *e, *new_de = NULL; struct REPARSE_DATA_BUFFER *rp = NULL; bool rp_inserted = false; dir_root = indx_get_root(&dir_ni->dir, dir_ni, NULL, NULL); if (!dir_root) return ERR_PTR(-EINVAL); if (S_ISDIR(mode)) { /* Use parent's directory attributes. */ fa = dir_ni->std_fa | FILE_ATTRIBUTE_DIRECTORY | FILE_ATTRIBUTE_ARCHIVE; /* * By default child directory inherits parent attributes. * Root directory is hidden + system. * Make an exception for children in root. */ if (dir->i_ino == MFT_REC_ROOT) fa &= ~(FILE_ATTRIBUTE_HIDDEN | FILE_ATTRIBUTE_SYSTEM); } else if (S_ISLNK(mode)) { /* It is good idea that link should be the same type (file/dir) as target */ fa = FILE_ATTRIBUTE_REPARSE_POINT; /* * Linux: there are dir/file/symlink and so on. * NTFS: symlinks are "dir + reparse" or "file + reparse" * It is good idea to create: * dir + reparse if 'symname' points to directory * or * file + reparse if 'symname' points to file * Unfortunately kern_path hangs if symname contains 'dir'. */ /* * struct path path; * * if (!kern_path(symname, LOOKUP_FOLLOW, &path)){ * struct inode *target = d_inode(path.dentry); * * if (S_ISDIR(target->i_mode)) * fa |= FILE_ATTRIBUTE_DIRECTORY; * // if ( target->i_sb == sb ){ * // use relative path? * // } * path_put(&path); * } */ } else if (S_ISREG(mode)) { if (sbi->options.sparse) { /* Sparsed regular file, cause option 'sparse'. */ fa = FILE_ATTRIBUTE_SPARSE_FILE | FILE_ATTRIBUTE_ARCHIVE; } else if (dir_ni->std_fa & FILE_ATTRIBUTE_COMPRESSED) { /* Compressed regular file, if parent is compressed. */ fa = FILE_ATTRIBUTE_COMPRESSED | FILE_ATTRIBUTE_ARCHIVE; } else { /* Regular file, default attributes. */ fa = FILE_ATTRIBUTE_ARCHIVE; } } else { fa = FILE_ATTRIBUTE_ARCHIVE; } if (!(mode & 0222)) fa |= FILE_ATTRIBUTE_READONLY; /* Allocate PATH_MAX bytes. */ new_de = __getname(); if (!new_de) { err = -ENOMEM; goto out1; } /* Mark rw ntfs as dirty. it will be cleared at umount. */ ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); /* Step 1: allocate and fill new mft record. */ err = ntfs_look_free_mft(sbi, &ino, false, NULL, NULL); if (err) goto out2; ni = ntfs_new_inode(sbi, ino, fa & FILE_ATTRIBUTE_DIRECTORY); if (IS_ERR(ni)) { err = PTR_ERR(ni); ni = NULL; goto out3; } inode = &ni->vfs_inode; inode_init_owner(mnt_userns, inode, dir, mode); mode = inode->i_mode; inode->i_atime = inode->i_mtime = inode->i_ctime = ni->i_crtime = current_time(inode); rec = ni->mi.mrec; rec->hard_links = cpu_to_le16(1); attr = Add2Ptr(rec, le16_to_cpu(rec->attr_off)); /* Get default security id. */ sd = s_default_security; sd_size = sizeof(s_default_security); if (is_ntfs3(sbi)) { security_id = dir_ni->std_security_id; if (le32_to_cpu(security_id) < SECURITY_ID_FIRST) { security_id = sbi->security.def_security_id; if (security_id == SECURITY_ID_INVALID && !ntfs_insert_security(sbi, sd, sd_size, &security_id, NULL)) sbi->security.def_security_id = security_id; } } /* Insert standard info. */ std5 = Add2Ptr(attr, SIZEOF_RESIDENT); if (security_id == SECURITY_ID_INVALID) { dsize = sizeof(struct ATTR_STD_INFO); } else { dsize = sizeof(struct ATTR_STD_INFO5); std5->security_id = security_id; ni->std_security_id = security_id; } asize = SIZEOF_RESIDENT + dsize; attr->type = ATTR_STD; attr->size = cpu_to_le32(asize); attr->id = cpu_to_le16(aid++); attr->res.data_off = SIZEOF_RESIDENT_LE; attr->res.data_size = cpu_to_le32(dsize); std5->cr_time = std5->m_time = std5->c_time = std5->a_time = kernel2nt(&inode->i_atime); ni->std_fa = fa; std5->fa = fa; attr = Add2Ptr(attr, asize); /* Insert file name. */ err = fill_name_de(sbi, new_de, name, uni); if (err) goto out4; mi_get_ref(&ni->mi, &new_de->ref); fname = (struct ATTR_FILE_NAME *)(new_de + 1); mi_get_ref(&dir_ni->mi, &fname->home); fname->dup.cr_time = fname->dup.m_time = fname->dup.c_time = fname->dup.a_time = std5->cr_time; fname->dup.alloc_size = fname->dup.data_size = 0; fname->dup.fa = std5->fa; fname->dup.ea_size = fname->dup.reparse = 0; dsize = le16_to_cpu(new_de->key_size); asize = ALIGN(SIZEOF_RESIDENT + dsize, 8); attr->type = ATTR_NAME; attr->size = cpu_to_le32(asize); attr->res.data_off = SIZEOF_RESIDENT_LE; attr->res.flags = RESIDENT_FLAG_INDEXED; attr->id = cpu_to_le16(aid++); attr->res.data_size = cpu_to_le32(dsize); memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), fname, dsize); attr = Add2Ptr(attr, asize); if (security_id == SECURITY_ID_INVALID) { /* Insert security attribute. */ asize = SIZEOF_RESIDENT + ALIGN(sd_size, 8); attr->type = ATTR_SECURE; attr->size = cpu_to_le32(asize); attr->id = cpu_to_le16(aid++); attr->res.data_off = SIZEOF_RESIDENT_LE; attr->res.data_size = cpu_to_le32(sd_size); memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), sd, sd_size); attr = Add2Ptr(attr, asize); } attr->id = cpu_to_le16(aid++); if (fa & FILE_ATTRIBUTE_DIRECTORY) { /* * Regular directory or symlink to directory. * Create root attribute. */ dsize = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE); asize = sizeof(I30_NAME) + SIZEOF_RESIDENT + dsize; attr->type = ATTR_ROOT; attr->size = cpu_to_le32(asize); attr->name_len = ARRAY_SIZE(I30_NAME); attr->name_off = SIZEOF_RESIDENT_LE; attr->res.data_off = cpu_to_le16(sizeof(I30_NAME) + SIZEOF_RESIDENT); attr->res.data_size = cpu_to_le32(dsize); memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), I30_NAME, sizeof(I30_NAME)); root = Add2Ptr(attr, sizeof(I30_NAME) + SIZEOF_RESIDENT); memcpy(root, dir_root, offsetof(struct INDEX_ROOT, ihdr)); root->ihdr.de_off = cpu_to_le32(sizeof(struct INDEX_HDR)); // 0x10 root->ihdr.used = cpu_to_le32(sizeof(struct INDEX_HDR) + sizeof(struct NTFS_DE)); root->ihdr.total = root->ihdr.used; e = Add2Ptr(root, sizeof(struct INDEX_ROOT)); e->size = cpu_to_le16(sizeof(struct NTFS_DE)); e->flags = NTFS_IE_LAST; } else if (S_ISLNK(mode)) { /* * Symlink to file. * Create empty resident data attribute. */ asize = SIZEOF_RESIDENT; /* Insert empty ATTR_DATA */ attr->type = ATTR_DATA; attr->size = cpu_to_le32(SIZEOF_RESIDENT); attr->name_off = SIZEOF_RESIDENT_LE; attr->res.data_off = SIZEOF_RESIDENT_LE; } else if (S_ISREG(mode)) { /* * Regular file. Create empty non resident data attribute. */ attr->type = ATTR_DATA; attr->non_res = 1; attr->nres.evcn = cpu_to_le64(-1ll); if (fa & FILE_ATTRIBUTE_SPARSE_FILE) { attr->size = cpu_to_le32(SIZEOF_NONRESIDENT_EX + 8); attr->name_off = SIZEOF_NONRESIDENT_EX_LE; attr->flags = ATTR_FLAG_SPARSED; asize = SIZEOF_NONRESIDENT_EX + 8; } else if (fa & FILE_ATTRIBUTE_COMPRESSED) { attr->size = cpu_to_le32(SIZEOF_NONRESIDENT_EX + 8); attr->name_off = SIZEOF_NONRESIDENT_EX_LE; attr->flags = ATTR_FLAG_COMPRESSED; attr->nres.c_unit = COMPRESSION_UNIT; asize = SIZEOF_NONRESIDENT_EX + 8; } else { attr->size = cpu_to_le32(SIZEOF_NONRESIDENT + 8); attr->name_off = SIZEOF_NONRESIDENT_LE; asize = SIZEOF_NONRESIDENT + 8; } attr->nres.run_off = attr->name_off; } else { /* * Node. Create empty resident data attribute. */ attr->type = ATTR_DATA; attr->size = cpu_to_le32(SIZEOF_RESIDENT); attr->name_off = SIZEOF_RESIDENT_LE; if (fa & FILE_ATTRIBUTE_SPARSE_FILE) attr->flags = ATTR_FLAG_SPARSED; else if (fa & FILE_ATTRIBUTE_COMPRESSED) attr->flags = ATTR_FLAG_COMPRESSED; attr->res.data_off = SIZEOF_RESIDENT_LE; asize = SIZEOF_RESIDENT; ni->ni_flags |= NI_FLAG_RESIDENT; } if (S_ISDIR(mode)) { ni->ni_flags |= NI_FLAG_DIR; err = indx_init(&ni->dir, sbi, attr, INDEX_MUTEX_I30); if (err) goto out4; } else if (S_ISLNK(mode)) { rp = ntfs_create_reparse_buffer(sbi, symname, size, &nsize); if (IS_ERR(rp)) { err = PTR_ERR(rp); rp = NULL; goto out4; } /* * Insert ATTR_REPARSE. */ attr = Add2Ptr(attr, asize); attr->type = ATTR_REPARSE; attr->id = cpu_to_le16(aid++); /* Resident or non resident? */ asize = ALIGN(SIZEOF_RESIDENT + nsize, 8); t16 = PtrOffset(rec, attr); /* 0x78 - the size of EA + EAINFO to store WSL */ if (asize + t16 + 0x78 + 8 > sbi->record_size) { CLST alen; CLST clst = bytes_to_cluster(sbi, nsize); /* Bytes per runs. */ t16 = sbi->record_size - t16 - SIZEOF_NONRESIDENT; attr->non_res = 1; attr->nres.evcn = cpu_to_le64(clst - 1); attr->name_off = SIZEOF_NONRESIDENT_LE; attr->nres.run_off = attr->name_off; attr->nres.data_size = cpu_to_le64(nsize); attr->nres.valid_size = attr->nres.data_size; attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, nsize)); err = attr_allocate_clusters(sbi, &ni->file.run, 0, 0, clst, NULL, 0, &alen, 0, NULL); if (err) goto out5; err = run_pack(&ni->file.run, 0, clst, Add2Ptr(attr, SIZEOF_NONRESIDENT), t16, &vcn); if (err < 0) goto out5; if (vcn != clst) { err = -EINVAL; goto out5; } asize = SIZEOF_NONRESIDENT + ALIGN(err, 8); inode->i_size = nsize; } else { attr->res.data_off = SIZEOF_RESIDENT_LE; attr->res.data_size = cpu_to_le32(nsize); memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), rp, nsize); inode->i_size = nsize; nsize = 0; } attr->size = cpu_to_le32(asize); err = ntfs_insert_reparse(sbi, IO_REPARSE_TAG_SYMLINK, &new_de->ref); if (err) goto out5; rp_inserted = true; } attr = Add2Ptr(attr, asize); attr->type = ATTR_END; rec->used = cpu_to_le32(PtrOffset(rec, attr) + 8); rec->next_attr_id = cpu_to_le16(aid); /* Step 2: Add new name in index. */ err = indx_insert_entry(&dir_ni->dir, dir_ni, new_de, sbi, fnd, 0); if (err) goto out6; inode->i_generation = le16_to_cpu(rec->seq); dir->i_mtime = dir->i_ctime = inode->i_atime; if (S_ISDIR(mode)) { inode->i_op = &ntfs_dir_inode_operations; inode->i_fop = &ntfs_dir_operations; } else if (S_ISLNK(mode)) { inode->i_op = &ntfs_link_inode_operations; inode->i_fop = NULL; inode->i_mapping->a_ops = &ntfs_aops; } else if (S_ISREG(mode)) { inode->i_op = &ntfs_file_inode_operations; inode->i_fop = &ntfs_file_operations; inode->i_mapping->a_ops = is_compressed(ni) ? &ntfs_aops_cmpr : &ntfs_aops; init_rwsem(&ni->file.run_lock); } else { inode->i_op = &ntfs_special_inode_operations; init_special_inode(inode, mode, dev); } #ifdef CONFIG_NTFS3_FS_POSIX_ACL if (!S_ISLNK(mode) && (sb->s_flags & SB_POSIXACL)) { err = ntfs_init_acl(mnt_userns, inode, dir); if (err) goto out6; } else #endif { inode->i_flags |= S_NOSEC; } /* Write non resident data. */ if (nsize) { err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rp, nsize); if (err) goto out7; } /* * Call 'd_instantiate' after inode->i_op is set * but before finish_open. */ d_instantiate(dentry, inode); ntfs_save_wsl_perm(inode); mark_inode_dirty(dir); mark_inode_dirty(inode); /* Normal exit. */ goto out2; out7: /* Undo 'indx_insert_entry'. */ indx_delete_entry(&dir_ni->dir, dir_ni, new_de + 1, le16_to_cpu(new_de->key_size), sbi); out6: if (rp_inserted) ntfs_remove_reparse(sbi, IO_REPARSE_TAG_SYMLINK, &new_de->ref); out5: if (S_ISDIR(mode) || run_is_empty(&ni->file.run)) goto out4; run_deallocate(sbi, &ni->file.run, false); out4: clear_rec_inuse(rec); clear_nlink(inode); ni->mi.dirty = false; discard_new_inode(inode); out3: ntfs_mark_rec_free(sbi, ino); out2: __putname(new_de); kfree(rp); out1: if (err) return ERR_PTR(err); unlock_new_inode(inode); return inode; } int ntfs_link_inode(struct inode *inode, struct dentry *dentry) { int err; struct ntfs_inode *ni = ntfs_i(inode); struct ntfs_sb_info *sbi = inode->i_sb->s_fs_info; struct NTFS_DE *de; struct ATTR_FILE_NAME *de_name; /* Allocate PATH_MAX bytes. */ de = __getname(); if (!de) return -ENOMEM; /* Mark rw ntfs as dirty. It will be cleared at umount. */ ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); /* Construct 'de'. */ err = fill_name_de(sbi, de, &dentry->d_name, NULL); if (err) goto out; de_name = (struct ATTR_FILE_NAME *)(de + 1); /* Fill duplicate info. */ de_name->dup.cr_time = de_name->dup.m_time = de_name->dup.c_time = de_name->dup.a_time = kernel2nt(&inode->i_ctime); de_name->dup.alloc_size = de_name->dup.data_size = cpu_to_le64(inode->i_size); de_name->dup.fa = ni->std_fa; de_name->dup.ea_size = de_name->dup.reparse = 0; err = ni_add_name(ntfs_i(d_inode(dentry->d_parent)), ni, de); out: __putname(de); return err; } /* * ntfs_unlink_inode * * inode_operations::unlink * inode_operations::rmdir */ int ntfs_unlink_inode(struct inode *dir, const struct dentry *dentry) { int err; struct ntfs_sb_info *sbi = dir->i_sb->s_fs_info; struct inode *inode = d_inode(dentry); struct ntfs_inode *ni = ntfs_i(inode); struct ntfs_inode *dir_ni = ntfs_i(dir); struct NTFS_DE *de, *de2 = NULL; int undo_remove; if (ntfs_is_meta_file(sbi, ni->mi.rno)) return -EINVAL; /* Allocate PATH_MAX bytes. */ de = __getname(); if (!de) return -ENOMEM; ni_lock(ni); if (S_ISDIR(inode->i_mode) && !dir_is_empty(inode)) { err = -ENOTEMPTY; goto out; } err = fill_name_de(sbi, de, &dentry->d_name, NULL); if (err < 0) goto out; undo_remove = 0; err = ni_remove_name(dir_ni, ni, de, &de2, &undo_remove); if (!err) { drop_nlink(inode); dir->i_mtime = dir->i_ctime = current_time(dir); mark_inode_dirty(dir); inode->i_ctime = dir->i_ctime; if (inode->i_nlink) mark_inode_dirty(inode); } else if (!ni_remove_name_undo(dir_ni, ni, de, de2, undo_remove)) { make_bad_inode(inode); ntfs_inode_err(inode, "failed to undo unlink"); ntfs_set_state(sbi, NTFS_DIRTY_ERROR); } else { if (ni_is_dirty(dir)) mark_inode_dirty(dir); if (ni_is_dirty(inode)) mark_inode_dirty(inode); } out: ni_unlock(ni); __putname(de); return err; } void ntfs_evict_inode(struct inode *inode) { truncate_inode_pages_final(&inode->i_data); if (inode->i_nlink) _ni_write_inode(inode, inode_needs_sync(inode)); invalidate_inode_buffers(inode); clear_inode(inode); ni_clear(ntfs_i(inode)); } static noinline int ntfs_readlink_hlp(struct inode *inode, char *buffer, int buflen) { int i, err = 0; struct ntfs_inode *ni = ntfs_i(inode); struct super_block *sb = inode->i_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; u64 i_size = inode->i_size; u16 nlen = 0; void *to_free = NULL; struct REPARSE_DATA_BUFFER *rp; struct le_str *uni; struct ATTRIB *attr; /* Reparse data present. Try to parse it. */ static_assert(!offsetof(struct REPARSE_DATA_BUFFER, ReparseTag)); static_assert(sizeof(u32) == sizeof(rp->ReparseTag)); *buffer = 0; /* Read into temporal buffer. */ if (i_size > sbi->reparse.max_size || i_size <= sizeof(u32)) { err = -EINVAL; goto out; } attr = ni_find_attr(ni, NULL, NULL, ATTR_REPARSE, NULL, 0, NULL, NULL); if (!attr) { err = -EINVAL; goto out; } if (!attr->non_res) { rp = resident_data_ex(attr, i_size); if (!rp) { err = -EINVAL; goto out; } } else { rp = kmalloc(i_size, GFP_NOFS); if (!rp) { err = -ENOMEM; goto out; } to_free = rp; err = ntfs_read_run_nb(sbi, &ni->file.run, 0, rp, i_size, NULL); if (err) goto out; } err = -EINVAL; /* Microsoft Tag. */ switch (rp->ReparseTag) { case IO_REPARSE_TAG_MOUNT_POINT: /* Mount points and junctions. */ /* Can we use 'Rp->MountPointReparseBuffer.PrintNameLength'? */ if (i_size <= offsetof(struct REPARSE_DATA_BUFFER, MountPointReparseBuffer.PathBuffer)) goto out; uni = Add2Ptr(rp, offsetof(struct REPARSE_DATA_BUFFER, MountPointReparseBuffer.PathBuffer) + le16_to_cpu(rp->MountPointReparseBuffer .PrintNameOffset) - 2); nlen = le16_to_cpu(rp->MountPointReparseBuffer.PrintNameLength); break; case IO_REPARSE_TAG_SYMLINK: /* FolderSymbolicLink */ /* Can we use 'Rp->SymbolicLinkReparseBuffer.PrintNameLength'? */ if (i_size <= offsetof(struct REPARSE_DATA_BUFFER, SymbolicLinkReparseBuffer.PathBuffer)) goto out; uni = Add2Ptr(rp, offsetof(struct REPARSE_DATA_BUFFER, SymbolicLinkReparseBuffer.PathBuffer) + le16_to_cpu(rp->SymbolicLinkReparseBuffer .PrintNameOffset) - 2); nlen = le16_to_cpu( rp->SymbolicLinkReparseBuffer.PrintNameLength); break; case IO_REPARSE_TAG_CLOUD: case IO_REPARSE_TAG_CLOUD_1: case IO_REPARSE_TAG_CLOUD_2: case IO_REPARSE_TAG_CLOUD_3: case IO_REPARSE_TAG_CLOUD_4: case IO_REPARSE_TAG_CLOUD_5: case IO_REPARSE_TAG_CLOUD_6: case IO_REPARSE_TAG_CLOUD_7: case IO_REPARSE_TAG_CLOUD_8: case IO_REPARSE_TAG_CLOUD_9: case IO_REPARSE_TAG_CLOUD_A: case IO_REPARSE_TAG_CLOUD_B: case IO_REPARSE_TAG_CLOUD_C: case IO_REPARSE_TAG_CLOUD_D: case IO_REPARSE_TAG_CLOUD_E: case IO_REPARSE_TAG_CLOUD_F: err = sizeof("OneDrive") - 1; if (err > buflen) err = buflen; memcpy(buffer, "OneDrive", err); goto out; default: if (IsReparseTagMicrosoft(rp->ReparseTag)) { /* Unknown Microsoft Tag. */ goto out; } if (!IsReparseTagNameSurrogate(rp->ReparseTag) || i_size <= sizeof(struct REPARSE_POINT)) { goto out; } /* Users tag. */ uni = Add2Ptr(rp, sizeof(struct REPARSE_POINT) - 2); nlen = le16_to_cpu(rp->ReparseDataLength) - sizeof(struct REPARSE_POINT); } /* Convert nlen from bytes to UNICODE chars. */ nlen >>= 1; /* Check that name is available. */ if (!nlen || &uni->name[nlen] > (__le16 *)Add2Ptr(rp, i_size)) goto out; /* If name is already zero terminated then truncate it now. */ if (!uni->name[nlen - 1]) nlen -= 1; uni->len = nlen; err = ntfs_utf16_to_nls(sbi, uni, buffer, buflen); if (err < 0) goto out; /* Translate Windows '\' into Linux '/'. */ for (i = 0; i < err; i++) { if (buffer[i] == '\\') buffer[i] = '/'; } /* Always set last zero. */ buffer[err] = 0; out: kfree(to_free); return err; } static const char *ntfs_get_link(struct dentry *de, struct inode *inode, struct delayed_call *done) { int err; char *ret; if (!de) return ERR_PTR(-ECHILD); ret = kmalloc(PAGE_SIZE, GFP_NOFS); if (!ret) return ERR_PTR(-ENOMEM); err = ntfs_readlink_hlp(inode, ret, PAGE_SIZE); if (err < 0) { kfree(ret); return ERR_PTR(err); } set_delayed_call(done, kfree_link, ret); return ret; } // clang-format off const struct inode_operations ntfs_link_inode_operations = { .get_link = ntfs_get_link, .setattr = ntfs3_setattr, .listxattr = ntfs_listxattr, .permission = ntfs_permission, .get_acl = ntfs_get_acl, .set_acl = ntfs_set_acl, }; const struct address_space_operations ntfs_aops = { .readpage = ntfs_readpage, .readahead = ntfs_readahead, .writepage = ntfs_writepage, .writepages = ntfs_writepages, .write_begin = ntfs_write_begin, .write_end = ntfs_write_end, .direct_IO = ntfs_direct_IO, .bmap = ntfs_bmap, .set_page_dirty = __set_page_dirty_buffers, }; const struct address_space_operations ntfs_aops_cmpr = { .readpage = ntfs_readpage, .readahead = ntfs_readahead, }; // clang-format on