// SPDX-License-Identifier: GPL-2.0-or-later /* * file.c * * File open, close, extend, truncate * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ocfs2.h" #include "alloc.h" #include "aops.h" #include "dir.h" #include "dlmglue.h" #include "extent_map.h" #include "file.h" #include "sysfile.h" #include "inode.h" #include "ioctl.h" #include "journal.h" #include "locks.h" #include "mmap.h" #include "suballoc.h" #include "super.h" #include "xattr.h" #include "acl.h" #include "quota.h" #include "refcounttree.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" static int ocfs2_init_file_private(struct inode *inode, struct file *file) { struct ocfs2_file_private *fp; fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); if (!fp) return -ENOMEM; fp->fp_file = file; mutex_init(&fp->fp_mutex); ocfs2_file_lock_res_init(&fp->fp_flock, fp); file->private_data = fp; return 0; } static void ocfs2_free_file_private(struct inode *inode, struct file *file) { struct ocfs2_file_private *fp = file->private_data; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (fp) { ocfs2_simple_drop_lockres(osb, &fp->fp_flock); ocfs2_lock_res_free(&fp->fp_flock); kfree(fp); file->private_data = NULL; } } static int ocfs2_file_open(struct inode *inode, struct file *file) { int status; int mode = file->f_flags; struct ocfs2_inode_info *oi = OCFS2_I(inode); trace_ocfs2_file_open(inode, file, file->f_path.dentry, (unsigned long long)oi->ip_blkno, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name, mode); if (file->f_mode & FMODE_WRITE) { status = dquot_initialize(inode); if (status) goto leave; } spin_lock(&oi->ip_lock); /* Check that the inode hasn't been wiped from disk by another * node. If it hasn't then we're safe as long as we hold the * spin lock until our increment of open count. */ if (oi->ip_flags & OCFS2_INODE_DELETED) { spin_unlock(&oi->ip_lock); status = -ENOENT; goto leave; } if (mode & O_DIRECT) oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; oi->ip_open_count++; spin_unlock(&oi->ip_lock); status = ocfs2_init_file_private(inode, file); if (status) { /* * We want to set open count back if we're failing the * open. */ spin_lock(&oi->ip_lock); oi->ip_open_count--; spin_unlock(&oi->ip_lock); } file->f_mode |= FMODE_NOWAIT; leave: return status; } static int ocfs2_file_release(struct inode *inode, struct file *file) { struct ocfs2_inode_info *oi = OCFS2_I(inode); spin_lock(&oi->ip_lock); if (!--oi->ip_open_count) oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; trace_ocfs2_file_release(inode, file, file->f_path.dentry, oi->ip_blkno, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name, oi->ip_open_count); spin_unlock(&oi->ip_lock); ocfs2_free_file_private(inode, file); return 0; } static int ocfs2_dir_open(struct inode *inode, struct file *file) { return ocfs2_init_file_private(inode, file); } static int ocfs2_dir_release(struct inode *inode, struct file *file) { ocfs2_free_file_private(inode, file); return 0; } static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, int datasync) { int err = 0; struct inode *inode = file->f_mapping->host; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_inode_info *oi = OCFS2_I(inode); journal_t *journal = osb->journal->j_journal; int ret; tid_t commit_tid; bool needs_barrier = false; trace_ocfs2_sync_file(inode, file, file->f_path.dentry, oi->ip_blkno, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name, (unsigned long long)datasync); if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; err = file_write_and_wait_range(file, start, end); if (err) return err; commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; if (journal->j_flags & JBD2_BARRIER && !jbd2_trans_will_send_data_barrier(journal, commit_tid)) needs_barrier = true; err = jbd2_complete_transaction(journal, commit_tid); if (needs_barrier) { ret = blkdev_issue_flush(inode->i_sb->s_bdev); if (!err) err = ret; } if (err) mlog_errno(err); return (err < 0) ? -EIO : 0; } int ocfs2_should_update_atime(struct inode *inode, struct vfsmount *vfsmnt) { struct timespec64 now; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return 0; if ((inode->i_flags & S_NOATIME) || ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) return 0; /* * We can be called with no vfsmnt structure - NFSD will * sometimes do this. * * Note that our action here is different than touch_atime() - * if we can't tell whether this is a noatime mount, then we * don't know whether to trust the value of s_atime_quantum. */ if (vfsmnt == NULL) return 0; if ((vfsmnt->mnt_flags & MNT_NOATIME) || ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) return 0; if (vfsmnt->mnt_flags & MNT_RELATIME) { if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) return 1; return 0; } now = current_time(inode); if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) return 0; else return 1; } int ocfs2_update_inode_atime(struct inode *inode, struct buffer_head *bh) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle; struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } /* * Don't use ocfs2_mark_inode_dirty() here as we don't always * have i_rwsem to guard against concurrent changes to other * inode fields. */ inode->i_atime = current_time(inode); di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_journal_dirty(handle, bh); out_commit: ocfs2_commit_trans(osb, handle); out: return ret; } int ocfs2_set_inode_size(handle_t *handle, struct inode *inode, struct buffer_head *fe_bh, u64 new_i_size) { int status; i_size_write(inode, new_i_size); inode->i_blocks = ocfs2_inode_sector_count(inode); inode->i_ctime = inode->i_mtime = current_time(inode); status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); if (status < 0) { mlog_errno(status); goto bail; } bail: return status; } int ocfs2_simple_size_update(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle = NULL; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_set_inode_size(handle, inode, di_bh, new_i_size); if (ret < 0) mlog_errno(ret); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_cow_file_pos(struct inode *inode, struct buffer_head *fe_bh, u64 offset) { int status; u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; unsigned int num_clusters = 0; unsigned int ext_flags = 0; /* * If the new offset is aligned to the range of the cluster, there is * no space for ocfs2_zero_range_for_truncate to fill, so no need to * CoW either. */ if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) return 0; status = ocfs2_get_clusters(inode, cpos, &phys, &num_clusters, &ext_flags); if (status) { mlog_errno(status); goto out; } if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) goto out; return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); out: return status; } static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh, u64 new_i_size) { int status; handle_t *handle; struct ocfs2_dinode *di; u64 cluster_bytes; /* * We need to CoW the cluster contains the offset if it is reflinked * since we will call ocfs2_zero_range_for_truncate later which will * write "0" from offset to the end of the cluster. */ status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); if (status) { mlog_errno(status); return status; } /* TODO: This needs to actually orphan the inode in this * transaction. */ handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out; } status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out_commit; } /* * Do this before setting i_size. */ cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, cluster_bytes); if (status) { mlog_errno(status); goto out_commit; } i_size_write(inode, new_i_size); inode->i_ctime = inode->i_mtime = current_time(inode); di = (struct ocfs2_dinode *) fe_bh->b_data; di->i_size = cpu_to_le64(new_i_size); di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_journal_dirty(handle, fe_bh); out_commit: ocfs2_commit_trans(osb, handle); out: return status; } int ocfs2_truncate_file(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int status = 0; struct ocfs2_dinode *fe = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); /* We trust di_bh because it comes from ocfs2_inode_lock(), which * already validated it */ fe = (struct ocfs2_dinode *) di_bh->b_data; trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)le64_to_cpu(fe->i_size), (unsigned long long)new_i_size); mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), "Inode %llu, inode i_size = %lld != di " "i_size = %llu, i_flags = 0x%x\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, i_size_read(inode), (unsigned long long)le64_to_cpu(fe->i_size), le32_to_cpu(fe->i_flags)); if (new_i_size > le64_to_cpu(fe->i_size)) { trace_ocfs2_truncate_file_error( (unsigned long long)le64_to_cpu(fe->i_size), (unsigned long long)new_i_size); status = -EINVAL; mlog_errno(status); goto bail; } down_write(&OCFS2_I(inode)->ip_alloc_sem); ocfs2_resv_discard(&osb->osb_la_resmap, &OCFS2_I(inode)->ip_la_data_resv); /* * The inode lock forced other nodes to sync and drop their * pages, which (correctly) happens even if we have a truncate * without allocation change - ocfs2 cluster sizes can be much * greater than page size, so we have to truncate them * anyway. */ if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); truncate_inode_pages(inode->i_mapping, new_i_size); status = ocfs2_truncate_inline(inode, di_bh, new_i_size, i_size_read(inode), 1); if (status) mlog_errno(status); goto bail_unlock_sem; } /* alright, we're going to need to do a full blown alloc size * change. Orphan the inode so that recovery can complete the * truncate if necessary. This does the task of marking * i_size. */ status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); if (status < 0) { mlog_errno(status); goto bail_unlock_sem; } unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); truncate_inode_pages(inode->i_mapping, new_i_size); status = ocfs2_commit_truncate(osb, inode, di_bh); if (status < 0) { mlog_errno(status); goto bail_unlock_sem; } /* TODO: orphan dir cleanup here. */ bail_unlock_sem: up_write(&OCFS2_I(inode)->ip_alloc_sem); bail: if (!status && OCFS2_I(inode)->ip_clusters == 0) status = ocfs2_try_remove_refcount_tree(inode, di_bh); return status; } /* * extend file allocation only here. * we'll update all the disk stuff, and oip->alloc_size * * expect stuff to be locked, a transaction started and enough data / * metadata reservations in the contexts. * * Will return -EAGAIN, and a reason if a restart is needed. * If passed in, *reason will always be set, even in error. */ int ocfs2_add_inode_data(struct ocfs2_super *osb, struct inode *inode, u32 *logical_offset, u32 clusters_to_add, int mark_unwritten, struct buffer_head *fe_bh, handle_t *handle, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, enum ocfs2_alloc_restarted *reason_ret) { struct ocfs2_extent_tree et; ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); return ocfs2_add_clusters_in_btree(handle, &et, logical_offset, clusters_to_add, mark_unwritten, data_ac, meta_ac, reason_ret); } static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, u32 clusters_to_add, int mark_unwritten) { int status = 0; int restart_func = 0; int credits; u32 prev_clusters; struct buffer_head *bh = NULL; struct ocfs2_dinode *fe = NULL; handle_t *handle = NULL; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *meta_ac = NULL; enum ocfs2_alloc_restarted why = RESTART_NONE; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_extent_tree et; int did_quota = 0; /* * Unwritten extent only exists for file systems which * support holes. */ BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); status = ocfs2_read_inode_block(inode, &bh); if (status < 0) { mlog_errno(status); goto leave; } fe = (struct ocfs2_dinode *) bh->b_data; restart_all: BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, &data_ac, &meta_ac); if (status) { mlog_errno(status); goto leave; } credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto leave; } restarted_transaction: trace_ocfs2_extend_allocation( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)i_size_read(inode), le32_to_cpu(fe->i_clusters), clusters_to_add, why, restart_func); status = dquot_alloc_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); if (status) goto leave; did_quota = 1; /* reserve a write to the file entry early on - that we if we * run out of credits in the allocation path, we can still * update i_size. */ status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } prev_clusters = OCFS2_I(inode)->ip_clusters; status = ocfs2_add_inode_data(osb, inode, &logical_start, clusters_to_add, mark_unwritten, bh, handle, data_ac, meta_ac, &why); if ((status < 0) && (status != -EAGAIN)) { if (status != -ENOSPC) mlog_errno(status); goto leave; } ocfs2_update_inode_fsync_trans(handle, inode, 1); ocfs2_journal_dirty(handle, bh); spin_lock(&OCFS2_I(inode)->ip_lock); clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); spin_unlock(&OCFS2_I(inode)->ip_lock); /* Release unused quota reservation */ dquot_free_space(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); did_quota = 0; if (why != RESTART_NONE && clusters_to_add) { if (why == RESTART_META) { restart_func = 1; status = 0; } else { BUG_ON(why != RESTART_TRANS); status = ocfs2_allocate_extend_trans(handle, 1); if (status < 0) { /* handle still has to be committed at * this point. */ status = -ENOMEM; mlog_errno(status); goto leave; } goto restarted_transaction; } } trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, le32_to_cpu(fe->i_clusters), (unsigned long long)le64_to_cpu(fe->i_size), OCFS2_I(inode)->ip_clusters, (unsigned long long)i_size_read(inode)); leave: if (status < 0 && did_quota) dquot_free_space(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); if (handle) { ocfs2_commit_trans(osb, handle); handle = NULL; } if (data_ac) { ocfs2_free_alloc_context(data_ac); data_ac = NULL; } if (meta_ac) { ocfs2_free_alloc_context(meta_ac); meta_ac = NULL; } if ((!status) && restart_func) { restart_func = 0; goto restart_all; } brelse(bh); bh = NULL; return status; } /* * While a write will already be ordering the data, a truncate will not. * Thus, we need to explicitly order the zeroed pages. */ static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, struct buffer_head *di_bh, loff_t start_byte, loff_t length) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle = NULL; int ret = 0; if (!ocfs2_should_order_data(inode)) goto out; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) mlog_errno(ret); ocfs2_update_inode_fsync_trans(handle, inode, 1); out: if (ret) { if (!IS_ERR(handle)) ocfs2_commit_trans(osb, handle); handle = ERR_PTR(ret); } return handle; } /* Some parts of this taken from generic_cont_expand, which turned out * to be too fragile to do exactly what we need without us having to * worry about recursive locking in ->write_begin() and ->write_end(). */ static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, u64 abs_to, struct buffer_head *di_bh) { struct address_space *mapping = inode->i_mapping; struct page *page; unsigned long index = abs_from >> PAGE_SHIFT; handle_t *handle; int ret = 0; unsigned zero_from, zero_to, block_start, block_end; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; BUG_ON(abs_from >= abs_to); BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); BUG_ON(abs_from & (inode->i_blkbits - 1)); handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, abs_from, abs_to - abs_from); if (IS_ERR(handle)) { ret = PTR_ERR(handle); goto out; } page = find_or_create_page(mapping, index, GFP_NOFS); if (!page) { ret = -ENOMEM; mlog_errno(ret); goto out_commit_trans; } /* Get the offsets within the page that we want to zero */ zero_from = abs_from & (PAGE_SIZE - 1); zero_to = abs_to & (PAGE_SIZE - 1); if (!zero_to) zero_to = PAGE_SIZE; trace_ocfs2_write_zero_page( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)abs_from, (unsigned long long)abs_to, index, zero_from, zero_to); /* We know that zero_from is block aligned */ for (block_start = zero_from; block_start < zero_to; block_start = block_end) { block_end = block_start + i_blocksize(inode); /* * block_start is block-aligned. Bump it by one to force * __block_write_begin and block_commit_write to zero the * whole block. */ ret = __block_write_begin(page, block_start + 1, 0, ocfs2_get_block); if (ret < 0) { mlog_errno(ret); goto out_unlock; } /* must not update i_size! */ ret = block_commit_write(page, block_start + 1, block_start + 1); if (ret < 0) mlog_errno(ret); else ret = 0; } /* * fs-writeback will release the dirty pages without page lock * whose offset are over inode size, the release happens at * block_write_full_page(). */ i_size_write(inode, abs_to); inode->i_blocks = ocfs2_inode_sector_count(inode); di->i_size = cpu_to_le64((u64)i_size_read(inode)); inode->i_mtime = inode->i_ctime = current_time(inode); di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); di->i_mtime_nsec = di->i_ctime_nsec; if (handle) { ocfs2_journal_dirty(handle, di_bh); ocfs2_update_inode_fsync_trans(handle, inode, 1); } out_unlock: unlock_page(page); put_page(page); out_commit_trans: if (handle) ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out: return ret; } /* * Find the next range to zero. We do this in terms of bytes because * that's what ocfs2_zero_extend() wants, and it is dealing with the * pagecache. We may return multiple extents. * * zero_start and zero_end are ocfs2_zero_extend()s current idea of what * needs to be zeroed. range_start and range_end return the next zeroing * range. A subsequent call should pass the previous range_end as its * zero_start. If range_end is 0, there's nothing to do. * * Unwritten extents are skipped over. Refcounted extents are CoWd. */ static int ocfs2_zero_extend_get_range(struct inode *inode, struct buffer_head *di_bh, u64 zero_start, u64 zero_end, u64 *range_start, u64 *range_end) { int rc = 0, needs_cow = 0; u32 p_cpos, zero_clusters = 0; u32 zero_cpos = zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); unsigned int num_clusters = 0; unsigned int ext_flags = 0; while (zero_cpos < last_cpos) { rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, &num_clusters, &ext_flags); if (rc) { mlog_errno(rc); goto out; } if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { zero_clusters = num_clusters; if (ext_flags & OCFS2_EXT_REFCOUNTED) needs_cow = 1; break; } zero_cpos += num_clusters; } if (!zero_clusters) { *range_end = 0; goto out; } while ((zero_cpos + zero_clusters) < last_cpos) { rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, &p_cpos, &num_clusters, &ext_flags); if (rc) { mlog_errno(rc); goto out; } if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) break; if (ext_flags & OCFS2_EXT_REFCOUNTED) needs_cow = 1; zero_clusters += num_clusters; } if ((zero_cpos + zero_clusters) > last_cpos) zero_clusters = last_cpos - zero_cpos; if (needs_cow) { rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, zero_clusters, UINT_MAX); if (rc) { mlog_errno(rc); goto out; } } *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); *range_end = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos + zero_clusters); out: return rc; } /* * Zero one range returned from ocfs2_zero_extend_get_range(). The caller * has made sure that the entire range needs zeroing. */ static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, u64 range_end, struct buffer_head *di_bh) { int rc = 0; u64 next_pos; u64 zero_pos = range_start; trace_ocfs2_zero_extend_range( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)range_start, (unsigned long long)range_end); BUG_ON(range_start >= range_end); while (zero_pos < range_end) { next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; if (next_pos > range_end) next_pos = range_end; rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); if (rc < 0) { mlog_errno(rc); break; } zero_pos = next_pos; /* * Very large extends have the potential to lock up * the cpu for extended periods of time. */ cond_resched(); } return rc; } int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, loff_t zero_to_size) { int ret = 0; u64 zero_start, range_start = 0, range_end = 0; struct super_block *sb = inode->i_sb; zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)zero_start, (unsigned long long)i_size_read(inode)); while (zero_start < zero_to_size) { ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, zero_to_size, &range_start, &range_end); if (ret) { mlog_errno(ret); break; } if (!range_end) break; /* Trim the ends */ if (range_start < zero_start) range_start = zero_start; if (range_end > zero_to_size) range_end = zero_to_size; ret = ocfs2_zero_extend_range(inode, range_start, range_end, di_bh); if (ret) { mlog_errno(ret); break; } zero_start = range_end; } return ret; } int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size, u64 zero_to) { int ret; u32 clusters_to_add; struct ocfs2_inode_info *oi = OCFS2_I(inode); /* * Only quota files call this without a bh, and they can't be * refcounted. */ BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); if (clusters_to_add < oi->ip_clusters) clusters_to_add = 0; else clusters_to_add -= oi->ip_clusters; if (clusters_to_add) { ret = ocfs2_extend_allocation(inode, oi->ip_clusters, clusters_to_add, 0); if (ret) { mlog_errno(ret); goto out; } } /* * Call this even if we don't add any clusters to the tree. We * still need to zero the area between the old i_size and the * new i_size. */ ret = ocfs2_zero_extend(inode, di_bh, zero_to); if (ret < 0) mlog_errno(ret); out: return ret; } static int ocfs2_extend_file(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int ret = 0; struct ocfs2_inode_info *oi = OCFS2_I(inode); BUG_ON(!di_bh); /* setattr sometimes calls us like this. */ if (new_i_size == 0) goto out; if (i_size_read(inode) == new_i_size) goto out; BUG_ON(new_i_size < i_size_read(inode)); /* * The alloc sem blocks people in read/write from reading our * allocation until we're done changing it. We depend on * i_rwsem to block other extend/truncate calls while we're * here. We even have to hold it for sparse files because there * might be some tail zeroing. */ down_write(&oi->ip_alloc_sem); if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { /* * We can optimize small extends by keeping the inodes * inline data. */ if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { up_write(&oi->ip_alloc_sem); goto out_update_size; } ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); if (ret) { up_write(&oi->ip_alloc_sem); mlog_errno(ret); goto out; } } if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) ret = ocfs2_zero_extend(inode, di_bh, new_i_size); else ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, new_i_size); up_write(&oi->ip_alloc_sem); if (ret < 0) { mlog_errno(ret); goto out; } out_update_size: ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); if (ret < 0) mlog_errno(ret); out: return ret; } int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, struct iattr *attr) { int status = 0, size_change; int inode_locked = 0; struct inode *inode = d_inode(dentry); struct super_block *sb = inode->i_sb; struct ocfs2_super *osb = OCFS2_SB(sb); struct buffer_head *bh = NULL; handle_t *handle = NULL; struct dquot *transfer_to[MAXQUOTAS] = { }; int qtype; int had_lock; struct ocfs2_lock_holder oh; trace_ocfs2_setattr(inode, dentry, (unsigned long long)OCFS2_I(inode)->ip_blkno, dentry->d_name.len, dentry->d_name.name, attr->ia_valid, attr->ia_mode, from_kuid(&init_user_ns, attr->ia_uid), from_kgid(&init_user_ns, attr->ia_gid)); /* ensuring we don't even attempt to truncate a symlink */ if (S_ISLNK(inode->i_mode)) attr->ia_valid &= ~ATTR_SIZE; #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ | ATTR_GID | ATTR_UID | ATTR_MODE) if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) return 0; status = setattr_prepare(&init_user_ns, dentry, attr); if (status) return status; if (is_quota_modification(mnt_userns, inode, attr)) { status = dquot_initialize(inode); if (status) return status; } size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; if (size_change) { /* * Here we should wait dio to finish before inode lock * to avoid a deadlock between ocfs2_setattr() and * ocfs2_dio_end_io_write() */ inode_dio_wait(inode); status = ocfs2_rw_lock(inode, 1); if (status < 0) { mlog_errno(status); goto bail; } } had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); if (had_lock < 0) { status = had_lock; goto bail_unlock_rw; } else if (had_lock) { /* * As far as we know, ocfs2_setattr() could only be the first * VFS entry point in the call chain of recursive cluster * locking issue. * * For instance: * chmod_common() * notify_change() * ocfs2_setattr() * posix_acl_chmod() * ocfs2_iop_get_acl() * * But, we're not 100% sure if it's always true, because the * ordering of the VFS entry points in the call chain is out * of our control. So, we'd better dump the stack here to * catch the other cases of recursive locking. */ mlog(ML_ERROR, "Another case of recursive locking:\n"); dump_stack(); } inode_locked = 1; if (size_change) { status = inode_newsize_ok(inode, attr->ia_size); if (status) goto bail_unlock; if (i_size_read(inode) >= attr->ia_size) { if (ocfs2_should_order_data(inode)) { status = ocfs2_begin_ordered_truncate(inode, attr->ia_size); if (status) goto bail_unlock; } status = ocfs2_truncate_file(inode, bh, attr->ia_size); } else status = ocfs2_extend_file(inode, bh, attr->ia_size); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); status = -ENOSPC; goto bail_unlock; } } if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { /* * Gather pointers to quota structures so that allocation / * freeing of quota structures happens here and not inside * dquot_transfer() where we have problems with lock ordering */ if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) && OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); if (IS_ERR(transfer_to[USRQUOTA])) { status = PTR_ERR(transfer_to[USRQUOTA]); transfer_to[USRQUOTA] = NULL; goto bail_unlock; } } if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) && OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); if (IS_ERR(transfer_to[GRPQUOTA])) { status = PTR_ERR(transfer_to[GRPQUOTA]); transfer_to[GRPQUOTA] = NULL; goto bail_unlock; } } down_write(&OCFS2_I(inode)->ip_alloc_sem); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 2 * ocfs2_quota_trans_credits(sb)); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock_alloc; } status = __dquot_transfer(inode, transfer_to); if (status < 0) goto bail_commit; } else { down_write(&OCFS2_I(inode)->ip_alloc_sem); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock_alloc; } } setattr_copy(&init_user_ns, inode, attr); mark_inode_dirty(inode); status = ocfs2_mark_inode_dirty(handle, inode, bh); if (status < 0) mlog_errno(status); bail_commit: ocfs2_commit_trans(osb, handle); bail_unlock_alloc: up_write(&OCFS2_I(inode)->ip_alloc_sem); bail_unlock: if (status && inode_locked) { ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); inode_locked = 0; } bail_unlock_rw: if (size_change) ocfs2_rw_unlock(inode, 1); bail: /* Release quota pointers in case we acquired them */ for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) dqput(transfer_to[qtype]); if (!status && attr->ia_valid & ATTR_MODE) { status = ocfs2_acl_chmod(inode, bh); if (status < 0) mlog_errno(status); } if (inode_locked) ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); brelse(bh); return status; } int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags) { struct inode *inode = d_inode(path->dentry); struct super_block *sb = path->dentry->d_sb; struct ocfs2_super *osb = sb->s_fs_info; int err; err = ocfs2_inode_revalidate(path->dentry); if (err) { if (err != -ENOENT) mlog_errno(err); goto bail; } generic_fillattr(&init_user_ns, inode, stat); /* * If there is inline data in the inode, the inode will normally not * have data blocks allocated (it may have an external xattr block). * Report at least one sector for such files, so tools like tar, rsync, * others don't incorrectly think the file is completely sparse. */ if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) stat->blocks += (stat->size + 511)>>9; /* We set the blksize from the cluster size for performance */ stat->blksize = osb->s_clustersize; bail: return err; } int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode, int mask) { int ret, had_lock; struct ocfs2_lock_holder oh; if (mask & MAY_NOT_BLOCK) return -ECHILD; had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); if (had_lock < 0) { ret = had_lock; goto out; } else if (had_lock) { /* See comments in ocfs2_setattr() for details. * The call chain of this case could be: * do_sys_open() * may_open() * inode_permission() * ocfs2_permission() * ocfs2_iop_get_acl() */ mlog(ML_ERROR, "Another case of recursive locking:\n"); dump_stack(); } ret = generic_permission(&init_user_ns, inode, mask); ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); out: return ret; } static int __ocfs2_write_remove_suid(struct inode *inode, struct buffer_head *bh) { int ret; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di; trace_ocfs2_write_remove_suid( (unsigned long long)OCFS2_I(inode)->ip_blkno, inode->i_mode); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out_trans; } inode->i_mode &= ~S_ISUID; if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) inode->i_mode &= ~S_ISGID; di = (struct ocfs2_dinode *) bh->b_data; di->i_mode = cpu_to_le16(inode->i_mode); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_journal_dirty(handle, bh); out_trans: ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_write_remove_suid(struct inode *inode) { int ret; struct buffer_head *bh = NULL; ret = ocfs2_read_inode_block(inode, &bh); if (ret < 0) { mlog_errno(ret); goto out; } ret = __ocfs2_write_remove_suid(inode, bh); out: brelse(bh); return ret; } /* * Allocate enough extents to cover the region starting at byte offset * start for len bytes. Existing extents are skipped, any extents * added are marked as "unwritten". */ static int ocfs2_allocate_unwritten_extents(struct inode *inode, u64 start, u64 len) { int ret; u32 cpos, phys_cpos, clusters, alloc_size; u64 end = start + len; struct buffer_head *di_bh = NULL; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = ocfs2_read_inode_block(inode, &di_bh); if (ret) { mlog_errno(ret); goto out; } /* * Nothing to do if the requested reservation range * fits within the inode. */ if (ocfs2_size_fits_inline_data(di_bh, end)) goto out; ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); if (ret) { mlog_errno(ret); goto out; } } /* * We consider both start and len to be inclusive. */ cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); clusters -= cpos; while (clusters) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &alloc_size, NULL); if (ret) { mlog_errno(ret); goto out; } /* * Hole or existing extent len can be arbitrary, so * cap it to our own allocation request. */ if (alloc_size > clusters) alloc_size = clusters; if (phys_cpos) { /* * We already have an allocation at this * region so we can safely skip it. */ goto next; } ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } next: cpos += alloc_size; clusters -= alloc_size; } ret = 0; out: brelse(di_bh); return ret; } /* * Truncate a byte range, avoiding pages within partial clusters. This * preserves those pages for the zeroing code to write to. */ static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, u64 byte_len) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); loff_t start, end; struct address_space *mapping = inode->i_mapping; start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); end = byte_start + byte_len; end = end & ~(osb->s_clustersize - 1); if (start < end) { unmap_mapping_range(mapping, start, end - start, 0); truncate_inode_pages_range(mapping, start, end - 1); } } /* * zero out partial blocks of one cluster. * * start: file offset where zero starts, will be made upper block aligned. * len: it will be trimmed to the end of current cluster if "start + len" * is bigger than it. */ static int ocfs2_zeroout_partial_cluster(struct inode *inode, u64 start, u64 len) { int ret; u64 start_block, end_block, nr_blocks; u64 p_block, offset; u32 cluster, p_cluster, nr_clusters; struct super_block *sb = inode->i_sb; u64 end = ocfs2_align_bytes_to_clusters(sb, start); if (start + len < end) end = start + len; start_block = ocfs2_blocks_for_bytes(sb, start); end_block = ocfs2_blocks_for_bytes(sb, end); nr_blocks = end_block - start_block; if (!nr_blocks) return 0; cluster = ocfs2_bytes_to_clusters(sb, start); ret = ocfs2_get_clusters(inode, cluster, &p_cluster, &nr_clusters, NULL); if (ret) return ret; if (!p_cluster) return 0; offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); } static int ocfs2_zero_partial_clusters(struct inode *inode, u64 start, u64 len) { int ret = 0; u64 tmpend = 0; u64 end = start + len; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); unsigned int csize = osb->s_clustersize; handle_t *handle; loff_t isize = i_size_read(inode); /* * The "start" and "end" values are NOT necessarily part of * the range whose allocation is being deleted. Rather, this * is what the user passed in with the request. We must zero * partial clusters here. There's no need to worry about * physical allocation - the zeroing code knows to skip holes. */ trace_ocfs2_zero_partial_clusters( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)start, (unsigned long long)end); /* * If both edges are on a cluster boundary then there's no * zeroing required as the region is part of the allocation to * be truncated. */ if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) goto out; /* No page cache for EOF blocks, issue zero out to disk. */ if (end > isize) { /* * zeroout eof blocks in last cluster starting from * "isize" even "start" > "isize" because it is * complicated to zeroout just at "start" as "start" * may be not aligned with block size, buffer write * would be required to do that, but out of eof buffer * write is not supported. */ ret = ocfs2_zeroout_partial_cluster(inode, isize, end - isize); if (ret) { mlog_errno(ret); goto out; } if (start >= isize) goto out; end = isize; } handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } /* * If start is on a cluster boundary and end is somewhere in another * cluster, we have not COWed the cluster starting at start, unless * end is also within the same cluster. So, in this case, we skip this * first call to ocfs2_zero_range_for_truncate() truncate and move on * to the next one. */ if ((start & (csize - 1)) != 0) { /* * We want to get the byte offset of the end of the 1st * cluster. */ tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); if (tmpend > end) tmpend = end; trace_ocfs2_zero_partial_clusters_range1( (unsigned long long)start, (unsigned long long)tmpend); ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); if (ret) mlog_errno(ret); } if (tmpend < end) { /* * This may make start and end equal, but the zeroing * code will skip any work in that case so there's no * need to catch it up here. */ start = end & ~(osb->s_clustersize - 1); trace_ocfs2_zero_partial_clusters_range2( (unsigned long long)start, (unsigned long long)end); ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); if (ret) mlog_errno(ret); } ocfs2_update_inode_fsync_trans(handle, inode, 1); ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) { int i; struct ocfs2_extent_rec *rec = NULL; for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { rec = &el->l_recs[i]; if (le32_to_cpu(rec->e_cpos) < pos) break; } return i; } /* * Helper to calculate the punching pos and length in one run, we handle the * following three cases in order: * * - remove the entire record * - remove a partial record * - no record needs to be removed (hole-punching completed) */ static void ocfs2_calc_trunc_pos(struct inode *inode, struct ocfs2_extent_list *el, struct ocfs2_extent_rec *rec, u32 trunc_start, u32 *trunc_cpos, u32 *trunc_len, u32 *trunc_end, u64 *blkno, int *done) { int ret = 0; u32 coff, range; range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (le32_to_cpu(rec->e_cpos) >= trunc_start) { /* * remove an entire extent record. */ *trunc_cpos = le32_to_cpu(rec->e_cpos); /* * Skip holes if any. */ if (range < *trunc_end) *trunc_end = range; *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); *blkno = le64_to_cpu(rec->e_blkno); *trunc_end = le32_to_cpu(rec->e_cpos); } else if (range > trunc_start) { /* * remove a partial extent record, which means we're * removing the last extent record. */ *trunc_cpos = trunc_start; /* * skip hole if any. */ if (range < *trunc_end) *trunc_end = range; *trunc_len = *trunc_end - trunc_start; coff = trunc_start - le32_to_cpu(rec->e_cpos); *blkno = le64_to_cpu(rec->e_blkno) + ocfs2_clusters_to_blocks(inode->i_sb, coff); *trunc_end = trunc_start; } else { /* * It may have two following possibilities: * * - last record has been removed * - trunc_start was within a hole * * both two cases mean the completion of hole punching. */ ret = 1; } *done = ret; } int ocfs2_remove_inode_range(struct inode *inode, struct buffer_head *di_bh, u64 byte_start, u64 byte_len) { int ret = 0, flags = 0, done = 0, i; u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; u32 cluster_in_el; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_cached_dealloc_ctxt dealloc; struct address_space *mapping = inode->i_mapping; struct ocfs2_extent_tree et; struct ocfs2_path *path = NULL; struct ocfs2_extent_list *el = NULL; struct ocfs2_extent_rec *rec = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); ocfs2_init_dealloc_ctxt(&dealloc); trace_ocfs2_remove_inode_range( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)byte_start, (unsigned long long)byte_len); if (byte_len == 0) return 0; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = ocfs2_truncate_inline(inode, di_bh, byte_start, byte_start + byte_len, 0); if (ret) { mlog_errno(ret); goto out; } /* * There's no need to get fancy with the page cache * truncate of an inline-data inode. We're talking * about less than a page here, which will be cached * in the dinode buffer anyway. */ unmap_mapping_range(mapping, 0, 0, 0); truncate_inode_pages(mapping, 0); goto out; } /* * For reflinks, we may need to CoW 2 clusters which might be * partially zero'd later, if hole's start and end offset were * within one cluster(means is not exactly aligned to clustersize). */ if (ocfs2_is_refcount_inode(inode)) { ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); if (ret) { mlog_errno(ret); goto out; } } trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; cluster_in_el = trunc_end; ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); if (ret) { mlog_errno(ret); goto out; } path = ocfs2_new_path_from_et(&et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } while (trunc_end > trunc_start) { ret = ocfs2_find_path(INODE_CACHE(inode), path, cluster_in_el); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); i = ocfs2_find_rec(el, trunc_end); /* * Need to go to previous extent block. */ if (i < 0) { if (path->p_tree_depth == 0) break; ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cluster_in_el); if (ret) { mlog_errno(ret); goto out; } /* * We've reached the leftmost extent block, * it's safe to leave. */ if (cluster_in_el == 0) break; /* * The 'pos' searched for previous extent block is * always one cluster less than actual trunc_end. */ trunc_end = cluster_in_el + 1; ocfs2_reinit_path(path, 1); continue; } else rec = &el->l_recs[i]; ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, &trunc_len, &trunc_end, &blkno, &done); if (done) break; flags = rec->e_flags; phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, phys_cpos, trunc_len, flags, &dealloc, refcount_loc, false); if (ret < 0) { mlog_errno(ret); goto out; } cluster_in_el = trunc_end; ocfs2_reinit_path(path, 1); } ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); out: ocfs2_free_path(path); ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &dealloc); return ret; } /* * Parts of this function taken from xfs_change_file_space() */ static int __ocfs2_change_file_space(struct file *file, struct inode *inode, loff_t f_pos, unsigned int cmd, struct ocfs2_space_resv *sr, int change_size) { int ret; s64 llen; loff_t size, orig_isize; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *di_bh = NULL; handle_t *handle; unsigned long long max_off = inode->i_sb->s_maxbytes; if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; inode_lock(inode); /* * This prevents concurrent writes on other nodes */ ret = ocfs2_rw_lock(inode, 1); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); goto out_rw_unlock; } if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { ret = -EPERM; goto out_inode_unlock; } switch (sr->l_whence) { case 0: /*SEEK_SET*/ break; case 1: /*SEEK_CUR*/ sr->l_start += f_pos; break; case 2: /*SEEK_END*/ sr->l_start += i_size_read(inode); break; default: ret = -EINVAL; goto out_inode_unlock; } sr->l_whence = 0; llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; if (sr->l_start < 0 || sr->l_start > max_off || (sr->l_start + llen) < 0 || (sr->l_start + llen) > max_off) { ret = -EINVAL; goto out_inode_unlock; } size = sr->l_start + sr->l_len; if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { if (sr->l_len <= 0) { ret = -EINVAL; goto out_inode_unlock; } } if (file && should_remove_suid(file->f_path.dentry)) { ret = __ocfs2_write_remove_suid(inode, di_bh); if (ret) { mlog_errno(ret); goto out_inode_unlock; } } down_write(&OCFS2_I(inode)->ip_alloc_sem); switch (cmd) { case OCFS2_IOC_RESVSP: case OCFS2_IOC_RESVSP64: /* * This takes unsigned offsets, but the signed ones we * pass have been checked against overflow above. */ ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, sr->l_len); break; case OCFS2_IOC_UNRESVSP: case OCFS2_IOC_UNRESVSP64: ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, sr->l_len); break; default: ret = -EINVAL; } orig_isize = i_size_read(inode); /* zeroout eof blocks in the cluster. */ if (!ret && change_size && orig_isize < size) { ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, size - orig_isize); if (!ret) i_size_write(inode, size); } up_write(&OCFS2_I(inode)->ip_alloc_sem); if (ret) { mlog_errno(ret); goto out_inode_unlock; } /* * We update c/mtime for these changes */ handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_inode_unlock; } inode->i_ctime = inode->i_mtime = current_time(inode); ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); if (ret < 0) mlog_errno(ret); if (file && (file->f_flags & O_SYNC)) handle->h_sync = 1; ocfs2_commit_trans(osb, handle); out_inode_unlock: brelse(di_bh); ocfs2_inode_unlock(inode, 1); out_rw_unlock: ocfs2_rw_unlock(inode, 1); out: inode_unlock(inode); return ret; } int ocfs2_change_file_space(struct file *file, unsigned int cmd, struct ocfs2_space_resv *sr) { struct inode *inode = file_inode(file); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); int ret; if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && !ocfs2_writes_unwritten_extents(osb)) return -ENOTTY; else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && !ocfs2_sparse_alloc(osb)) return -ENOTTY; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (!(file->f_mode & FMODE_WRITE)) return -EBADF; ret = mnt_want_write_file(file); if (ret) return ret; ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); mnt_drop_write_file(file); return ret; } static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_space_resv sr; int change_size = 1; int cmd = OCFS2_IOC_RESVSP64; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) return -EOPNOTSUPP; if (!ocfs2_writes_unwritten_extents(osb)) return -EOPNOTSUPP; if (mode & FALLOC_FL_KEEP_SIZE) change_size = 0; if (mode & FALLOC_FL_PUNCH_HOLE) cmd = OCFS2_IOC_UNRESVSP64; sr.l_whence = 0; sr.l_start = (s64)offset; sr.l_len = (s64)len; return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, change_size); } int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, size_t count) { int ret = 0; unsigned int extent_flags; u32 cpos, clusters, extent_len, phys_cpos; struct super_block *sb = inode->i_sb; if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || !ocfs2_is_refcount_inode(inode) || OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) return 0; cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; while (clusters) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, &extent_flags); if (ret < 0) { mlog_errno(ret); goto out; } if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { ret = 1; break; } if (extent_len > clusters) extent_len = clusters; clusters -= extent_len; cpos += extent_len; } out: return ret; } static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) { int blockmask = inode->i_sb->s_blocksize - 1; loff_t final_size = pos + count; if ((pos & blockmask) || (final_size & blockmask)) return 1; return 0; } static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, struct buffer_head **di_bh, int meta_level, int write_sem, int wait) { int ret = 0; if (wait) ret = ocfs2_inode_lock(inode, di_bh, meta_level); else ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); if (ret < 0) goto out; if (wait) { if (write_sem) down_write(&OCFS2_I(inode)->ip_alloc_sem); else down_read(&OCFS2_I(inode)->ip_alloc_sem); } else { if (write_sem) ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); else ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); if (!ret) { ret = -EAGAIN; goto out_unlock; } } return ret; out_unlock: brelse(*di_bh); *di_bh = NULL; ocfs2_inode_unlock(inode, meta_level); out: return ret; } static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, struct buffer_head **di_bh, int meta_level, int write_sem) { if (write_sem) up_write(&OCFS2_I(inode)->ip_alloc_sem); else up_read(&OCFS2_I(inode)->ip_alloc_sem); brelse(*di_bh); *di_bh = NULL; if (meta_level >= 0) ocfs2_inode_unlock(inode, meta_level); } static int ocfs2_prepare_inode_for_write(struct file *file, loff_t pos, size_t count, int wait) { int ret = 0, meta_level = 0, overwrite_io = 0; int write_sem = 0; struct dentry *dentry = file->f_path.dentry; struct inode *inode = d_inode(dentry); struct buffer_head *di_bh = NULL; u32 cpos; u32 clusters; /* * We start with a read level meta lock and only jump to an ex * if we need to make modifications here. */ for(;;) { ret = ocfs2_inode_lock_for_extent_tree(inode, &di_bh, meta_level, write_sem, wait); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out; } /* * Check if IO will overwrite allocated blocks in case * IOCB_NOWAIT flag is set. */ if (!wait && !overwrite_io) { overwrite_io = 1; ret = ocfs2_overwrite_io(inode, di_bh, pos, count); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out_unlock; } } /* Clear suid / sgid if necessary. We do this here * instead of later in the write path because * remove_suid() calls ->setattr without any hint that * we may have already done our cluster locking. Since * ocfs2_setattr() *must* take cluster locks to * proceed, this will lead us to recursively lock the * inode. There's also the dinode i_size state which * can be lost via setattr during extending writes (we * set inode->i_size at the end of a write. */ if (should_remove_suid(dentry)) { if (meta_level == 0) { ocfs2_inode_unlock_for_extent_tree(inode, &di_bh, meta_level, write_sem); meta_level = 1; continue; } ret = ocfs2_write_remove_suid(inode); if (ret < 0) { mlog_errno(ret); goto out_unlock; } } ret = ocfs2_check_range_for_refcount(inode, pos, count); if (ret == 1) { ocfs2_inode_unlock_for_extent_tree(inode, &di_bh, meta_level, write_sem); meta_level = 1; write_sem = 1; ret = ocfs2_inode_lock_for_extent_tree(inode, &di_bh, meta_level, write_sem, wait); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out; } cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); } if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out_unlock; } break; } out_unlock: trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, pos, count, wait); ocfs2_inode_unlock_for_extent_tree(inode, &di_bh, meta_level, write_sem); out: return ret; } static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { int rw_level; ssize_t written = 0; ssize_t ret; size_t count = iov_iter_count(from); struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); int full_coherency = !(osb->s_mount_opt & OCFS2_MOUNT_COHERENCY_BUFFERED); void *saved_ki_complete = NULL; int append_write = ((iocb->ki_pos + count) >= i_size_read(inode) ? 1 : 0); int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, (unsigned long long)OCFS2_I(inode)->ip_blkno, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name, (unsigned int)from->nr_segs); /* GRRRRR */ if (!direct_io && nowait) return -EOPNOTSUPP; if (count == 0) return 0; if (nowait) { if (!inode_trylock(inode)) return -EAGAIN; } else inode_lock(inode); /* * Concurrent O_DIRECT writes are allowed with * mount_option "coherency=buffered". * For append write, we must take rw EX. */ rw_level = (!direct_io || full_coherency || append_write); if (nowait) ret = ocfs2_try_rw_lock(inode, rw_level); else ret = ocfs2_rw_lock(inode, rw_level); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out_mutex; } /* * O_DIRECT writes with "coherency=full" need to take EX cluster * inode_lock to guarantee coherency. */ if (direct_io && full_coherency) { /* * We need to take and drop the inode lock to force * other nodes to drop their caches. Buffered I/O * already does this in write_begin(). */ if (nowait) ret = ocfs2_try_inode_lock(inode, NULL, 1); else ret = ocfs2_inode_lock(inode, NULL, 1); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out; } ocfs2_inode_unlock(inode, 1); } ret = generic_write_checks(iocb, from); if (ret <= 0) { if (ret) mlog_errno(ret); goto out; } count = ret; ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out; } if (direct_io && !is_sync_kiocb(iocb) && ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { /* * Make it a sync io if it's an unaligned aio. */ saved_ki_complete = xchg(&iocb->ki_complete, NULL); } /* communicate with ocfs2_dio_end_io */ ocfs2_iocb_set_rw_locked(iocb, rw_level); written = __generic_file_write_iter(iocb, from); /* buffered aio wouldn't have proper lock coverage today */ BUG_ON(written == -EIOCBQUEUED && !direct_io); /* * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io * function pointer which is called when o_direct io completes so that * it can unlock our rw lock. * Unfortunately there are error cases which call end_io and others * that don't. so we don't have to unlock the rw_lock if either an * async dio is going to do it in the future or an end_io after an * error has already done it. */ if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { rw_level = -1; } if (unlikely(written <= 0)) goto out; if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode)) { ret = filemap_fdatawrite_range(file->f_mapping, iocb->ki_pos - written, iocb->ki_pos - 1); if (ret < 0) written = ret; if (!ret) { ret = jbd2_journal_force_commit(osb->journal->j_journal); if (ret < 0) written = ret; } if (!ret) ret = filemap_fdatawait_range(file->f_mapping, iocb->ki_pos - written, iocb->ki_pos - 1); } out: if (saved_ki_complete) xchg(&iocb->ki_complete, saved_ki_complete); if (rw_level != -1) ocfs2_rw_unlock(inode, rw_level); out_mutex: inode_unlock(inode); if (written) ret = written; return ret; } static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) { int ret = 0, rw_level = -1, lock_level = 0; struct file *filp = iocb->ki_filp; struct inode *inode = file_inode(filp); int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, (unsigned long long)OCFS2_I(inode)->ip_blkno, filp->f_path.dentry->d_name.len, filp->f_path.dentry->d_name.name, to->nr_segs); /* GRRRRR */ if (!inode) { ret = -EINVAL; mlog_errno(ret); goto bail; } if (!direct_io && nowait) return -EOPNOTSUPP; /* * buffered reads protect themselves in ->read_folio(). O_DIRECT reads * need locks to protect pending reads from racing with truncate. */ if (direct_io) { if (nowait) ret = ocfs2_try_rw_lock(inode, 0); else ret = ocfs2_rw_lock(inode, 0); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto bail; } rw_level = 0; /* communicate with ocfs2_dio_end_io */ ocfs2_iocb_set_rw_locked(iocb, rw_level); } /* * We're fine letting folks race truncates and extending * writes with read across the cluster, just like they can * locally. Hence no rw_lock during read. * * Take and drop the meta data lock to update inode fields * like i_size. This allows the checks down below * generic_file_read_iter() a chance of actually working. */ ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, !nowait); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto bail; } ocfs2_inode_unlock(inode, lock_level); ret = generic_file_read_iter(iocb, to); trace_generic_file_read_iter_ret(ret); /* buffered aio wouldn't have proper lock coverage today */ BUG_ON(ret == -EIOCBQUEUED && !direct_io); /* see ocfs2_file_write_iter */ if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { rw_level = -1; } bail: if (rw_level != -1) ocfs2_rw_unlock(inode, rw_level); return ret; } /* Refer generic_file_llseek_unlocked() */ static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; int ret = 0; inode_lock(inode); switch (whence) { case SEEK_SET: break; case SEEK_END: /* SEEK_END requires the OCFS2 inode lock for the file * because it references the file's size. */ ret = ocfs2_inode_lock(inode, NULL, 0); if (ret < 0) { mlog_errno(ret); goto out; } offset += i_size_read(inode); ocfs2_inode_unlock(inode, 0); break; case SEEK_CUR: if (offset == 0) { offset = file->f_pos; goto out; } offset += file->f_pos; break; case SEEK_DATA: case SEEK_HOLE: ret = ocfs2_seek_data_hole_offset(file, &offset, whence); if (ret) goto out; break; default: ret = -EINVAL; goto out; } offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); out: inode_unlock(inode); if (ret) return ret; return offset; } static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags) { struct inode *inode_in = file_inode(file_in); struct inode *inode_out = file_inode(file_out); struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); struct buffer_head *in_bh = NULL, *out_bh = NULL; bool same_inode = (inode_in == inode_out); loff_t remapped = 0; ssize_t ret; if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) return -EINVAL; if (!ocfs2_refcount_tree(osb)) return -EOPNOTSUPP; if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; /* Lock both files against IO */ ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); if (ret) return ret; /* Check file eligibility and prepare for block sharing. */ ret = -EINVAL; if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) goto out_unlock; ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, &len, remap_flags); if (ret < 0 || len == 0) goto out_unlock; /* Lock out changes to the allocation maps and remap. */ down_write(&OCFS2_I(inode_in)->ip_alloc_sem); if (!same_inode) down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, SINGLE_DEPTH_NESTING); /* Zap any page cache for the destination file's range. */ truncate_inode_pages_range(&inode_out->i_data, round_down(pos_out, PAGE_SIZE), round_up(pos_out + len, PAGE_SIZE) - 1); remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, inode_out, out_bh, pos_out, len); up_write(&OCFS2_I(inode_in)->ip_alloc_sem); if (!same_inode) up_write(&OCFS2_I(inode_out)->ip_alloc_sem); if (remapped < 0) { ret = remapped; mlog_errno(ret); goto out_unlock; } /* * Empty the extent map so that we may get the right extent * record from the disk. */ ocfs2_extent_map_trunc(inode_in, 0); ocfs2_extent_map_trunc(inode_out, 0); ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); if (ret) { mlog_errno(ret); goto out_unlock; } out_unlock: ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); return remapped > 0 ? remapped : ret; } const struct inode_operations ocfs2_file_iops = { .setattr = ocfs2_setattr, .getattr = ocfs2_getattr, .permission = ocfs2_permission, .listxattr = ocfs2_listxattr, .fiemap = ocfs2_fiemap, .get_acl = ocfs2_iop_get_acl, .set_acl = ocfs2_iop_set_acl, .fileattr_get = ocfs2_fileattr_get, .fileattr_set = ocfs2_fileattr_set, }; const struct inode_operations ocfs2_special_file_iops = { .setattr = ocfs2_setattr, .getattr = ocfs2_getattr, .permission = ocfs2_permission, .get_acl = ocfs2_iop_get_acl, .set_acl = ocfs2_iop_set_acl, }; /* * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! */ const struct file_operations ocfs2_fops = { .llseek = ocfs2_file_llseek, .mmap = ocfs2_mmap, .fsync = ocfs2_sync_file, .release = ocfs2_file_release, .open = ocfs2_file_open, .read_iter = ocfs2_file_read_iter, .write_iter = ocfs2_file_write_iter, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .lock = ocfs2_lock, .flock = ocfs2_flock, .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = ocfs2_fallocate, .remap_file_range = ocfs2_remap_file_range, }; const struct file_operations ocfs2_dops = { .llseek = generic_file_llseek, .read = generic_read_dir, .iterate = ocfs2_readdir, .fsync = ocfs2_sync_file, .release = ocfs2_dir_release, .open = ocfs2_dir_open, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .lock = ocfs2_lock, .flock = ocfs2_flock, }; /* * POSIX-lockless variants of our file_operations. * * These will be used if the underlying cluster stack does not support * posix file locking, if the user passes the "localflocks" mount * option, or if we have a local-only fs. * * ocfs2_flock is in here because all stacks handle UNIX file locks, * so we still want it in the case of no stack support for * plocks. Internally, it will do the right thing when asked to ignore * the cluster. */ const struct file_operations ocfs2_fops_no_plocks = { .llseek = ocfs2_file_llseek, .mmap = ocfs2_mmap, .fsync = ocfs2_sync_file, .release = ocfs2_file_release, .open = ocfs2_file_open, .read_iter = ocfs2_file_read_iter, .write_iter = ocfs2_file_write_iter, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .flock = ocfs2_flock, .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = ocfs2_fallocate, .remap_file_range = ocfs2_remap_file_range, }; const struct file_operations ocfs2_dops_no_plocks = { .llseek = generic_file_llseek, .read = generic_read_dir, .iterate = ocfs2_readdir, .fsync = ocfs2_sync_file, .release = ocfs2_dir_release, .open = ocfs2_dir_open, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .flock = ocfs2_flock, };