// SPDX-License-Identifier: GPL-2.0 /* * fs-verity hash algorithms * * Copyright 2019 Google LLC */ #include "fsverity_private.h" #include #include /* The hash algorithms supported by fs-verity */ struct fsverity_hash_alg fsverity_hash_algs[] = { [FS_VERITY_HASH_ALG_SHA256] = { .name = "sha256", .digest_size = SHA256_DIGEST_SIZE, .block_size = SHA256_BLOCK_SIZE, }, [FS_VERITY_HASH_ALG_SHA512] = { .name = "sha512", .digest_size = SHA512_DIGEST_SIZE, .block_size = SHA512_BLOCK_SIZE, }, }; static DEFINE_MUTEX(fsverity_hash_alg_init_mutex); /** * fsverity_get_hash_alg() - validate and prepare a hash algorithm * @inode: optional inode for logging purposes * @num: the hash algorithm number * * Get the struct fsverity_hash_alg for the given hash algorithm number, and * ensure it has a hash transform ready to go. The hash transforms are * allocated on-demand so that we don't waste resources unnecessarily, and * because the crypto modules may be initialized later than fs/verity/. * * Return: pointer to the hash alg on success, else an ERR_PTR() */ struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode, unsigned int num) { struct fsverity_hash_alg *alg; struct crypto_ahash *tfm; int err; if (num >= ARRAY_SIZE(fsverity_hash_algs) || !fsverity_hash_algs[num].name) { fsverity_warn(inode, "Unknown hash algorithm number: %u", num); return ERR_PTR(-EINVAL); } alg = &fsverity_hash_algs[num]; /* pairs with smp_store_release() below */ if (likely(smp_load_acquire(&alg->tfm) != NULL)) return alg; mutex_lock(&fsverity_hash_alg_init_mutex); if (alg->tfm != NULL) goto out_unlock; /* * Using the shash API would make things a bit simpler, but the ahash * API is preferable as it allows the use of crypto accelerators. */ tfm = crypto_alloc_ahash(alg->name, 0, 0); if (IS_ERR(tfm)) { if (PTR_ERR(tfm) == -ENOENT) { fsverity_warn(inode, "Missing crypto API support for hash algorithm \"%s\"", alg->name); alg = ERR_PTR(-ENOPKG); goto out_unlock; } fsverity_err(inode, "Error allocating hash algorithm \"%s\": %ld", alg->name, PTR_ERR(tfm)); alg = ERR_CAST(tfm); goto out_unlock; } err = -EINVAL; if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm))) goto err_free_tfm; if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm))) goto err_free_tfm; err = mempool_init_kmalloc_pool(&alg->req_pool, 1, sizeof(struct ahash_request) + crypto_ahash_reqsize(tfm)); if (err) goto err_free_tfm; pr_info("%s using implementation \"%s\"\n", alg->name, crypto_ahash_driver_name(tfm)); /* pairs with smp_load_acquire() above */ smp_store_release(&alg->tfm, tfm); goto out_unlock; err_free_tfm: crypto_free_ahash(tfm); alg = ERR_PTR(err); out_unlock: mutex_unlock(&fsverity_hash_alg_init_mutex); return alg; } /** * fsverity_alloc_hash_request() - allocate a hash request object * @alg: the hash algorithm for which to allocate the request * @gfp_flags: memory allocation flags * * This is mempool-backed, so this never fails if __GFP_DIRECT_RECLAIM is set in * @gfp_flags. However, in that case this might need to wait for all * previously-allocated requests to be freed. So to avoid deadlocks, callers * must never need multiple requests at a time to make forward progress. * * Return: the request object on success; NULL on failure (but see above) */ struct ahash_request *fsverity_alloc_hash_request(struct fsverity_hash_alg *alg, gfp_t gfp_flags) { struct ahash_request *req = mempool_alloc(&alg->req_pool, gfp_flags); if (req) ahash_request_set_tfm(req, alg->tfm); return req; } /** * fsverity_free_hash_request() - free a hash request object * @alg: the hash algorithm * @req: the hash request object to free */ void fsverity_free_hash_request(struct fsverity_hash_alg *alg, struct ahash_request *req) { if (req) { ahash_request_zero(req); mempool_free(req, &alg->req_pool); } } /** * fsverity_prepare_hash_state() - precompute the initial hash state * @alg: hash algorithm * @salt: a salt which is to be prepended to all data to be hashed * @salt_size: salt size in bytes, possibly 0 * * Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed * initial hash state on success or an ERR_PTR() on failure. */ const u8 *fsverity_prepare_hash_state(struct fsverity_hash_alg *alg, const u8 *salt, size_t salt_size) { u8 *hashstate = NULL; struct ahash_request *req = NULL; u8 *padded_salt = NULL; size_t padded_salt_size; struct scatterlist sg; DECLARE_CRYPTO_WAIT(wait); int err; if (salt_size == 0) return NULL; hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL); if (!hashstate) return ERR_PTR(-ENOMEM); /* This allocation never fails, since it's mempool-backed. */ req = fsverity_alloc_hash_request(alg, GFP_KERNEL); /* * Zero-pad the salt to the next multiple of the input size of the hash * algorithm's compression function, e.g. 64 bytes for SHA-256 or 128 * bytes for SHA-512. This ensures that the hash algorithm won't have * any bytes buffered internally after processing the salt, thus making * salted hashing just as fast as unsalted hashing. */ padded_salt_size = round_up(salt_size, alg->block_size); padded_salt = kzalloc(padded_salt_size, GFP_KERNEL); if (!padded_salt) { err = -ENOMEM; goto err_free; } memcpy(padded_salt, salt, salt_size); sg_init_one(&sg, padded_salt, padded_salt_size); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ahash_request_set_crypt(req, &sg, NULL, padded_salt_size); err = crypto_wait_req(crypto_ahash_init(req), &wait); if (err) goto err_free; err = crypto_wait_req(crypto_ahash_update(req), &wait); if (err) goto err_free; err = crypto_ahash_export(req, hashstate); if (err) goto err_free; out: fsverity_free_hash_request(alg, req); kfree(padded_salt); return hashstate; err_free: kfree(hashstate); hashstate = ERR_PTR(err); goto out; } /** * fsverity_hash_page() - hash a single data or hash page * @params: the Merkle tree's parameters * @inode: inode for which the hashing is being done * @req: preallocated hash request * @page: the page to hash * @out: output digest, size 'params->digest_size' bytes * * Hash a single data or hash block, assuming block_size == PAGE_SIZE. * The hash is salted if a salt is specified in the Merkle tree parameters. * * Return: 0 on success, -errno on failure */ int fsverity_hash_page(const struct merkle_tree_params *params, const struct inode *inode, struct ahash_request *req, struct page *page, u8 *out) { struct scatterlist sg; DECLARE_CRYPTO_WAIT(wait); int err; if (WARN_ON(params->block_size != PAGE_SIZE)) return -EINVAL; sg_init_table(&sg, 1); sg_set_page(&sg, page, PAGE_SIZE, 0); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ahash_request_set_crypt(req, &sg, out, PAGE_SIZE); if (params->hashstate) { err = crypto_ahash_import(req, params->hashstate); if (err) { fsverity_err(inode, "Error %d importing hash state", err); return err; } err = crypto_ahash_finup(req); } else { err = crypto_ahash_digest(req); } err = crypto_wait_req(err, &wait); if (err) fsverity_err(inode, "Error %d computing page hash", err); return err; } /** * fsverity_hash_buffer() - hash some data * @alg: the hash algorithm to use * @data: the data to hash * @size: size of data to hash, in bytes * @out: output digest, size 'alg->digest_size' bytes * * Hash some data which is located in physically contiguous memory (i.e. memory * allocated by kmalloc(), not by vmalloc()). No salt is used. * * Return: 0 on success, -errno on failure */ int fsverity_hash_buffer(struct fsverity_hash_alg *alg, const void *data, size_t size, u8 *out) { struct ahash_request *req; struct scatterlist sg; DECLARE_CRYPTO_WAIT(wait); int err; /* This allocation never fails, since it's mempool-backed. */ req = fsverity_alloc_hash_request(alg, GFP_KERNEL); sg_init_one(&sg, data, size); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ahash_request_set_crypt(req, &sg, out, size); err = crypto_wait_req(crypto_ahash_digest(req), &wait); fsverity_free_hash_request(alg, req); return err; } void __init fsverity_check_hash_algs(void) { size_t i; /* * Sanity check the hash algorithms (could be a build-time check, but * they're in an array) */ for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) { const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i]; if (!alg->name) continue; BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE); /* * For efficiency, the implementation currently assumes the * digest and block sizes are powers of 2. This limitation can * be lifted if the code is updated to handle other values. */ BUG_ON(!is_power_of_2(alg->digest_size)); BUG_ON(!is_power_of_2(alg->block_size)); } }