// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "scrub/bitmap.h" /* * Set a range of this bitmap. Caller must ensure the range is not set. * * This is the logical equivalent of bitmap |= mask(start, len). */ int xfs_bitmap_set( struct xfs_bitmap *bitmap, uint64_t start, uint64_t len) { struct xfs_bitmap_range *bmr; bmr = kmem_alloc(sizeof(struct xfs_bitmap_range), KM_MAYFAIL); if (!bmr) return -ENOMEM; INIT_LIST_HEAD(&bmr->list); bmr->start = start; bmr->len = len; list_add_tail(&bmr->list, &bitmap->list); return 0; } /* Free everything related to this bitmap. */ void xfs_bitmap_destroy( struct xfs_bitmap *bitmap) { struct xfs_bitmap_range *bmr; struct xfs_bitmap_range *n; for_each_xfs_bitmap_extent(bmr, n, bitmap) { list_del(&bmr->list); kmem_free(bmr); } } /* Set up a per-AG block bitmap. */ void xfs_bitmap_init( struct xfs_bitmap *bitmap) { INIT_LIST_HEAD(&bitmap->list); } /* Compare two btree extents. */ static int xfs_bitmap_range_cmp( void *priv, struct list_head *a, struct list_head *b) { struct xfs_bitmap_range *ap; struct xfs_bitmap_range *bp; ap = container_of(a, struct xfs_bitmap_range, list); bp = container_of(b, struct xfs_bitmap_range, list); if (ap->start > bp->start) return 1; if (ap->start < bp->start) return -1; return 0; } /* * Remove all the blocks mentioned in @sub from the extents in @bitmap. * * The intent is that callers will iterate the rmapbt for all of its records * for a given owner to generate @bitmap; and iterate all the blocks of the * metadata structures that are not being rebuilt and have the same rmapbt * owner to generate @sub. This routine subtracts all the extents * mentioned in sub from all the extents linked in @bitmap, which leaves * @bitmap as the list of blocks that are not accounted for, which we assume * are the dead blocks of the old metadata structure. The blocks mentioned in * @bitmap can be reaped. * * This is the logical equivalent of bitmap &= ~sub. */ #define LEFT_ALIGNED (1 << 0) #define RIGHT_ALIGNED (1 << 1) int xfs_bitmap_disunion( struct xfs_bitmap *bitmap, struct xfs_bitmap *sub) { struct list_head *lp; struct xfs_bitmap_range *br; struct xfs_bitmap_range *new_br; struct xfs_bitmap_range *sub_br; uint64_t sub_start; uint64_t sub_len; int state; int error = 0; if (list_empty(&bitmap->list) || list_empty(&sub->list)) return 0; ASSERT(!list_empty(&sub->list)); list_sort(NULL, &bitmap->list, xfs_bitmap_range_cmp); list_sort(NULL, &sub->list, xfs_bitmap_range_cmp); /* * Now that we've sorted both lists, we iterate bitmap once, rolling * forward through sub and/or bitmap as necessary until we find an * overlap or reach the end of either list. We do not reset lp to the * head of bitmap nor do we reset sub_br to the head of sub. The * list traversal is similar to merge sort, but we're deleting * instead. In this manner we avoid O(n^2) operations. */ sub_br = list_first_entry(&sub->list, struct xfs_bitmap_range, list); lp = bitmap->list.next; while (lp != &bitmap->list) { br = list_entry(lp, struct xfs_bitmap_range, list); /* * Advance sub_br and/or br until we find a pair that * intersect or we run out of extents. */ while (sub_br->start + sub_br->len <= br->start) { if (list_is_last(&sub_br->list, &sub->list)) goto out; sub_br = list_next_entry(sub_br, list); } if (sub_br->start >= br->start + br->len) { lp = lp->next; continue; } /* trim sub_br to fit the extent we have */ sub_start = sub_br->start; sub_len = sub_br->len; if (sub_br->start < br->start) { sub_len -= br->start - sub_br->start; sub_start = br->start; } if (sub_len > br->len) sub_len = br->len; state = 0; if (sub_start == br->start) state |= LEFT_ALIGNED; if (sub_start + sub_len == br->start + br->len) state |= RIGHT_ALIGNED; switch (state) { case LEFT_ALIGNED: /* Coincides with only the left. */ br->start += sub_len; br->len -= sub_len; break; case RIGHT_ALIGNED: /* Coincides with only the right. */ br->len -= sub_len; lp = lp->next; break; case LEFT_ALIGNED | RIGHT_ALIGNED: /* Total overlap, just delete ex. */ lp = lp->next; list_del(&br->list); kmem_free(br); break; case 0: /* * Deleting from the middle: add the new right extent * and then shrink the left extent. */ new_br = kmem_alloc(sizeof(struct xfs_bitmap_range), KM_MAYFAIL); if (!new_br) { error = -ENOMEM; goto out; } INIT_LIST_HEAD(&new_br->list); new_br->start = sub_start + sub_len; new_br->len = br->start + br->len - new_br->start; list_add(&new_br->list, &br->list); br->len = sub_start - br->start; lp = lp->next; break; default: ASSERT(0); break; } } out: return error; } #undef LEFT_ALIGNED #undef RIGHT_ALIGNED /* * Record all btree blocks seen while iterating all records of a btree. * * We know that the btree query_all function starts at the left edge and walks * towards the right edge of the tree. Therefore, we know that we can walk up * the btree cursor towards the root; if the pointer for a given level points * to the first record/key in that block, we haven't seen this block before; * and therefore we need to remember that we saw this block in the btree. * * So if our btree is: * * 4 * / | \ * 1 2 3 * * Pretend for this example that each leaf block has 100 btree records. For * the first btree record, we'll observe that bc_ptrs[0] == 1, so we record * that we saw block 1. Then we observe that bc_ptrs[1] == 1, so we record * block 4. The list is [1, 4]. * * For the second btree record, we see that bc_ptrs[0] == 2, so we exit the * loop. The list remains [1, 4]. * * For the 101st btree record, we've moved onto leaf block 2. Now * bc_ptrs[0] == 1 again, so we record that we saw block 2. We see that * bc_ptrs[1] == 2, so we exit the loop. The list is now [1, 4, 2]. * * For the 102nd record, bc_ptrs[0] == 2, so we continue. * * For the 201st record, we've moved on to leaf block 3. bc_ptrs[0] == 1, so * we add 3 to the list. Now it is [1, 4, 2, 3]. * * For the 300th record we just exit, with the list being [1, 4, 2, 3]. */ /* * Record all the buffers pointed to by the btree cursor. Callers already * engaged in a btree walk should call this function to capture the list of * blocks going from the leaf towards the root. */ int xfs_bitmap_set_btcur_path( struct xfs_bitmap *bitmap, struct xfs_btree_cur *cur) { struct xfs_buf *bp; xfs_fsblock_t fsb; int i; int error; for (i = 0; i < cur->bc_nlevels && cur->bc_ptrs[i] == 1; i++) { xfs_btree_get_block(cur, i, &bp); if (!bp) continue; fsb = XFS_DADDR_TO_FSB(cur->bc_mp, bp->b_bn); error = xfs_bitmap_set(bitmap, fsb, 1); if (error) return error; } return 0; } /* Collect a btree's block in the bitmap. */ STATIC int xfs_bitmap_collect_btblock( struct xfs_btree_cur *cur, int level, void *priv) { struct xfs_bitmap *bitmap = priv; struct xfs_buf *bp; xfs_fsblock_t fsbno; xfs_btree_get_block(cur, level, &bp); if (!bp) return 0; fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, bp->b_bn); return xfs_bitmap_set(bitmap, fsbno, 1); } /* Walk the btree and mark the bitmap wherever a btree block is found. */ int xfs_bitmap_set_btblocks( struct xfs_bitmap *bitmap, struct xfs_btree_cur *cur) { return xfs_btree_visit_blocks(cur, xfs_bitmap_collect_btblock, bitmap); }