// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_shared.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_extent_busy.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_trace.h" struct workqueue_struct *xfs_discard_wq; /* * Allocate a new ticket. Failing to get a new ticket makes it really hard to * recover, so we don't allow failure here. Also, we allocate in a context that * we don't want to be issuing transactions from, so we need to tell the * allocation code this as well. * * We don't reserve any space for the ticket - we are going to steal whatever * space we require from transactions as they commit. To ensure we reserve all * the space required, we need to set the current reservation of the ticket to * zero so that we know to steal the initial transaction overhead from the * first transaction commit. */ static struct xlog_ticket * xlog_cil_ticket_alloc( struct xlog *log) { struct xlog_ticket *tic; tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0); /* * set the current reservation to zero so we know to steal the basic * transaction overhead reservation from the first transaction commit. */ tic->t_curr_res = 0; return tic; } /* * Unavoidable forward declaration - xlog_cil_push_work() calls * xlog_cil_ctx_alloc() itself. */ static void xlog_cil_push_work(struct work_struct *work); static struct xfs_cil_ctx * xlog_cil_ctx_alloc(void) { struct xfs_cil_ctx *ctx; ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS); INIT_LIST_HEAD(&ctx->committing); INIT_LIST_HEAD(&ctx->busy_extents); INIT_WORK(&ctx->push_work, xlog_cil_push_work); return ctx; } static void xlog_cil_ctx_switch( struct xfs_cil *cil, struct xfs_cil_ctx *ctx) { ctx->sequence = ++cil->xc_current_sequence; ctx->cil = cil; cil->xc_ctx = ctx; } /* * After the first stage of log recovery is done, we know where the head and * tail of the log are. We need this log initialisation done before we can * initialise the first CIL checkpoint context. * * Here we allocate a log ticket to track space usage during a CIL push. This * ticket is passed to xlog_write() directly so that we don't slowly leak log * space by failing to account for space used by log headers and additional * region headers for split regions. */ void xlog_cil_init_post_recovery( struct xlog *log) { log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); log->l_cilp->xc_ctx->sequence = 1; } static inline int xlog_cil_iovec_space( uint niovecs) { return round_up((sizeof(struct xfs_log_vec) + niovecs * sizeof(struct xfs_log_iovec)), sizeof(uint64_t)); } /* * shadow buffers can be large, so we need to use kvmalloc() here to ensure * success. Unfortunately, kvmalloc() only allows GFP_KERNEL contexts to fall * back to vmalloc, so we can't actually do anything useful with gfp flags to * control the kmalloc() behaviour within kvmalloc(). Hence kmalloc() will do * direct reclaim and compaction in the slow path, both of which are * horrendously expensive. We just want kmalloc to fail fast and fall back to * vmalloc if it can't get somethign straight away from the free lists or buddy * allocator. Hence we have to open code kvmalloc outselves here. * * Also, we are in memalloc_nofs_save task context here, so despite the use of * GFP_KERNEL here, we are actually going to be doing GFP_NOFS allocations. This * is actually the only way to make vmalloc() do GFP_NOFS allocations, so lets * just all pretend this is a GFP_KERNEL context operation.... */ static inline void * xlog_cil_kvmalloc( size_t buf_size) { gfp_t flags = GFP_KERNEL; void *p; flags &= ~__GFP_DIRECT_RECLAIM; flags |= __GFP_NOWARN | __GFP_NORETRY; do { p = kmalloc(buf_size, flags); if (!p) p = vmalloc(buf_size); } while (!p); return p; } /* * Allocate or pin log vector buffers for CIL insertion. * * The CIL currently uses disposable buffers for copying a snapshot of the * modified items into the log during a push. The biggest problem with this is * the requirement to allocate the disposable buffer during the commit if: * a) does not exist; or * b) it is too small * * If we do this allocation within xlog_cil_insert_format_items(), it is done * under the xc_ctx_lock, which means that a CIL push cannot occur during * the memory allocation. This means that we have a potential deadlock situation * under low memory conditions when we have lots of dirty metadata pinned in * the CIL and we need a CIL commit to occur to free memory. * * To avoid this, we need to move the memory allocation outside the * xc_ctx_lock, but because the log vector buffers are disposable, that opens * up a TOCTOU race condition w.r.t. the CIL committing and removing the log * vector buffers between the check and the formatting of the item into the * log vector buffer within the xc_ctx_lock. * * Because the log vector buffer needs to be unchanged during the CIL push * process, we cannot share the buffer between the transaction commit (which * modifies the buffer) and the CIL push context that is writing the changes * into the log. This means skipping preallocation of buffer space is * unreliable, but we most definitely do not want to be allocating and freeing * buffers unnecessarily during commits when overwrites can be done safely. * * The simplest solution to this problem is to allocate a shadow buffer when a * log item is committed for the second time, and then to only use this buffer * if necessary. The buffer can remain attached to the log item until such time * it is needed, and this is the buffer that is reallocated to match the size of * the incoming modification. Then during the formatting of the item we can swap * the active buffer with the new one if we can't reuse the existing buffer. We * don't free the old buffer as it may be reused on the next modification if * it's size is right, otherwise we'll free and reallocate it at that point. * * This function builds a vector for the changes in each log item in the * transaction. It then works out the length of the buffer needed for each log * item, allocates them and attaches the vector to the log item in preparation * for the formatting step which occurs under the xc_ctx_lock. * * While this means the memory footprint goes up, it avoids the repeated * alloc/free pattern that repeated modifications of an item would otherwise * cause, and hence minimises the CPU overhead of such behaviour. */ static void xlog_cil_alloc_shadow_bufs( struct xlog *log, struct xfs_trans *tp) { struct xfs_log_item *lip; list_for_each_entry(lip, &tp->t_items, li_trans) { struct xfs_log_vec *lv; int niovecs = 0; int nbytes = 0; int buf_size; bool ordered = false; /* Skip items which aren't dirty in this transaction. */ if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) continue; /* get number of vecs and size of data to be stored */ lip->li_ops->iop_size(lip, &niovecs, &nbytes); /* * Ordered items need to be tracked but we do not wish to write * them. We need a logvec to track the object, but we do not * need an iovec or buffer to be allocated for copying data. */ if (niovecs == XFS_LOG_VEC_ORDERED) { ordered = true; niovecs = 0; nbytes = 0; } /* * We 64-bit align the length of each iovec so that the start * of the next one is naturally aligned. We'll need to * account for that slack space here. Then round nbytes up * to 64-bit alignment so that the initial buffer alignment is * easy to calculate and verify. */ nbytes += niovecs * sizeof(uint64_t); nbytes = round_up(nbytes, sizeof(uint64_t)); /* * The data buffer needs to start 64-bit aligned, so round up * that space to ensure we can align it appropriately and not * overrun the buffer. */ buf_size = nbytes + xlog_cil_iovec_space(niovecs); /* * if we have no shadow buffer, or it is too small, we need to * reallocate it. */ if (!lip->li_lv_shadow || buf_size > lip->li_lv_shadow->lv_size) { /* * We free and allocate here as a realloc would copy * unnecessary data. We don't use kvzalloc() for the * same reason - we don't need to zero the data area in * the buffer, only the log vector header and the iovec * storage. */ kmem_free(lip->li_lv_shadow); lv = xlog_cil_kvmalloc(buf_size); memset(lv, 0, xlog_cil_iovec_space(niovecs)); lv->lv_item = lip; lv->lv_size = buf_size; if (ordered) lv->lv_buf_len = XFS_LOG_VEC_ORDERED; else lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; lip->li_lv_shadow = lv; } else { /* same or smaller, optimise common overwrite case */ lv = lip->li_lv_shadow; if (ordered) lv->lv_buf_len = XFS_LOG_VEC_ORDERED; else lv->lv_buf_len = 0; lv->lv_bytes = 0; lv->lv_next = NULL; } /* Ensure the lv is set up according to ->iop_size */ lv->lv_niovecs = niovecs; /* The allocated data region lies beyond the iovec region */ lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs); } } /* * Prepare the log item for insertion into the CIL. Calculate the difference in * log space and vectors it will consume, and if it is a new item pin it as * well. */ STATIC void xfs_cil_prepare_item( struct xlog *log, struct xfs_log_vec *lv, struct xfs_log_vec *old_lv, int *diff_len, int *diff_iovecs) { /* Account for the new LV being passed in */ if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) { *diff_len += lv->lv_bytes; *diff_iovecs += lv->lv_niovecs; } /* * If there is no old LV, this is the first time we've seen the item in * this CIL context and so we need to pin it. If we are replacing the * old_lv, then remove the space it accounts for and make it the shadow * buffer for later freeing. In both cases we are now switching to the * shadow buffer, so update the pointer to it appropriately. */ if (!old_lv) { if (lv->lv_item->li_ops->iop_pin) lv->lv_item->li_ops->iop_pin(lv->lv_item); lv->lv_item->li_lv_shadow = NULL; } else if (old_lv != lv) { ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); *diff_len -= old_lv->lv_bytes; *diff_iovecs -= old_lv->lv_niovecs; lv->lv_item->li_lv_shadow = old_lv; } /* attach new log vector to log item */ lv->lv_item->li_lv = lv; /* * If this is the first time the item is being committed to the * CIL, store the sequence number on the log item so we can * tell in future commits whether this is the first checkpoint * the item is being committed into. */ if (!lv->lv_item->li_seq) lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; } /* * Format log item into a flat buffers * * For delayed logging, we need to hold a formatted buffer containing all the * changes on the log item. This enables us to relog the item in memory and * write it out asynchronously without needing to relock the object that was * modified at the time it gets written into the iclog. * * This function takes the prepared log vectors attached to each log item, and * formats the changes into the log vector buffer. The buffer it uses is * dependent on the current state of the vector in the CIL - the shadow lv is * guaranteed to be large enough for the current modification, but we will only * use that if we can't reuse the existing lv. If we can't reuse the existing * lv, then simple swap it out for the shadow lv. We don't free it - that is * done lazily either by th enext modification or the freeing of the log item. * * We don't set up region headers during this process; we simply copy the * regions into the flat buffer. We can do this because we still have to do a * formatting step to write the regions into the iclog buffer. Writing the * ophdrs during the iclog write means that we can support splitting large * regions across iclog boundares without needing a change in the format of the * item/region encapsulation. * * Hence what we need to do now is change the rewrite the vector array to point * to the copied region inside the buffer we just allocated. This allows us to * format the regions into the iclog as though they are being formatted * directly out of the objects themselves. */ static void xlog_cil_insert_format_items( struct xlog *log, struct xfs_trans *tp, int *diff_len, int *diff_iovecs) { struct xfs_log_item *lip; /* Bail out if we didn't find a log item. */ if (list_empty(&tp->t_items)) { ASSERT(0); return; } list_for_each_entry(lip, &tp->t_items, li_trans) { struct xfs_log_vec *lv; struct xfs_log_vec *old_lv = NULL; struct xfs_log_vec *shadow; bool ordered = false; /* Skip items which aren't dirty in this transaction. */ if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) continue; /* * The formatting size information is already attached to * the shadow lv on the log item. */ shadow = lip->li_lv_shadow; if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED) ordered = true; /* Skip items that do not have any vectors for writing */ if (!shadow->lv_niovecs && !ordered) continue; /* compare to existing item size */ old_lv = lip->li_lv; if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) { /* same or smaller, optimise common overwrite case */ lv = lip->li_lv; lv->lv_next = NULL; if (ordered) goto insert; /* * set the item up as though it is a new insertion so * that the space reservation accounting is correct. */ *diff_iovecs -= lv->lv_niovecs; *diff_len -= lv->lv_bytes; /* Ensure the lv is set up according to ->iop_size */ lv->lv_niovecs = shadow->lv_niovecs; /* reset the lv buffer information for new formatting */ lv->lv_buf_len = 0; lv->lv_bytes = 0; lv->lv_buf = (char *)lv + xlog_cil_iovec_space(lv->lv_niovecs); } else { /* switch to shadow buffer! */ lv = shadow; lv->lv_item = lip; if (ordered) { /* track as an ordered logvec */ ASSERT(lip->li_lv == NULL); goto insert; } } ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); lip->li_ops->iop_format(lip, lv); insert: xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs); } } /* * Insert the log items into the CIL and calculate the difference in space * consumed by the item. Add the space to the checkpoint ticket and calculate * if the change requires additional log metadata. If it does, take that space * as well. Remove the amount of space we added to the checkpoint ticket from * the current transaction ticket so that the accounting works out correctly. */ static void xlog_cil_insert_items( struct xlog *log, struct xfs_trans *tp) { struct xfs_cil *cil = log->l_cilp; struct xfs_cil_ctx *ctx = cil->xc_ctx; struct xfs_log_item *lip; int len = 0; int diff_iovecs = 0; int iclog_space; int iovhdr_res = 0, split_res = 0, ctx_res = 0; ASSERT(tp); /* * We can do this safely because the context can't checkpoint until we * are done so it doesn't matter exactly how we update the CIL. */ xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs); spin_lock(&cil->xc_cil_lock); /* account for space used by new iovec headers */ iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t); len += iovhdr_res; ctx->nvecs += diff_iovecs; /* attach the transaction to the CIL if it has any busy extents */ if (!list_empty(&tp->t_busy)) list_splice_init(&tp->t_busy, &ctx->busy_extents); /* * Now transfer enough transaction reservation to the context ticket * for the checkpoint. The context ticket is special - the unit * reservation has to grow as well as the current reservation as we * steal from tickets so we can correctly determine the space used * during the transaction commit. */ if (ctx->ticket->t_curr_res == 0) { ctx_res = ctx->ticket->t_unit_res; ctx->ticket->t_curr_res = ctx_res; tp->t_ticket->t_curr_res -= ctx_res; } /* do we need space for more log record headers? */ iclog_space = log->l_iclog_size - log->l_iclog_hsize; if (len > 0 && (ctx->space_used / iclog_space != (ctx->space_used + len) / iclog_space)) { split_res = (len + iclog_space - 1) / iclog_space; /* need to take into account split region headers, too */ split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header); ctx->ticket->t_unit_res += split_res; ctx->ticket->t_curr_res += split_res; tp->t_ticket->t_curr_res -= split_res; ASSERT(tp->t_ticket->t_curr_res >= len); } tp->t_ticket->t_curr_res -= len; ctx->space_used += len; /* * If we've overrun the reservation, dump the tx details before we move * the log items. Shutdown is imminent... */ if (WARN_ON(tp->t_ticket->t_curr_res < 0)) { xfs_warn(log->l_mp, "Transaction log reservation overrun:"); xfs_warn(log->l_mp, " log items: %d bytes (iov hdrs: %d bytes)", len, iovhdr_res); xfs_warn(log->l_mp, " split region headers: %d bytes", split_res); xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res); xlog_print_trans(tp); } /* * Now (re-)position everything modified at the tail of the CIL. * We do this here so we only need to take the CIL lock once during * the transaction commit. */ list_for_each_entry(lip, &tp->t_items, li_trans) { /* Skip items which aren't dirty in this transaction. */ if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) continue; /* * Only move the item if it isn't already at the tail. This is * to prevent a transient list_empty() state when reinserting * an item that is already the only item in the CIL. */ if (!list_is_last(&lip->li_cil, &cil->xc_cil)) list_move_tail(&lip->li_cil, &cil->xc_cil); } spin_unlock(&cil->xc_cil_lock); if (tp->t_ticket->t_curr_res < 0) xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); } static void xlog_cil_free_logvec( struct xfs_log_vec *log_vector) { struct xfs_log_vec *lv; for (lv = log_vector; lv; ) { struct xfs_log_vec *next = lv->lv_next; kmem_free(lv); lv = next; } } static void xlog_discard_endio_work( struct work_struct *work) { struct xfs_cil_ctx *ctx = container_of(work, struct xfs_cil_ctx, discard_endio_work); struct xfs_mount *mp = ctx->cil->xc_log->l_mp; xfs_extent_busy_clear(mp, &ctx->busy_extents, false); kmem_free(ctx); } /* * Queue up the actual completion to a thread to avoid IRQ-safe locking for * pagb_lock. Note that we need a unbounded workqueue, otherwise we might * get the execution delayed up to 30 seconds for weird reasons. */ static void xlog_discard_endio( struct bio *bio) { struct xfs_cil_ctx *ctx = bio->bi_private; INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work); queue_work(xfs_discard_wq, &ctx->discard_endio_work); bio_put(bio); } static void xlog_discard_busy_extents( struct xfs_mount *mp, struct xfs_cil_ctx *ctx) { struct list_head *list = &ctx->busy_extents; struct xfs_extent_busy *busyp; struct bio *bio = NULL; struct blk_plug plug; int error = 0; ASSERT(xfs_has_discard(mp)); blk_start_plug(&plug); list_for_each_entry(busyp, list, list) { trace_xfs_discard_extent(mp, busyp->agno, busyp->bno, busyp->length); error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev, XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno), XFS_FSB_TO_BB(mp, busyp->length), GFP_NOFS, 0, &bio); if (error && error != -EOPNOTSUPP) { xfs_info(mp, "discard failed for extent [0x%llx,%u], error %d", (unsigned long long)busyp->bno, busyp->length, error); break; } } if (bio) { bio->bi_private = ctx; bio->bi_end_io = xlog_discard_endio; submit_bio(bio); } else { xlog_discard_endio_work(&ctx->discard_endio_work); } blk_finish_plug(&plug); } /* * Mark all items committed and clear busy extents. We free the log vector * chains in a separate pass so that we unpin the log items as quickly as * possible. */ static void xlog_cil_committed( struct xfs_cil_ctx *ctx) { struct xfs_mount *mp = ctx->cil->xc_log->l_mp; bool abort = xlog_is_shutdown(ctx->cil->xc_log); /* * If the I/O failed, we're aborting the commit and already shutdown. * Wake any commit waiters before aborting the log items so we don't * block async log pushers on callbacks. Async log pushers explicitly do * not wait on log force completion because they may be holding locks * required to unpin items. */ if (abort) { spin_lock(&ctx->cil->xc_push_lock); wake_up_all(&ctx->cil->xc_start_wait); wake_up_all(&ctx->cil->xc_commit_wait); spin_unlock(&ctx->cil->xc_push_lock); } xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain, ctx->start_lsn, abort); xfs_extent_busy_sort(&ctx->busy_extents); xfs_extent_busy_clear(mp, &ctx->busy_extents, xfs_has_discard(mp) && !abort); spin_lock(&ctx->cil->xc_push_lock); list_del(&ctx->committing); spin_unlock(&ctx->cil->xc_push_lock); xlog_cil_free_logvec(ctx->lv_chain); if (!list_empty(&ctx->busy_extents)) xlog_discard_busy_extents(mp, ctx); else kmem_free(ctx); } void xlog_cil_process_committed( struct list_head *list) { struct xfs_cil_ctx *ctx; while ((ctx = list_first_entry_or_null(list, struct xfs_cil_ctx, iclog_entry))) { list_del(&ctx->iclog_entry); xlog_cil_committed(ctx); } } /* * Record the LSN of the iclog we were just granted space to start writing into. * If the context doesn't have a start_lsn recorded, then this iclog will * contain the start record for the checkpoint. Otherwise this write contains * the commit record for the checkpoint. */ void xlog_cil_set_ctx_write_state( struct xfs_cil_ctx *ctx, struct xlog_in_core *iclog) { struct xfs_cil *cil = ctx->cil; xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); ASSERT(!ctx->commit_lsn); if (!ctx->start_lsn) { spin_lock(&cil->xc_push_lock); /* * The LSN we need to pass to the log items on transaction * commit is the LSN reported by the first log vector write, not * the commit lsn. If we use the commit record lsn then we can * move the tail beyond the grant write head. */ ctx->start_lsn = lsn; wake_up_all(&cil->xc_start_wait); spin_unlock(&cil->xc_push_lock); return; } /* * Take a reference to the iclog for the context so that we still hold * it when xlog_write is done and has released it. This means the * context controls when the iclog is released for IO. */ atomic_inc(&iclog->ic_refcnt); /* * xlog_state_get_iclog_space() guarantees there is enough space in the * iclog for an entire commit record, so we can attach the context * callbacks now. This needs to be done before we make the commit_lsn * visible to waiters so that checkpoints with commit records in the * same iclog order their IO completion callbacks in the same order that * the commit records appear in the iclog. */ spin_lock(&cil->xc_log->l_icloglock); list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks); spin_unlock(&cil->xc_log->l_icloglock); /* * Now we can record the commit LSN and wake anyone waiting for this * sequence to have the ordered commit record assigned to a physical * location in the log. */ spin_lock(&cil->xc_push_lock); ctx->commit_iclog = iclog; ctx->commit_lsn = lsn; wake_up_all(&cil->xc_commit_wait); spin_unlock(&cil->xc_push_lock); } /* * Ensure that the order of log writes follows checkpoint sequence order. This * relies on the context LSN being zero until the log write has guaranteed the * LSN that the log write will start at via xlog_state_get_iclog_space(). */ enum _record_type { _START_RECORD, _COMMIT_RECORD, }; static int xlog_cil_order_write( struct xfs_cil *cil, xfs_csn_t sequence, enum _record_type record) { struct xfs_cil_ctx *ctx; restart: spin_lock(&cil->xc_push_lock); list_for_each_entry(ctx, &cil->xc_committing, committing) { /* * Avoid getting stuck in this loop because we were woken by the * shutdown, but then went back to sleep once already in the * shutdown state. */ if (xlog_is_shutdown(cil->xc_log)) { spin_unlock(&cil->xc_push_lock); return -EIO; } /* * Higher sequences will wait for this one so skip them. * Don't wait for our own sequence, either. */ if (ctx->sequence >= sequence) continue; /* Wait until the LSN for the record has been recorded. */ switch (record) { case _START_RECORD: if (!ctx->start_lsn) { xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock); goto restart; } break; case _COMMIT_RECORD: if (!ctx->commit_lsn) { xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); goto restart; } break; } } spin_unlock(&cil->xc_push_lock); return 0; } /* * Write out the log vector change now attached to the CIL context. This will * write a start record that needs to be strictly ordered in ascending CIL * sequence order so that log recovery will always use in-order start LSNs when * replaying checkpoints. */ static int xlog_cil_write_chain( struct xfs_cil_ctx *ctx, struct xfs_log_vec *chain) { struct xlog *log = ctx->cil->xc_log; int error; error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD); if (error) return error; return xlog_write(log, ctx, chain, ctx->ticket, XLOG_START_TRANS); } /* * Write out the commit record of a checkpoint transaction to close off a * running log write. These commit records are strictly ordered in ascending CIL * sequence order so that log recovery will always replay the checkpoints in the * correct order. */ static int xlog_cil_write_commit_record( struct xfs_cil_ctx *ctx) { struct xlog *log = ctx->cil->xc_log; struct xfs_log_iovec reg = { .i_addr = NULL, .i_len = 0, .i_type = XLOG_REG_TYPE_COMMIT, }; struct xfs_log_vec vec = { .lv_niovecs = 1, .lv_iovecp = ®, }; int error; if (xlog_is_shutdown(log)) return -EIO; error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD); if (error) return error; error = xlog_write(log, ctx, &vec, ctx->ticket, XLOG_COMMIT_TRANS); if (error) xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); return error; } /* * Push the Committed Item List to the log. * * If the current sequence is the same as xc_push_seq we need to do a flush. If * xc_push_seq is less than the current sequence, then it has already been * flushed and we don't need to do anything - the caller will wait for it to * complete if necessary. * * xc_push_seq is checked unlocked against the sequence number for a match. * Hence we can allow log forces to run racily and not issue pushes for the * same sequence twice. If we get a race between multiple pushes for the same * sequence they will block on the first one and then abort, hence avoiding * needless pushes. */ static void xlog_cil_push_work( struct work_struct *work) { struct xfs_cil_ctx *ctx = container_of(work, struct xfs_cil_ctx, push_work); struct xfs_cil *cil = ctx->cil; struct xlog *log = cil->xc_log; struct xfs_log_vec *lv; struct xfs_cil_ctx *new_ctx; struct xlog_ticket *tic; int num_iovecs; int error = 0; struct xfs_trans_header thdr; struct xfs_log_iovec lhdr; struct xfs_log_vec lvhdr = { NULL }; xfs_lsn_t preflush_tail_lsn; xfs_csn_t push_seq; struct bio bio; DECLARE_COMPLETION_ONSTACK(bdev_flush); bool push_commit_stable; new_ctx = xlog_cil_ctx_alloc(); new_ctx->ticket = xlog_cil_ticket_alloc(log); down_write(&cil->xc_ctx_lock); spin_lock(&cil->xc_push_lock); push_seq = cil->xc_push_seq; ASSERT(push_seq <= ctx->sequence); push_commit_stable = cil->xc_push_commit_stable; cil->xc_push_commit_stable = false; /* * As we are about to switch to a new, empty CIL context, we no longer * need to throttle tasks on CIL space overruns. Wake any waiters that * the hard push throttle may have caught so they can start committing * to the new context. The ctx->xc_push_lock provides the serialisation * necessary for safely using the lockless waitqueue_active() check in * this context. */ if (waitqueue_active(&cil->xc_push_wait)) wake_up_all(&cil->xc_push_wait); /* * Check if we've anything to push. If there is nothing, then we don't * move on to a new sequence number and so we have to be able to push * this sequence again later. */ if (list_empty(&cil->xc_cil)) { cil->xc_push_seq = 0; spin_unlock(&cil->xc_push_lock); goto out_skip; } /* check for a previously pushed sequence */ if (push_seq < ctx->sequence) { spin_unlock(&cil->xc_push_lock); goto out_skip; } /* * We are now going to push this context, so add it to the committing * list before we do anything else. This ensures that anyone waiting on * this push can easily detect the difference between a "push in * progress" and "CIL is empty, nothing to do". * * IOWs, a wait loop can now check for: * the current sequence not being found on the committing list; * an empty CIL; and * an unchanged sequence number * to detect a push that had nothing to do and therefore does not need * waiting on. If the CIL is not empty, we get put on the committing * list before emptying the CIL and bumping the sequence number. Hence * an empty CIL and an unchanged sequence number means we jumped out * above after doing nothing. * * Hence the waiter will either find the commit sequence on the * committing list or the sequence number will be unchanged and the CIL * still dirty. In that latter case, the push has not yet started, and * so the waiter will have to continue trying to check the CIL * committing list until it is found. In extreme cases of delay, the * sequence may fully commit between the attempts the wait makes to wait * on the commit sequence. */ list_add(&ctx->committing, &cil->xc_committing); spin_unlock(&cil->xc_push_lock); /* * The CIL is stable at this point - nothing new will be added to it * because we hold the flush lock exclusively. Hence we can now issue * a cache flush to ensure all the completed metadata in the journal we * are about to overwrite is on stable storage. * * Because we are issuing this cache flush before we've written the * tail lsn to the iclog, we can have metadata IO completions move the * tail forwards between the completion of this flush and the iclog * being written. In this case, we need to re-issue the cache flush * before the iclog write. To detect whether the log tail moves, sample * the tail LSN *before* we issue the flush. */ preflush_tail_lsn = atomic64_read(&log->l_tail_lsn); xfs_flush_bdev_async(&bio, log->l_mp->m_ddev_targp->bt_bdev, &bdev_flush); /* * Pull all the log vectors off the items in the CIL, and remove the * items from the CIL. We don't need the CIL lock here because it's only * needed on the transaction commit side which is currently locked out * by the flush lock. */ lv = NULL; num_iovecs = 0; while (!list_empty(&cil->xc_cil)) { struct xfs_log_item *item; item = list_first_entry(&cil->xc_cil, struct xfs_log_item, li_cil); list_del_init(&item->li_cil); if (!ctx->lv_chain) ctx->lv_chain = item->li_lv; else lv->lv_next = item->li_lv; lv = item->li_lv; item->li_lv = NULL; num_iovecs += lv->lv_niovecs; } /* * Switch the contexts so we can drop the context lock and move out * of a shared context. We can't just go straight to the commit record, * though - we need to synchronise with previous and future commits so * that the commit records are correctly ordered in the log to ensure * that we process items during log IO completion in the correct order. * * For example, if we get an EFI in one checkpoint and the EFD in the * next (e.g. due to log forces), we do not want the checkpoint with * the EFD to be committed before the checkpoint with the EFI. Hence * we must strictly order the commit records of the checkpoints so * that: a) the checkpoint callbacks are attached to the iclogs in the * correct order; and b) the checkpoints are replayed in correct order * in log recovery. * * Hence we need to add this context to the committing context list so * that higher sequences will wait for us to write out a commit record * before they do. * * xfs_log_force_seq requires us to mirror the new sequence into the cil * structure atomically with the addition of this sequence to the * committing list. This also ensures that we can do unlocked checks * against the current sequence in log forces without risking * deferencing a freed context pointer. */ spin_lock(&cil->xc_push_lock); xlog_cil_ctx_switch(cil, new_ctx); spin_unlock(&cil->xc_push_lock); up_write(&cil->xc_ctx_lock); /* * Build a checkpoint transaction header and write it to the log to * begin the transaction. We need to account for the space used by the * transaction header here as it is not accounted for in xlog_write(). * * The LSN we need to pass to the log items on transaction commit is * the LSN reported by the first log vector write. If we use the commit * record lsn then we can move the tail beyond the grant write head. */ tic = ctx->ticket; thdr.th_magic = XFS_TRANS_HEADER_MAGIC; thdr.th_type = XFS_TRANS_CHECKPOINT; thdr.th_tid = tic->t_tid; thdr.th_num_items = num_iovecs; lhdr.i_addr = &thdr; lhdr.i_len = sizeof(xfs_trans_header_t); lhdr.i_type = XLOG_REG_TYPE_TRANSHDR; tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t); lvhdr.lv_niovecs = 1; lvhdr.lv_iovecp = &lhdr; lvhdr.lv_next = ctx->lv_chain; /* * Before we format and submit the first iclog, we have to ensure that * the metadata writeback ordering cache flush is complete. */ wait_for_completion(&bdev_flush); error = xlog_cil_write_chain(ctx, &lvhdr); if (error) goto out_abort_free_ticket; error = xlog_cil_write_commit_record(ctx); if (error) goto out_abort_free_ticket; xfs_log_ticket_ungrant(log, tic); /* * If the checkpoint spans multiple iclogs, wait for all previous iclogs * to complete before we submit the commit_iclog. We can't use state * checks for this - ACTIVE can be either a past completed iclog or a * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a * past or future iclog awaiting IO or ordered IO completion to be run. * In the latter case, if it's a future iclog and we wait on it, the we * will hang because it won't get processed through to ic_force_wait * wakeup until this commit_iclog is written to disk. Hence we use the * iclog header lsn and compare it to the commit lsn to determine if we * need to wait on iclogs or not. */ spin_lock(&log->l_icloglock); if (ctx->start_lsn != ctx->commit_lsn) { xfs_lsn_t plsn; plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn); if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) { /* * Waiting on ic_force_wait orders the completion of * iclogs older than ic_prev. Hence we only need to wait * on the most recent older iclog here. */ xlog_wait_on_iclog(ctx->commit_iclog->ic_prev); spin_lock(&log->l_icloglock); } /* * We need to issue a pre-flush so that the ordering for this * checkpoint is correctly preserved down to stable storage. */ ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; } /* * The commit iclog must be written to stable storage to guarantee * journal IO vs metadata writeback IO is correctly ordered on stable * storage. * * If the push caller needs the commit to be immediately stable and the * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it * will be written when released, switch it's state to WANT_SYNC right * now. */ ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA; if (push_commit_stable && ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE) xlog_state_switch_iclogs(log, ctx->commit_iclog, 0); xlog_state_release_iclog(log, ctx->commit_iclog, preflush_tail_lsn); /* Not safe to reference ctx now! */ spin_unlock(&log->l_icloglock); return; out_skip: up_write(&cil->xc_ctx_lock); xfs_log_ticket_put(new_ctx->ticket); kmem_free(new_ctx); return; out_abort_free_ticket: xfs_log_ticket_ungrant(log, tic); ASSERT(xlog_is_shutdown(log)); if (!ctx->commit_iclog) { xlog_cil_committed(ctx); return; } spin_lock(&log->l_icloglock); xlog_state_release_iclog(log, ctx->commit_iclog, 0); /* Not safe to reference ctx now! */ spin_unlock(&log->l_icloglock); } /* * We need to push CIL every so often so we don't cache more than we can fit in * the log. The limit really is that a checkpoint can't be more than half the * log (the current checkpoint is not allowed to overwrite the previous * checkpoint), but commit latency and memory usage limit this to a smaller * size. */ static void xlog_cil_push_background( struct xlog *log) __releases(cil->xc_ctx_lock) { struct xfs_cil *cil = log->l_cilp; /* * The cil won't be empty because we are called while holding the * context lock so whatever we added to the CIL will still be there */ ASSERT(!list_empty(&cil->xc_cil)); /* * Don't do a background push if we haven't used up all the * space available yet. */ if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) { up_read(&cil->xc_ctx_lock); return; } spin_lock(&cil->xc_push_lock); if (cil->xc_push_seq < cil->xc_current_sequence) { cil->xc_push_seq = cil->xc_current_sequence; queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); } /* * Drop the context lock now, we can't hold that if we need to sleep * because we are over the blocking threshold. The push_lock is still * held, so blocking threshold sleep/wakeup is still correctly * serialised here. */ up_read(&cil->xc_ctx_lock); /* * If we are well over the space limit, throttle the work that is being * done until the push work on this context has begun. Enforce the hard * throttle on all transaction commits once it has been activated, even * if the committing transactions have resulted in the space usage * dipping back down under the hard limit. * * The ctx->xc_push_lock provides the serialisation necessary for safely * using the lockless waitqueue_active() check in this context. */ if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) || waitqueue_active(&cil->xc_push_wait)) { trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket); ASSERT(cil->xc_ctx->space_used < log->l_logsize); xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock); return; } spin_unlock(&cil->xc_push_lock); } /* * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence * number that is passed. When it returns, the work will be queued for * @push_seq, but it won't be completed. * * If the caller is performing a synchronous force, we will flush the workqueue * to get previously queued work moving to minimise the wait time they will * undergo waiting for all outstanding pushes to complete. The caller is * expected to do the required waiting for push_seq to complete. * * If the caller is performing an async push, we need to ensure that the * checkpoint is fully flushed out of the iclogs when we finish the push. If we * don't do this, then the commit record may remain sitting in memory in an * ACTIVE iclog. This then requires another full log force to push to disk, * which defeats the purpose of having an async, non-blocking CIL force * mechanism. Hence in this case we need to pass a flag to the push work to * indicate it needs to flush the commit record itself. */ static void xlog_cil_push_now( struct xlog *log, xfs_lsn_t push_seq, bool async) { struct xfs_cil *cil = log->l_cilp; if (!cil) return; ASSERT(push_seq && push_seq <= cil->xc_current_sequence); /* start on any pending background push to minimise wait time on it */ if (!async) flush_workqueue(cil->xc_push_wq); /* * If the CIL is empty or we've already pushed the sequence then * there's no work we need to do. */ spin_lock(&cil->xc_push_lock); if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) { spin_unlock(&cil->xc_push_lock); return; } cil->xc_push_seq = push_seq; cil->xc_push_commit_stable = async; queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); spin_unlock(&cil->xc_push_lock); } bool xlog_cil_empty( struct xlog *log) { struct xfs_cil *cil = log->l_cilp; bool empty = false; spin_lock(&cil->xc_push_lock); if (list_empty(&cil->xc_cil)) empty = true; spin_unlock(&cil->xc_push_lock); return empty; } /* * Commit a transaction with the given vector to the Committed Item List. * * To do this, we need to format the item, pin it in memory if required and * account for the space used by the transaction. Once we have done that we * need to release the unused reservation for the transaction, attach the * transaction to the checkpoint context so we carry the busy extents through * to checkpoint completion, and then unlock all the items in the transaction. * * Called with the context lock already held in read mode to lock out * background commit, returns without it held once background commits are * allowed again. */ void xlog_cil_commit( struct xlog *log, struct xfs_trans *tp, xfs_csn_t *commit_seq, bool regrant) { struct xfs_cil *cil = log->l_cilp; struct xfs_log_item *lip, *next; /* * Do all necessary memory allocation before we lock the CIL. * This ensures the allocation does not deadlock with a CIL * push in memory reclaim (e.g. from kswapd). */ xlog_cil_alloc_shadow_bufs(log, tp); /* lock out background commit */ down_read(&cil->xc_ctx_lock); xlog_cil_insert_items(log, tp); if (regrant && !xlog_is_shutdown(log)) xfs_log_ticket_regrant(log, tp->t_ticket); else xfs_log_ticket_ungrant(log, tp->t_ticket); tp->t_ticket = NULL; xfs_trans_unreserve_and_mod_sb(tp); /* * Once all the items of the transaction have been copied to the CIL, * the items can be unlocked and possibly freed. * * This needs to be done before we drop the CIL context lock because we * have to update state in the log items and unlock them before they go * to disk. If we don't, then the CIL checkpoint can race with us and * we can run checkpoint completion before we've updated and unlocked * the log items. This affects (at least) processing of stale buffers, * inodes and EFIs. */ trace_xfs_trans_commit_items(tp, _RET_IP_); list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { xfs_trans_del_item(lip); if (lip->li_ops->iop_committing) lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence); } if (commit_seq) *commit_seq = cil->xc_ctx->sequence; /* xlog_cil_push_background() releases cil->xc_ctx_lock */ xlog_cil_push_background(log); } /* * Flush the CIL to stable storage but don't wait for it to complete. This * requires the CIL push to ensure the commit record for the push hits the disk, * but otherwise is no different to a push done from a log force. */ void xlog_cil_flush( struct xlog *log) { xfs_csn_t seq = log->l_cilp->xc_current_sequence; trace_xfs_log_force(log->l_mp, seq, _RET_IP_); xlog_cil_push_now(log, seq, true); } /* * Conditionally push the CIL based on the sequence passed in. * * We only need to push if we haven't already pushed the sequence number given. * Hence the only time we will trigger a push here is if the push sequence is * the same as the current context. * * We return the current commit lsn to allow the callers to determine if a * iclog flush is necessary following this call. */ xfs_lsn_t xlog_cil_force_seq( struct xlog *log, xfs_csn_t sequence) { struct xfs_cil *cil = log->l_cilp; struct xfs_cil_ctx *ctx; xfs_lsn_t commit_lsn = NULLCOMMITLSN; ASSERT(sequence <= cil->xc_current_sequence); if (!sequence) sequence = cil->xc_current_sequence; trace_xfs_log_force(log->l_mp, sequence, _RET_IP_); /* * check to see if we need to force out the current context. * xlog_cil_push() handles racing pushes for the same sequence, * so no need to deal with it here. */ restart: xlog_cil_push_now(log, sequence, false); /* * See if we can find a previous sequence still committing. * We need to wait for all previous sequence commits to complete * before allowing the force of push_seq to go ahead. Hence block * on commits for those as well. */ spin_lock(&cil->xc_push_lock); list_for_each_entry(ctx, &cil->xc_committing, committing) { /* * Avoid getting stuck in this loop because we were woken by the * shutdown, but then went back to sleep once already in the * shutdown state. */ if (xlog_is_shutdown(log)) goto out_shutdown; if (ctx->sequence > sequence) continue; if (!ctx->commit_lsn) { /* * It is still being pushed! Wait for the push to * complete, then start again from the beginning. */ XFS_STATS_INC(log->l_mp, xs_log_force_sleep); xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); goto restart; } if (ctx->sequence != sequence) continue; /* found it! */ commit_lsn = ctx->commit_lsn; } /* * The call to xlog_cil_push_now() executes the push in the background. * Hence by the time we have got here it our sequence may not have been * pushed yet. This is true if the current sequence still matches the * push sequence after the above wait loop and the CIL still contains * dirty objects. This is guaranteed by the push code first adding the * context to the committing list before emptying the CIL. * * Hence if we don't find the context in the committing list and the * current sequence number is unchanged then the CIL contents are * significant. If the CIL is empty, if means there was nothing to push * and that means there is nothing to wait for. If the CIL is not empty, * it means we haven't yet started the push, because if it had started * we would have found the context on the committing list. */ if (sequence == cil->xc_current_sequence && !list_empty(&cil->xc_cil)) { spin_unlock(&cil->xc_push_lock); goto restart; } spin_unlock(&cil->xc_push_lock); return commit_lsn; /* * We detected a shutdown in progress. We need to trigger the log force * to pass through it's iclog state machine error handling, even though * we are already in a shutdown state. Hence we can't return * NULLCOMMITLSN here as that has special meaning to log forces (i.e. * LSN is already stable), so we return a zero LSN instead. */ out_shutdown: spin_unlock(&cil->xc_push_lock); return 0; } /* * Check if the current log item was first committed in this sequence. * We can't rely on just the log item being in the CIL, we have to check * the recorded commit sequence number. * * Note: for this to be used in a non-racy manner, it has to be called with * CIL flushing locked out. As a result, it should only be used during the * transaction commit process when deciding what to format into the item. */ bool xfs_log_item_in_current_chkpt( struct xfs_log_item *lip) { struct xfs_cil *cil = lip->li_mountp->m_log->l_cilp; if (list_empty(&lip->li_cil)) return false; /* * li_seq is written on the first commit of a log item to record the * first checkpoint it is written to. Hence if it is different to the * current sequence, we're in a new checkpoint. */ return lip->li_seq == READ_ONCE(cil->xc_current_sequence); } /* * Perform initial CIL structure initialisation. */ int xlog_cil_init( struct xlog *log) { struct xfs_cil *cil; struct xfs_cil_ctx *ctx; cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL); if (!cil) return -ENOMEM; /* * Limit the CIL pipeline depth to 4 concurrent works to bound the * concurrency the log spinlocks will be exposed to. */ cil->xc_push_wq = alloc_workqueue("xfs-cil/%s", XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND), 4, log->l_mp->m_super->s_id); if (!cil->xc_push_wq) goto out_destroy_cil; INIT_LIST_HEAD(&cil->xc_cil); INIT_LIST_HEAD(&cil->xc_committing); spin_lock_init(&cil->xc_cil_lock); spin_lock_init(&cil->xc_push_lock); init_waitqueue_head(&cil->xc_push_wait); init_rwsem(&cil->xc_ctx_lock); init_waitqueue_head(&cil->xc_start_wait); init_waitqueue_head(&cil->xc_commit_wait); cil->xc_log = log; log->l_cilp = cil; ctx = xlog_cil_ctx_alloc(); xlog_cil_ctx_switch(cil, ctx); return 0; out_destroy_cil: kmem_free(cil); return -ENOMEM; } void xlog_cil_destroy( struct xlog *log) { if (log->l_cilp->xc_ctx) { if (log->l_cilp->xc_ctx->ticket) xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket); kmem_free(log->l_cilp->xc_ctx); } ASSERT(list_empty(&log->l_cilp->xc_cil)); destroy_workqueue(log->l_cilp->xc_push_wq); kmem_free(log->l_cilp); }