// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_bmap.h" #include "xfs_alloc.h" #include "xfs_fsops.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_dir2.h" #include "xfs_extfree_item.h" #include "xfs_mru_cache.h" #include "xfs_inode_item.h" #include "xfs_icache.h" #include "xfs_trace.h" #include "xfs_icreate_item.h" #include "xfs_filestream.h" #include "xfs_quota.h" #include "xfs_sysfs.h" #include "xfs_ondisk.h" #include "xfs_rmap_item.h" #include "xfs_refcount_item.h" #include "xfs_bmap_item.h" #include "xfs_reflink.h" #include #include #include static const struct super_operations xfs_super_operations; static struct kset *xfs_kset; /* top-level xfs sysfs dir */ #ifdef DEBUG static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ #endif /* * Table driven mount option parser. */ enum { Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, Opt_discard, Opt_nodiscard, Opt_dax, }; static const struct fs_parameter_spec xfs_param_specs[] = { fsparam_u32("logbufs", Opt_logbufs), fsparam_string("logbsize", Opt_logbsize), fsparam_string("logdev", Opt_logdev), fsparam_string("rtdev", Opt_rtdev), fsparam_flag("wsync", Opt_wsync), fsparam_flag("noalign", Opt_noalign), fsparam_flag("swalloc", Opt_swalloc), fsparam_u32("sunit", Opt_sunit), fsparam_u32("swidth", Opt_swidth), fsparam_flag("nouuid", Opt_nouuid), fsparam_flag("grpid", Opt_grpid), fsparam_flag("nogrpid", Opt_nogrpid), fsparam_flag("bsdgroups", Opt_bsdgroups), fsparam_flag("sysvgroups", Opt_sysvgroups), fsparam_string("allocsize", Opt_allocsize), fsparam_flag("norecovery", Opt_norecovery), fsparam_flag("inode64", Opt_inode64), fsparam_flag("inode32", Opt_inode32), fsparam_flag("ikeep", Opt_ikeep), fsparam_flag("noikeep", Opt_noikeep), fsparam_flag("largeio", Opt_largeio), fsparam_flag("nolargeio", Opt_nolargeio), fsparam_flag("attr2", Opt_attr2), fsparam_flag("noattr2", Opt_noattr2), fsparam_flag("filestreams", Opt_filestreams), fsparam_flag("quota", Opt_quota), fsparam_flag("noquota", Opt_noquota), fsparam_flag("usrquota", Opt_usrquota), fsparam_flag("grpquota", Opt_grpquota), fsparam_flag("prjquota", Opt_prjquota), fsparam_flag("uquota", Opt_uquota), fsparam_flag("gquota", Opt_gquota), fsparam_flag("pquota", Opt_pquota), fsparam_flag("uqnoenforce", Opt_uqnoenforce), fsparam_flag("gqnoenforce", Opt_gqnoenforce), fsparam_flag("pqnoenforce", Opt_pqnoenforce), fsparam_flag("qnoenforce", Opt_qnoenforce), fsparam_flag("discard", Opt_discard), fsparam_flag("nodiscard", Opt_nodiscard), fsparam_flag("dax", Opt_dax), {} }; static const struct fs_parameter_description xfs_fs_parameters = { .name = "xfs", .specs = xfs_param_specs, }; struct proc_xfs_info { uint64_t flag; char *str; }; static int xfs_fs_show_options( struct seq_file *m, struct dentry *root) { static struct proc_xfs_info xfs_info_set[] = { /* the few simple ones we can get from the mount struct */ { XFS_MOUNT_IKEEP, ",ikeep" }, { XFS_MOUNT_WSYNC, ",wsync" }, { XFS_MOUNT_NOALIGN, ",noalign" }, { XFS_MOUNT_SWALLOC, ",swalloc" }, { XFS_MOUNT_NOUUID, ",nouuid" }, { XFS_MOUNT_NORECOVERY, ",norecovery" }, { XFS_MOUNT_ATTR2, ",attr2" }, { XFS_MOUNT_FILESTREAMS, ",filestreams" }, { XFS_MOUNT_GRPID, ",grpid" }, { XFS_MOUNT_DISCARD, ",discard" }, { XFS_MOUNT_LARGEIO, ",largeio" }, { XFS_MOUNT_DAX, ",dax" }, { 0, NULL } }; struct xfs_mount *mp = XFS_M(root->d_sb); struct proc_xfs_info *xfs_infop; for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { if (mp->m_flags & xfs_infop->flag) seq_puts(m, xfs_infop->str); } seq_printf(m, ",inode%d", (mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64); if (mp->m_flags & XFS_MOUNT_ALLOCSIZE) seq_printf(m, ",allocsize=%dk", (1 << mp->m_allocsize_log) >> 10); if (mp->m_logbufs > 0) seq_printf(m, ",logbufs=%d", mp->m_logbufs); if (mp->m_logbsize > 0) seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); if (mp->m_logname) seq_show_option(m, "logdev", mp->m_logname); if (mp->m_rtname) seq_show_option(m, "rtdev", mp->m_rtname); if (mp->m_dalign > 0) seq_printf(m, ",sunit=%d", (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); if (mp->m_swidth > 0) seq_printf(m, ",swidth=%d", (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) seq_puts(m, ",usrquota"); else if (mp->m_qflags & XFS_UQUOTA_ACCT) seq_puts(m, ",uqnoenforce"); if (mp->m_qflags & XFS_PQUOTA_ACCT) { if (mp->m_qflags & XFS_PQUOTA_ENFD) seq_puts(m, ",prjquota"); else seq_puts(m, ",pqnoenforce"); } if (mp->m_qflags & XFS_GQUOTA_ACCT) { if (mp->m_qflags & XFS_GQUOTA_ENFD) seq_puts(m, ",grpquota"); else seq_puts(m, ",gqnoenforce"); } if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) seq_puts(m, ",noquota"); return 0; } static uint64_t xfs_max_file_offset( unsigned int blockshift) { unsigned int pagefactor = 1; unsigned int bitshift = BITS_PER_LONG - 1; /* Figure out maximum filesize, on Linux this can depend on * the filesystem blocksize (on 32 bit platforms). * __block_write_begin does this in an [unsigned] long long... * page->index << (PAGE_SHIFT - bbits) * So, for page sized blocks (4K on 32 bit platforms), * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is * (((u64)PAGE_SIZE << (BITS_PER_LONG-1))-1) * but for smaller blocksizes it is less (bbits = log2 bsize). */ #if BITS_PER_LONG == 32 ASSERT(sizeof(sector_t) == 8); pagefactor = PAGE_SIZE; bitshift = BITS_PER_LONG; #endif return (((uint64_t)pagefactor) << bitshift) - 1; } /* * Set parameters for inode allocation heuristics, taking into account * filesystem size and inode32/inode64 mount options; i.e. specifically * whether or not XFS_MOUNT_SMALL_INUMS is set. * * Inode allocation patterns are altered only if inode32 is requested * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large. * If altered, XFS_MOUNT_32BITINODES is set as well. * * An agcount independent of that in the mount structure is provided * because in the growfs case, mp->m_sb.sb_agcount is not yet updated * to the potentially higher ag count. * * Returns the maximum AG index which may contain inodes. */ xfs_agnumber_t xfs_set_inode_alloc( struct xfs_mount *mp, xfs_agnumber_t agcount) { xfs_agnumber_t index; xfs_agnumber_t maxagi = 0; xfs_sb_t *sbp = &mp->m_sb; xfs_agnumber_t max_metadata; xfs_agino_t agino; xfs_ino_t ino; /* * Calculate how much should be reserved for inodes to meet * the max inode percentage. Used only for inode32. */ if (M_IGEO(mp)->maxicount) { uint64_t icount; icount = sbp->sb_dblocks * sbp->sb_imax_pct; do_div(icount, 100); icount += sbp->sb_agblocks - 1; do_div(icount, sbp->sb_agblocks); max_metadata = icount; } else { max_metadata = agcount; } /* Get the last possible inode in the filesystem */ agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); /* * If user asked for no more than 32-bit inodes, and the fs is * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter * the allocator to accommodate the request. */ if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) mp->m_flags |= XFS_MOUNT_32BITINODES; else mp->m_flags &= ~XFS_MOUNT_32BITINODES; for (index = 0; index < agcount; index++) { struct xfs_perag *pag; ino = XFS_AGINO_TO_INO(mp, index, agino); pag = xfs_perag_get(mp, index); if (mp->m_flags & XFS_MOUNT_32BITINODES) { if (ino > XFS_MAXINUMBER_32) { pag->pagi_inodeok = 0; pag->pagf_metadata = 0; } else { pag->pagi_inodeok = 1; maxagi++; if (index < max_metadata) pag->pagf_metadata = 1; else pag->pagf_metadata = 0; } } else { pag->pagi_inodeok = 1; pag->pagf_metadata = 0; } xfs_perag_put(pag); } return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount; } STATIC int xfs_blkdev_get( xfs_mount_t *mp, const char *name, struct block_device **bdevp) { int error = 0; *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, mp); if (IS_ERR(*bdevp)) { error = PTR_ERR(*bdevp); xfs_warn(mp, "Invalid device [%s], error=%d", name, error); } return error; } STATIC void xfs_blkdev_put( struct block_device *bdev) { if (bdev) blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); } void xfs_blkdev_issue_flush( xfs_buftarg_t *buftarg) { blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL); } STATIC void xfs_close_devices( struct xfs_mount *mp) { struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev; if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { struct block_device *logdev = mp->m_logdev_targp->bt_bdev; struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev; xfs_free_buftarg(mp->m_logdev_targp); xfs_blkdev_put(logdev); fs_put_dax(dax_logdev); } if (mp->m_rtdev_targp) { struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev; xfs_free_buftarg(mp->m_rtdev_targp); xfs_blkdev_put(rtdev); fs_put_dax(dax_rtdev); } xfs_free_buftarg(mp->m_ddev_targp); fs_put_dax(dax_ddev); } /* * The file system configurations are: * (1) device (partition) with data and internal log * (2) logical volume with data and log subvolumes. * (3) logical volume with data, log, and realtime subvolumes. * * We only have to handle opening the log and realtime volumes here if * they are present. The data subvolume has already been opened by * get_sb_bdev() and is stored in sb->s_bdev. */ STATIC int xfs_open_devices( struct xfs_mount *mp) { struct block_device *ddev = mp->m_super->s_bdev; struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev); struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL; struct block_device *logdev = NULL, *rtdev = NULL; int error; /* * Open real time and log devices - order is important. */ if (mp->m_logname) { error = xfs_blkdev_get(mp, mp->m_logname, &logdev); if (error) goto out; dax_logdev = fs_dax_get_by_bdev(logdev); } if (mp->m_rtname) { error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); if (error) goto out_close_logdev; if (rtdev == ddev || rtdev == logdev) { xfs_warn(mp, "Cannot mount filesystem with identical rtdev and ddev/logdev."); error = -EINVAL; goto out_close_rtdev; } dax_rtdev = fs_dax_get_by_bdev(rtdev); } /* * Setup xfs_mount buffer target pointers */ error = -ENOMEM; mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev); if (!mp->m_ddev_targp) goto out_close_rtdev; if (rtdev) { mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev); if (!mp->m_rtdev_targp) goto out_free_ddev_targ; } if (logdev && logdev != ddev) { mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev); if (!mp->m_logdev_targp) goto out_free_rtdev_targ; } else { mp->m_logdev_targp = mp->m_ddev_targp; } return 0; out_free_rtdev_targ: if (mp->m_rtdev_targp) xfs_free_buftarg(mp->m_rtdev_targp); out_free_ddev_targ: xfs_free_buftarg(mp->m_ddev_targp); out_close_rtdev: xfs_blkdev_put(rtdev); fs_put_dax(dax_rtdev); out_close_logdev: if (logdev && logdev != ddev) { xfs_blkdev_put(logdev); fs_put_dax(dax_logdev); } out: fs_put_dax(dax_ddev); return error; } /* * Setup xfs_mount buffer target pointers based on superblock */ STATIC int xfs_setup_devices( struct xfs_mount *mp) { int error; error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); if (error) return error; if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { unsigned int log_sector_size = BBSIZE; if (xfs_sb_version_hassector(&mp->m_sb)) log_sector_size = mp->m_sb.sb_logsectsize; error = xfs_setsize_buftarg(mp->m_logdev_targp, log_sector_size); if (error) return error; } if (mp->m_rtdev_targp) { error = xfs_setsize_buftarg(mp->m_rtdev_targp, mp->m_sb.sb_sectsize); if (error) return error; } return 0; } STATIC int xfs_init_mount_workqueues( struct xfs_mount *mp) { mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id); if (!mp->m_buf_workqueue) goto out; mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); if (!mp->m_unwritten_workqueue) goto out_destroy_buf; mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND, 0, mp->m_super->s_id); if (!mp->m_cil_workqueue) goto out_destroy_unwritten; mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); if (!mp->m_reclaim_workqueue) goto out_destroy_cil; mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id); if (!mp->m_eofblocks_workqueue) goto out_destroy_reclaim; mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0, mp->m_super->s_id); if (!mp->m_sync_workqueue) goto out_destroy_eofb; return 0; out_destroy_eofb: destroy_workqueue(mp->m_eofblocks_workqueue); out_destroy_reclaim: destroy_workqueue(mp->m_reclaim_workqueue); out_destroy_cil: destroy_workqueue(mp->m_cil_workqueue); out_destroy_unwritten: destroy_workqueue(mp->m_unwritten_workqueue); out_destroy_buf: destroy_workqueue(mp->m_buf_workqueue); out: return -ENOMEM; } STATIC void xfs_destroy_mount_workqueues( struct xfs_mount *mp) { destroy_workqueue(mp->m_sync_workqueue); destroy_workqueue(mp->m_eofblocks_workqueue); destroy_workqueue(mp->m_reclaim_workqueue); destroy_workqueue(mp->m_cil_workqueue); destroy_workqueue(mp->m_unwritten_workqueue); destroy_workqueue(mp->m_buf_workqueue); } /* * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting * for IO to complete so that we effectively throttle multiple callers to the * rate at which IO is completing. */ void xfs_flush_inodes( struct xfs_mount *mp) { struct super_block *sb = mp->m_super; if (down_read_trylock(&sb->s_umount)) { sync_inodes_sb(sb); up_read(&sb->s_umount); } } /* Catch misguided souls that try to use this interface on XFS */ STATIC struct inode * xfs_fs_alloc_inode( struct super_block *sb) { BUG(); return NULL; } #ifdef DEBUG static void xfs_check_delalloc( struct xfs_inode *ip, int whichfork) { struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); struct xfs_bmbt_irec got; struct xfs_iext_cursor icur; if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) return; do { if (isnullstartblock(got.br_startblock)) { xfs_warn(ip->i_mount, "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", ip->i_ino, whichfork == XFS_DATA_FORK ? "data" : "cow", got.br_startoff, got.br_blockcount); } } while (xfs_iext_next_extent(ifp, &icur, &got)); } #else #define xfs_check_delalloc(ip, whichfork) do { } while (0) #endif /* * Now that the generic code is guaranteed not to be accessing * the linux inode, we can inactivate and reclaim the inode. */ STATIC void xfs_fs_destroy_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); trace_xfs_destroy_inode(ip); ASSERT(!rwsem_is_locked(&inode->i_rwsem)); XFS_STATS_INC(ip->i_mount, vn_rele); XFS_STATS_INC(ip->i_mount, vn_remove); xfs_inactive(ip); if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) { xfs_check_delalloc(ip, XFS_DATA_FORK); xfs_check_delalloc(ip, XFS_COW_FORK); ASSERT(0); } XFS_STATS_INC(ip->i_mount, vn_reclaim); /* * We should never get here with one of the reclaim flags already set. */ ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); /* * We always use background reclaim here because even if the * inode is clean, it still may be under IO and hence we have * to take the flush lock. The background reclaim path handles * this more efficiently than we can here, so simply let background * reclaim tear down all inodes. */ xfs_inode_set_reclaim_tag(ip); } static void xfs_fs_dirty_inode( struct inode *inode, int flag) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; if (!(inode->i_sb->s_flags & SB_LAZYTIME)) return; if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME)) return; if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) return; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); xfs_trans_commit(tp); } /* * Slab object creation initialisation for the XFS inode. * This covers only the idempotent fields in the XFS inode; * all other fields need to be initialised on allocation * from the slab. This avoids the need to repeatedly initialise * fields in the xfs inode that left in the initialise state * when freeing the inode. */ STATIC void xfs_fs_inode_init_once( void *inode) { struct xfs_inode *ip = inode; memset(ip, 0, sizeof(struct xfs_inode)); /* vfs inode */ inode_init_once(VFS_I(ip)); /* xfs inode */ atomic_set(&ip->i_pincount, 0); spin_lock_init(&ip->i_flags_lock); mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, "xfsino", ip->i_ino); mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, "xfsino", ip->i_ino); } /* * We do an unlocked check for XFS_IDONTCACHE here because we are already * serialised against cache hits here via the inode->i_lock and igrab() in * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be * racing with us, and it avoids needing to grab a spinlock here for every inode * we drop the final reference on. */ STATIC int xfs_fs_drop_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); /* * If this unlinked inode is in the middle of recovery, don't * drop the inode just yet; log recovery will take care of * that. See the comment for this inode flag. */ if (ip->i_flags & XFS_IRECOVERY) { ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED); return 0; } return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE); } static void xfs_mount_free( struct xfs_mount *mp) { kfree(mp->m_rtname); kfree(mp->m_logname); kmem_free(mp); } STATIC int xfs_fs_sync_fs( struct super_block *sb, int wait) { struct xfs_mount *mp = XFS_M(sb); /* * Doing anything during the async pass would be counterproductive. */ if (!wait) return 0; xfs_log_force(mp, XFS_LOG_SYNC); if (laptop_mode) { /* * The disk must be active because we're syncing. * We schedule log work now (now that the disk is * active) instead of later (when it might not be). */ flush_delayed_work(&mp->m_log->l_work); } return 0; } STATIC int xfs_fs_statfs( struct dentry *dentry, struct kstatfs *statp) { struct xfs_mount *mp = XFS_M(dentry->d_sb); xfs_sb_t *sbp = &mp->m_sb; struct xfs_inode *ip = XFS_I(d_inode(dentry)); uint64_t fakeinos, id; uint64_t icount; uint64_t ifree; uint64_t fdblocks; xfs_extlen_t lsize; int64_t ffree; statp->f_type = XFS_SUPER_MAGIC; statp->f_namelen = MAXNAMELEN - 1; id = huge_encode_dev(mp->m_ddev_targp->bt_dev); statp->f_fsid.val[0] = (u32)id; statp->f_fsid.val[1] = (u32)(id >> 32); icount = percpu_counter_sum(&mp->m_icount); ifree = percpu_counter_sum(&mp->m_ifree); fdblocks = percpu_counter_sum(&mp->m_fdblocks); spin_lock(&mp->m_sb_lock); statp->f_bsize = sbp->sb_blocksize; lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; statp->f_blocks = sbp->sb_dblocks - lsize; spin_unlock(&mp->m_sb_lock); statp->f_bfree = fdblocks - mp->m_alloc_set_aside; statp->f_bavail = statp->f_bfree; fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); if (M_IGEO(mp)->maxicount) statp->f_files = min_t(typeof(statp->f_files), statp->f_files, M_IGEO(mp)->maxicount); /* If sb_icount overshot maxicount, report actual allocation */ statp->f_files = max_t(typeof(statp->f_files), statp->f_files, sbp->sb_icount); /* make sure statp->f_ffree does not underflow */ ffree = statp->f_files - (icount - ifree); statp->f_ffree = max_t(int64_t, ffree, 0); if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) xfs_qm_statvfs(ip, statp); if (XFS_IS_REALTIME_MOUNT(mp) && (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { statp->f_blocks = sbp->sb_rblocks; statp->f_bavail = statp->f_bfree = sbp->sb_frextents * sbp->sb_rextsize; } return 0; } STATIC void xfs_save_resvblks(struct xfs_mount *mp) { uint64_t resblks = 0; mp->m_resblks_save = mp->m_resblks; xfs_reserve_blocks(mp, &resblks, NULL); } STATIC void xfs_restore_resvblks(struct xfs_mount *mp) { uint64_t resblks; if (mp->m_resblks_save) { resblks = mp->m_resblks_save; mp->m_resblks_save = 0; } else resblks = xfs_default_resblks(mp); xfs_reserve_blocks(mp, &resblks, NULL); } /* * Trigger writeback of all the dirty metadata in the file system. * * This ensures that the metadata is written to their location on disk rather * than just existing in transactions in the log. This means after a quiesce * there is no log replay required to write the inodes to disk - this is the * primary difference between a sync and a quiesce. * * Note: xfs_log_quiesce() stops background log work - the callers must ensure * it is started again when appropriate. */ void xfs_quiesce_attr( struct xfs_mount *mp) { int error = 0; /* wait for all modifications to complete */ while (atomic_read(&mp->m_active_trans) > 0) delay(100); /* force the log to unpin objects from the now complete transactions */ xfs_log_force(mp, XFS_LOG_SYNC); /* reclaim inodes to do any IO before the freeze completes */ xfs_reclaim_inodes(mp, 0); xfs_reclaim_inodes(mp, SYNC_WAIT); /* Push the superblock and write an unmount record */ error = xfs_log_sbcount(mp); if (error) xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " "Frozen image may not be consistent."); /* * Just warn here till VFS can correctly support * read-only remount without racing. */ WARN_ON(atomic_read(&mp->m_active_trans) != 0); xfs_log_quiesce(mp); } /* * Second stage of a freeze. The data is already frozen so we only * need to take care of the metadata. Once that's done sync the superblock * to the log to dirty it in case of a crash while frozen. This ensures that we * will recover the unlinked inode lists on the next mount. */ STATIC int xfs_fs_freeze( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); xfs_stop_block_reaping(mp); xfs_save_resvblks(mp); xfs_quiesce_attr(mp); return xfs_sync_sb(mp, true); } STATIC int xfs_fs_unfreeze( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); xfs_restore_resvblks(mp); xfs_log_work_queue(mp); xfs_start_block_reaping(mp); return 0; } /* * This function fills in xfs_mount_t fields based on mount args. * Note: the superblock _has_ now been read in. */ STATIC int xfs_finish_flags( struct xfs_mount *mp) { int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); /* Fail a mount where the logbuf is smaller than the log stripe */ if (xfs_sb_version_haslogv2(&mp->m_sb)) { if (mp->m_logbsize <= 0 && mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { mp->m_logbsize = mp->m_sb.sb_logsunit; } else if (mp->m_logbsize > 0 && mp->m_logbsize < mp->m_sb.sb_logsunit) { xfs_warn(mp, "logbuf size must be greater than or equal to log stripe size"); return -EINVAL; } } else { /* Fail a mount if the logbuf is larger than 32K */ if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { xfs_warn(mp, "logbuf size for version 1 logs must be 16K or 32K"); return -EINVAL; } } /* * V5 filesystems always use attr2 format for attributes. */ if (xfs_sb_version_hascrc(&mp->m_sb) && (mp->m_flags & XFS_MOUNT_NOATTR2)) { xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " "attr2 is always enabled for V5 filesystems."); return -EINVAL; } /* * mkfs'ed attr2 will turn on attr2 mount unless explicitly * told by noattr2 to turn it off */ if (xfs_sb_version_hasattr2(&mp->m_sb) && !(mp->m_flags & XFS_MOUNT_NOATTR2)) mp->m_flags |= XFS_MOUNT_ATTR2; /* * prohibit r/w mounts of read-only filesystems */ if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { xfs_warn(mp, "cannot mount a read-only filesystem as read-write"); return -EROFS; } if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && !xfs_sb_version_has_pquotino(&mp->m_sb)) { xfs_warn(mp, "Super block does not support project and group quota together"); return -EINVAL; } return 0; } static int xfs_init_percpu_counters( struct xfs_mount *mp) { int error; error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); if (error) return -ENOMEM; error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); if (error) goto free_icount; error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); if (error) goto free_ifree; error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); if (error) goto free_fdblocks; return 0; free_fdblocks: percpu_counter_destroy(&mp->m_fdblocks); free_ifree: percpu_counter_destroy(&mp->m_ifree); free_icount: percpu_counter_destroy(&mp->m_icount); return -ENOMEM; } void xfs_reinit_percpu_counters( struct xfs_mount *mp) { percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); } static void xfs_destroy_percpu_counters( struct xfs_mount *mp) { percpu_counter_destroy(&mp->m_icount); percpu_counter_destroy(&mp->m_ifree); percpu_counter_destroy(&mp->m_fdblocks); ASSERT(XFS_FORCED_SHUTDOWN(mp) || percpu_counter_sum(&mp->m_delalloc_blks) == 0); percpu_counter_destroy(&mp->m_delalloc_blks); } static void xfs_fs_put_super( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); /* if ->fill_super failed, we have no mount to tear down */ if (!sb->s_fs_info) return; xfs_notice(mp, "Unmounting Filesystem"); xfs_filestream_unmount(mp); xfs_unmountfs(mp); xfs_freesb(mp); free_percpu(mp->m_stats.xs_stats); xfs_destroy_percpu_counters(mp); xfs_destroy_mount_workqueues(mp); xfs_close_devices(mp); sb->s_fs_info = NULL; xfs_mount_free(mp); } static long xfs_fs_nr_cached_objects( struct super_block *sb, struct shrink_control *sc) { /* Paranoia: catch incorrect calls during mount setup or teardown */ if (WARN_ON_ONCE(!sb->s_fs_info)) return 0; return xfs_reclaim_inodes_count(XFS_M(sb)); } static long xfs_fs_free_cached_objects( struct super_block *sb, struct shrink_control *sc) { return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); } static const struct super_operations xfs_super_operations = { .alloc_inode = xfs_fs_alloc_inode, .destroy_inode = xfs_fs_destroy_inode, .dirty_inode = xfs_fs_dirty_inode, .drop_inode = xfs_fs_drop_inode, .put_super = xfs_fs_put_super, .sync_fs = xfs_fs_sync_fs, .freeze_fs = xfs_fs_freeze, .unfreeze_fs = xfs_fs_unfreeze, .statfs = xfs_fs_statfs, .show_options = xfs_fs_show_options, .nr_cached_objects = xfs_fs_nr_cached_objects, .free_cached_objects = xfs_fs_free_cached_objects, }; static int suffix_kstrtoint( const char *s, unsigned int base, int *res) { int last, shift_left_factor = 0, _res; char *value; int ret = 0; value = kstrdup(s, GFP_KERNEL); if (!value) return -ENOMEM; last = strlen(value) - 1; if (value[last] == 'K' || value[last] == 'k') { shift_left_factor = 10; value[last] = '\0'; } if (value[last] == 'M' || value[last] == 'm') { shift_left_factor = 20; value[last] = '\0'; } if (value[last] == 'G' || value[last] == 'g') { shift_left_factor = 30; value[last] = '\0'; } if (kstrtoint(value, base, &_res)) ret = -EINVAL; kfree(value); *res = _res << shift_left_factor; return ret; } /* * Set mount state from a mount option. * * NOTE: mp->m_super is NULL here! */ static int xfs_fc_parse_param( struct fs_context *fc, struct fs_parameter *param) { struct xfs_mount *mp = fc->s_fs_info; struct fs_parse_result result; int size = 0; int opt; opt = fs_parse(fc, &xfs_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_logbufs: mp->m_logbufs = result.uint_32; return 0; case Opt_logbsize: if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize)) return -EINVAL; return 0; case Opt_logdev: kfree(mp->m_logname); mp->m_logname = kstrdup(param->string, GFP_KERNEL); if (!mp->m_logname) return -ENOMEM; return 0; case Opt_rtdev: kfree(mp->m_rtname); mp->m_rtname = kstrdup(param->string, GFP_KERNEL); if (!mp->m_rtname) return -ENOMEM; return 0; case Opt_allocsize: if (suffix_kstrtoint(param->string, 10, &size)) return -EINVAL; mp->m_allocsize_log = ffs(size) - 1; mp->m_flags |= XFS_MOUNT_ALLOCSIZE; return 0; case Opt_grpid: case Opt_bsdgroups: mp->m_flags |= XFS_MOUNT_GRPID; return 0; case Opt_nogrpid: case Opt_sysvgroups: mp->m_flags &= ~XFS_MOUNT_GRPID; return 0; case Opt_wsync: mp->m_flags |= XFS_MOUNT_WSYNC; return 0; case Opt_norecovery: mp->m_flags |= XFS_MOUNT_NORECOVERY; return 0; case Opt_noalign: mp->m_flags |= XFS_MOUNT_NOALIGN; return 0; case Opt_swalloc: mp->m_flags |= XFS_MOUNT_SWALLOC; return 0; case Opt_sunit: mp->m_dalign = result.uint_32; return 0; case Opt_swidth: mp->m_swidth = result.uint_32; return 0; case Opt_inode32: mp->m_flags |= XFS_MOUNT_SMALL_INUMS; return 0; case Opt_inode64: mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; return 0; case Opt_nouuid: mp->m_flags |= XFS_MOUNT_NOUUID; return 0; case Opt_ikeep: mp->m_flags |= XFS_MOUNT_IKEEP; return 0; case Opt_noikeep: mp->m_flags &= ~XFS_MOUNT_IKEEP; return 0; case Opt_largeio: mp->m_flags |= XFS_MOUNT_LARGEIO; return 0; case Opt_nolargeio: mp->m_flags &= ~XFS_MOUNT_LARGEIO; return 0; case Opt_attr2: mp->m_flags |= XFS_MOUNT_ATTR2; return 0; case Opt_noattr2: mp->m_flags &= ~XFS_MOUNT_ATTR2; mp->m_flags |= XFS_MOUNT_NOATTR2; return 0; case Opt_filestreams: mp->m_flags |= XFS_MOUNT_FILESTREAMS; return 0; case Opt_noquota: mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; return 0; case Opt_quota: case Opt_uquota: case Opt_usrquota: mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | XFS_UQUOTA_ENFD); return 0; case Opt_qnoenforce: case Opt_uqnoenforce: mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); mp->m_qflags &= ~XFS_UQUOTA_ENFD; return 0; case Opt_pquota: case Opt_prjquota: mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | XFS_PQUOTA_ENFD); return 0; case Opt_pqnoenforce: mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); mp->m_qflags &= ~XFS_PQUOTA_ENFD; return 0; case Opt_gquota: case Opt_grpquota: mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | XFS_GQUOTA_ENFD); return 0; case Opt_gqnoenforce: mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); mp->m_qflags &= ~XFS_GQUOTA_ENFD; return 0; case Opt_discard: mp->m_flags |= XFS_MOUNT_DISCARD; return 0; case Opt_nodiscard: mp->m_flags &= ~XFS_MOUNT_DISCARD; return 0; #ifdef CONFIG_FS_DAX case Opt_dax: mp->m_flags |= XFS_MOUNT_DAX; return 0; #endif default: xfs_warn(mp, "unknown mount option [%s].", param->key); return -EINVAL; } return 0; } static int xfs_fc_validate_params( struct xfs_mount *mp) { /* * no recovery flag requires a read-only mount */ if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && !(mp->m_flags & XFS_MOUNT_RDONLY)) { xfs_warn(mp, "no-recovery mounts must be read-only."); return -EINVAL; } if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (mp->m_dalign || mp->m_swidth)) { xfs_warn(mp, "sunit and swidth options incompatible with the noalign option"); return -EINVAL; } if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { xfs_warn(mp, "quota support not available in this kernel."); return -EINVAL; } if ((mp->m_dalign && !mp->m_swidth) || (!mp->m_dalign && mp->m_swidth)) { xfs_warn(mp, "sunit and swidth must be specified together"); return -EINVAL; } if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { xfs_warn(mp, "stripe width (%d) must be a multiple of the stripe unit (%d)", mp->m_swidth, mp->m_dalign); return -EINVAL; } if (mp->m_logbufs != -1 && mp->m_logbufs != 0 && (mp->m_logbufs < XLOG_MIN_ICLOGS || mp->m_logbufs > XLOG_MAX_ICLOGS)) { xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); return -EINVAL; } if (mp->m_logbsize != -1 && mp->m_logbsize != 0 && (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || !is_power_of_2(mp->m_logbsize))) { xfs_warn(mp, "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", mp->m_logbsize); return -EINVAL; } if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) && (mp->m_allocsize_log > XFS_MAX_IO_LOG || mp->m_allocsize_log < XFS_MIN_IO_LOG)) { xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); return -EINVAL; } return 0; } static int xfs_fc_fill_super( struct super_block *sb, struct fs_context *fc) { struct xfs_mount *mp = sb->s_fs_info; struct inode *root; int flags = 0, error; mp->m_super = sb; error = xfs_fc_validate_params(mp); if (error) goto out_free_names; sb_min_blocksize(sb, BBSIZE); sb->s_xattr = xfs_xattr_handlers; sb->s_export_op = &xfs_export_operations; #ifdef CONFIG_XFS_QUOTA sb->s_qcop = &xfs_quotactl_operations; sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; #endif sb->s_op = &xfs_super_operations; /* * Delay mount work if the debug hook is set. This is debug * instrumention to coordinate simulation of xfs mount failures with * VFS superblock operations */ if (xfs_globals.mount_delay) { xfs_notice(mp, "Delaying mount for %d seconds.", xfs_globals.mount_delay); msleep(xfs_globals.mount_delay * 1000); } if (fc->sb_flags & SB_SILENT) flags |= XFS_MFSI_QUIET; error = xfs_open_devices(mp); if (error) goto out_free_names; error = xfs_init_mount_workqueues(mp); if (error) goto out_close_devices; error = xfs_init_percpu_counters(mp); if (error) goto out_destroy_workqueues; /* Allocate stats memory before we do operations that might use it */ mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); if (!mp->m_stats.xs_stats) { error = -ENOMEM; goto out_destroy_counters; } error = xfs_readsb(mp, flags); if (error) goto out_free_stats; error = xfs_finish_flags(mp); if (error) goto out_free_sb; error = xfs_setup_devices(mp); if (error) goto out_free_sb; error = xfs_filestream_mount(mp); if (error) goto out_free_sb; /* * we must configure the block size in the superblock before we run the * full mount process as the mount process can lookup and cache inodes. */ sb->s_magic = XFS_SUPER_MAGIC; sb->s_blocksize = mp->m_sb.sb_blocksize; sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); sb->s_max_links = XFS_MAXLINK; sb->s_time_gran = 1; sb->s_time_min = S32_MIN; sb->s_time_max = S32_MAX; sb->s_iflags |= SB_I_CGROUPWB; set_posix_acl_flag(sb); /* version 5 superblocks support inode version counters. */ if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) sb->s_flags |= SB_I_VERSION; if (mp->m_flags & XFS_MOUNT_DAX) { bool rtdev_is_dax = false, datadev_is_dax; xfs_warn(mp, "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev, sb->s_blocksize); if (mp->m_rtdev_targp) rtdev_is_dax = bdev_dax_supported( mp->m_rtdev_targp->bt_bdev, sb->s_blocksize); if (!rtdev_is_dax && !datadev_is_dax) { xfs_alert(mp, "DAX unsupported by block device. Turning off DAX."); mp->m_flags &= ~XFS_MOUNT_DAX; } if (xfs_sb_version_hasreflink(&mp->m_sb)) { xfs_alert(mp, "DAX and reflink cannot be used together!"); error = -EINVAL; goto out_filestream_unmount; } } if (mp->m_flags & XFS_MOUNT_DISCARD) { struct request_queue *q = bdev_get_queue(sb->s_bdev); if (!blk_queue_discard(q)) { xfs_warn(mp, "mounting with \"discard\" option, but " "the device does not support discard"); mp->m_flags &= ~XFS_MOUNT_DISCARD; } } if (xfs_sb_version_hasreflink(&mp->m_sb)) { if (mp->m_sb.sb_rblocks) { xfs_alert(mp, "reflink not compatible with realtime device!"); error = -EINVAL; goto out_filestream_unmount; } if (xfs_globals.always_cow) { xfs_info(mp, "using DEBUG-only always_cow mode."); mp->m_always_cow = true; } } if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { xfs_alert(mp, "reverse mapping btree not compatible with realtime device!"); error = -EINVAL; goto out_filestream_unmount; } error = xfs_mountfs(mp); if (error) goto out_filestream_unmount; root = igrab(VFS_I(mp->m_rootip)); if (!root) { error = -ENOENT; goto out_unmount; } sb->s_root = d_make_root(root); if (!sb->s_root) { error = -ENOMEM; goto out_unmount; } return 0; out_filestream_unmount: xfs_filestream_unmount(mp); out_free_sb: xfs_freesb(mp); out_free_stats: free_percpu(mp->m_stats.xs_stats); out_destroy_counters: xfs_destroy_percpu_counters(mp); out_destroy_workqueues: xfs_destroy_mount_workqueues(mp); out_close_devices: xfs_close_devices(mp); out_free_names: sb->s_fs_info = NULL; xfs_mount_free(mp); return error; out_unmount: xfs_filestream_unmount(mp); xfs_unmountfs(mp); goto out_free_sb; } static int xfs_fc_get_tree( struct fs_context *fc) { return get_tree_bdev(fc, xfs_fc_fill_super); } static int xfs_remount_rw( struct xfs_mount *mp) { struct xfs_sb *sbp = &mp->m_sb; int error; if (mp->m_flags & XFS_MOUNT_NORECOVERY) { xfs_warn(mp, "ro->rw transition prohibited on norecovery mount"); return -EINVAL; } if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 && xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { xfs_warn(mp, "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", (sbp->sb_features_ro_compat & XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); return -EINVAL; } mp->m_flags &= ~XFS_MOUNT_RDONLY; /* * If this is the first remount to writeable state we might have some * superblock changes to update. */ if (mp->m_update_sb) { error = xfs_sync_sb(mp, false); if (error) { xfs_warn(mp, "failed to write sb changes"); return error; } mp->m_update_sb = false; } /* * Fill out the reserve pool if it is empty. Use the stashed value if * it is non-zero, otherwise go with the default. */ xfs_restore_resvblks(mp); xfs_log_work_queue(mp); /* Recover any CoW blocks that never got remapped. */ error = xfs_reflink_recover_cow(mp); if (error) { xfs_err(mp, "Error %d recovering leftover CoW allocations.", error); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); return error; } xfs_start_block_reaping(mp); /* Create the per-AG metadata reservation pool .*/ error = xfs_fs_reserve_ag_blocks(mp); if (error && error != -ENOSPC) return error; return 0; } static int xfs_remount_ro( struct xfs_mount *mp) { int error; /* * Cancel background eofb scanning so it cannot race with the final * log force+buftarg wait and deadlock the remount. */ xfs_stop_block_reaping(mp); /* Get rid of any leftover CoW reservations... */ error = xfs_icache_free_cowblocks(mp, NULL); if (error) { xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); return error; } /* Free the per-AG metadata reservation pool. */ error = xfs_fs_unreserve_ag_blocks(mp); if (error) { xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); return error; } /* * Before we sync the metadata, we need to free up the reserve block * pool so that the used block count in the superblock on disk is * correct at the end of the remount. Stash the current* reserve pool * size so that if we get remounted rw, we can return it to the same * size. */ xfs_save_resvblks(mp); xfs_quiesce_attr(mp); mp->m_flags |= XFS_MOUNT_RDONLY; return 0; } /* * Logically we would return an error here to prevent users from believing * they might have changed mount options using remount which can't be changed. * * But unfortunately mount(8) adds all options from mtab and fstab to the mount * arguments in some cases so we can't blindly reject options, but have to * check for each specified option if it actually differs from the currently * set option and only reject it if that's the case. * * Until that is implemented we return success for every remount request, and * silently ignore all options that we can't actually change. */ static int xfs_fc_reconfigure( struct fs_context *fc) { struct xfs_mount *mp = XFS_M(fc->root->d_sb); struct xfs_mount *new_mp = fc->s_fs_info; xfs_sb_t *sbp = &mp->m_sb; int flags = fc->sb_flags; int error; error = xfs_fc_validate_params(new_mp); if (error) return error; sync_filesystem(mp->m_super); /* inode32 -> inode64 */ if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && !(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); } /* inode64 -> inode32 */ if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) && (new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) { mp->m_flags |= XFS_MOUNT_SMALL_INUMS; mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount); } /* ro -> rw */ if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) { error = xfs_remount_rw(mp); if (error) return error; } /* rw -> ro */ if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) { error = xfs_remount_ro(mp); if (error) return error; } return 0; } static void xfs_fc_free( struct fs_context *fc) { struct xfs_mount *mp = fc->s_fs_info; /* * mp is stored in the fs_context when it is initialized. * mp is transferred to the superblock on a successful mount, * but if an error occurs before the transfer we have to free * it here. */ if (mp) xfs_mount_free(mp); } static const struct fs_context_operations xfs_context_ops = { .parse_param = xfs_fc_parse_param, .get_tree = xfs_fc_get_tree, .reconfigure = xfs_fc_reconfigure, .free = xfs_fc_free, }; static int xfs_init_fs_context( struct fs_context *fc) { struct xfs_mount *mp; mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); if (!mp) return -ENOMEM; spin_lock_init(&mp->m_sb_lock); spin_lock_init(&mp->m_agirotor_lock); INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); spin_lock_init(&mp->m_perag_lock); mutex_init(&mp->m_growlock); atomic_set(&mp->m_active_trans, 0); INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); mp->m_kobj.kobject.kset = xfs_kset; /* * We don't create the finobt per-ag space reservation until after log * recovery, so we must set this to true so that an ifree transaction * started during log recovery will not depend on space reservations * for finobt expansion. */ mp->m_finobt_nores = true; /* * These can be overridden by the mount option parsing. */ mp->m_logbufs = -1; mp->m_logbsize = -1; mp->m_allocsize_log = 16; /* 64k */ /* * Copy binary VFS mount flags we are interested in. */ if (fc->sb_flags & SB_RDONLY) mp->m_flags |= XFS_MOUNT_RDONLY; if (fc->sb_flags & SB_DIRSYNC) mp->m_flags |= XFS_MOUNT_DIRSYNC; if (fc->sb_flags & SB_SYNCHRONOUS) mp->m_flags |= XFS_MOUNT_WSYNC; fc->s_fs_info = mp; fc->ops = &xfs_context_ops; return 0; } static struct file_system_type xfs_fs_type = { .owner = THIS_MODULE, .name = "xfs", .init_fs_context = xfs_init_fs_context, .parameters = &xfs_fs_parameters, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("xfs"); STATIC int __init xfs_init_zones(void) { xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket", sizeof(struct xlog_ticket), 0, 0, NULL); if (!xfs_log_ticket_zone) goto out; xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item", sizeof(struct xfs_extent_free_item), 0, 0, NULL); if (!xfs_bmap_free_item_zone) goto out_destroy_log_ticket_zone; xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur", sizeof(struct xfs_btree_cur), 0, 0, NULL); if (!xfs_btree_cur_zone) goto out_destroy_bmap_free_item_zone; xfs_da_state_zone = kmem_cache_create("xfs_da_state", sizeof(struct xfs_da_state), 0, 0, NULL); if (!xfs_da_state_zone) goto out_destroy_btree_cur_zone; xfs_ifork_zone = kmem_cache_create("xfs_ifork", sizeof(struct xfs_ifork), 0, 0, NULL); if (!xfs_ifork_zone) goto out_destroy_da_state_zone; xfs_trans_zone = kmem_cache_create("xf_trans", sizeof(struct xfs_trans), 0, 0, NULL); if (!xfs_trans_zone) goto out_destroy_ifork_zone; /* * The size of the zone allocated buf log item is the maximum * size possible under XFS. This wastes a little bit of memory, * but it is much faster. */ xfs_buf_item_zone = kmem_cache_create("xfs_buf_item", sizeof(struct xfs_buf_log_item), 0, 0, NULL); if (!xfs_buf_item_zone) goto out_destroy_trans_zone; xfs_efd_zone = kmem_cache_create("xfs_efd_item", (sizeof(struct xfs_efd_log_item) + (XFS_EFD_MAX_FAST_EXTENTS - 1) * sizeof(struct xfs_extent)), 0, 0, NULL); if (!xfs_efd_zone) goto out_destroy_buf_item_zone; xfs_efi_zone = kmem_cache_create("xfs_efi_item", (sizeof(struct xfs_efi_log_item) + (XFS_EFI_MAX_FAST_EXTENTS - 1) * sizeof(struct xfs_extent)), 0, 0, NULL); if (!xfs_efi_zone) goto out_destroy_efd_zone; xfs_inode_zone = kmem_cache_create("xfs_inode", sizeof(struct xfs_inode), 0, (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), xfs_fs_inode_init_once); if (!xfs_inode_zone) goto out_destroy_efi_zone; xfs_ili_zone = kmem_cache_create("xfs_ili", sizeof(struct xfs_inode_log_item), 0, SLAB_MEM_SPREAD, NULL); if (!xfs_ili_zone) goto out_destroy_inode_zone; xfs_icreate_zone = kmem_cache_create("xfs_icr", sizeof(struct xfs_icreate_item), 0, 0, NULL); if (!xfs_icreate_zone) goto out_destroy_ili_zone; xfs_rud_zone = kmem_cache_create("xfs_rud_item", sizeof(struct xfs_rud_log_item), 0, 0, NULL); if (!xfs_rud_zone) goto out_destroy_icreate_zone; xfs_rui_zone = kmem_cache_create("xfs_rui_item", xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 0, 0, NULL); if (!xfs_rui_zone) goto out_destroy_rud_zone; xfs_cud_zone = kmem_cache_create("xfs_cud_item", sizeof(struct xfs_cud_log_item), 0, 0, NULL); if (!xfs_cud_zone) goto out_destroy_rui_zone; xfs_cui_zone = kmem_cache_create("xfs_cui_item", xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 0, 0, NULL); if (!xfs_cui_zone) goto out_destroy_cud_zone; xfs_bud_zone = kmem_cache_create("xfs_bud_item", sizeof(struct xfs_bud_log_item), 0, 0, NULL); if (!xfs_bud_zone) goto out_destroy_cui_zone; xfs_bui_zone = kmem_cache_create("xfs_bui_item", xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 0, 0, NULL); if (!xfs_bui_zone) goto out_destroy_bud_zone; return 0; out_destroy_bud_zone: kmem_cache_destroy(xfs_bud_zone); out_destroy_cui_zone: kmem_cache_destroy(xfs_cui_zone); out_destroy_cud_zone: kmem_cache_destroy(xfs_cud_zone); out_destroy_rui_zone: kmem_cache_destroy(xfs_rui_zone); out_destroy_rud_zone: kmem_cache_destroy(xfs_rud_zone); out_destroy_icreate_zone: kmem_cache_destroy(xfs_icreate_zone); out_destroy_ili_zone: kmem_cache_destroy(xfs_ili_zone); out_destroy_inode_zone: kmem_cache_destroy(xfs_inode_zone); out_destroy_efi_zone: kmem_cache_destroy(xfs_efi_zone); out_destroy_efd_zone: kmem_cache_destroy(xfs_efd_zone); out_destroy_buf_item_zone: kmem_cache_destroy(xfs_buf_item_zone); out_destroy_trans_zone: kmem_cache_destroy(xfs_trans_zone); out_destroy_ifork_zone: kmem_cache_destroy(xfs_ifork_zone); out_destroy_da_state_zone: kmem_cache_destroy(xfs_da_state_zone); out_destroy_btree_cur_zone: kmem_cache_destroy(xfs_btree_cur_zone); out_destroy_bmap_free_item_zone: kmem_cache_destroy(xfs_bmap_free_item_zone); out_destroy_log_ticket_zone: kmem_cache_destroy(xfs_log_ticket_zone); out: return -ENOMEM; } STATIC void xfs_destroy_zones(void) { /* * Make sure all delayed rcu free are flushed before we * destroy caches. */ rcu_barrier(); kmem_cache_destroy(xfs_bui_zone); kmem_cache_destroy(xfs_bud_zone); kmem_cache_destroy(xfs_cui_zone); kmem_cache_destroy(xfs_cud_zone); kmem_cache_destroy(xfs_rui_zone); kmem_cache_destroy(xfs_rud_zone); kmem_cache_destroy(xfs_icreate_zone); kmem_cache_destroy(xfs_ili_zone); kmem_cache_destroy(xfs_inode_zone); kmem_cache_destroy(xfs_efi_zone); kmem_cache_destroy(xfs_efd_zone); kmem_cache_destroy(xfs_buf_item_zone); kmem_cache_destroy(xfs_trans_zone); kmem_cache_destroy(xfs_ifork_zone); kmem_cache_destroy(xfs_da_state_zone); kmem_cache_destroy(xfs_btree_cur_zone); kmem_cache_destroy(xfs_bmap_free_item_zone); kmem_cache_destroy(xfs_log_ticket_zone); } STATIC int __init xfs_init_workqueues(void) { /* * The allocation workqueue can be used in memory reclaim situations * (writepage path), and parallelism is only limited by the number of * AGs in all the filesystems mounted. Hence use the default large * max_active value for this workqueue. */ xfs_alloc_wq = alloc_workqueue("xfsalloc", WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); if (!xfs_alloc_wq) return -ENOMEM; xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0); if (!xfs_discard_wq) goto out_free_alloc_wq; return 0; out_free_alloc_wq: destroy_workqueue(xfs_alloc_wq); return -ENOMEM; } STATIC void xfs_destroy_workqueues(void) { destroy_workqueue(xfs_discard_wq); destroy_workqueue(xfs_alloc_wq); } STATIC int __init init_xfs_fs(void) { int error; xfs_check_ondisk_structs(); printk(KERN_INFO XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n"); xfs_dir_startup(); error = xfs_init_zones(); if (error) goto out; error = xfs_init_workqueues(); if (error) goto out_destroy_zones; error = xfs_mru_cache_init(); if (error) goto out_destroy_wq; error = xfs_buf_init(); if (error) goto out_mru_cache_uninit; error = xfs_init_procfs(); if (error) goto out_buf_terminate; error = xfs_sysctl_register(); if (error) goto out_cleanup_procfs; xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); if (!xfs_kset) { error = -ENOMEM; goto out_sysctl_unregister; } xfsstats.xs_kobj.kobject.kset = xfs_kset; xfsstats.xs_stats = alloc_percpu(struct xfsstats); if (!xfsstats.xs_stats) { error = -ENOMEM; goto out_kset_unregister; } error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, "stats"); if (error) goto out_free_stats; #ifdef DEBUG xfs_dbg_kobj.kobject.kset = xfs_kset; error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); if (error) goto out_remove_stats_kobj; #endif error = xfs_qm_init(); if (error) goto out_remove_dbg_kobj; error = register_filesystem(&xfs_fs_type); if (error) goto out_qm_exit; return 0; out_qm_exit: xfs_qm_exit(); out_remove_dbg_kobj: #ifdef DEBUG xfs_sysfs_del(&xfs_dbg_kobj); out_remove_stats_kobj: #endif xfs_sysfs_del(&xfsstats.xs_kobj); out_free_stats: free_percpu(xfsstats.xs_stats); out_kset_unregister: kset_unregister(xfs_kset); out_sysctl_unregister: xfs_sysctl_unregister(); out_cleanup_procfs: xfs_cleanup_procfs(); out_buf_terminate: xfs_buf_terminate(); out_mru_cache_uninit: xfs_mru_cache_uninit(); out_destroy_wq: xfs_destroy_workqueues(); out_destroy_zones: xfs_destroy_zones(); out: return error; } STATIC void __exit exit_xfs_fs(void) { xfs_qm_exit(); unregister_filesystem(&xfs_fs_type); #ifdef DEBUG xfs_sysfs_del(&xfs_dbg_kobj); #endif xfs_sysfs_del(&xfsstats.xs_kobj); free_percpu(xfsstats.xs_stats); kset_unregister(xfs_kset); xfs_sysctl_unregister(); xfs_cleanup_procfs(); xfs_buf_terminate(); xfs_mru_cache_uninit(); xfs_destroy_workqueues(); xfs_destroy_zones(); xfs_uuid_table_free(); } module_init(init_xfs_fs); module_exit(exit_xfs_fs); MODULE_AUTHOR("Silicon Graphics, Inc."); MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); MODULE_LICENSE("GPL");