/* * Copyright © 2006, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ #ifndef _ADMA_H #define _ADMA_H #include #include #include #include /* Memory copy units */ #define DMA_CCR(chan) (chan->mmr_base + 0x0) #define DMA_CSR(chan) (chan->mmr_base + 0x4) #define DMA_DAR(chan) (chan->mmr_base + 0xc) #define DMA_NDAR(chan) (chan->mmr_base + 0x10) #define DMA_PADR(chan) (chan->mmr_base + 0x14) #define DMA_PUADR(chan) (chan->mmr_base + 0x18) #define DMA_LADR(chan) (chan->mmr_base + 0x1c) #define DMA_BCR(chan) (chan->mmr_base + 0x20) #define DMA_DCR(chan) (chan->mmr_base + 0x24) /* Application accelerator unit */ #define AAU_ACR(chan) (chan->mmr_base + 0x0) #define AAU_ASR(chan) (chan->mmr_base + 0x4) #define AAU_ADAR(chan) (chan->mmr_base + 0x8) #define AAU_ANDAR(chan) (chan->mmr_base + 0xc) #define AAU_SAR(src, chan) (chan->mmr_base + (0x10 + ((src) << 2))) #define AAU_DAR(chan) (chan->mmr_base + 0x20) #define AAU_ABCR(chan) (chan->mmr_base + 0x24) #define AAU_ADCR(chan) (chan->mmr_base + 0x28) #define AAU_SAR_EDCR(src_edc) (chan->mmr_base + (0x02c + ((src_edc-4) << 2))) #define AAU_EDCR0_IDX 8 #define AAU_EDCR1_IDX 17 #define AAU_EDCR2_IDX 26 #define DMA0_ID 0 #define DMA1_ID 1 #define AAU_ID 2 struct iop3xx_aau_desc_ctrl { unsigned int int_en:1; unsigned int blk1_cmd_ctrl:3; unsigned int blk2_cmd_ctrl:3; unsigned int blk3_cmd_ctrl:3; unsigned int blk4_cmd_ctrl:3; unsigned int blk5_cmd_ctrl:3; unsigned int blk6_cmd_ctrl:3; unsigned int blk7_cmd_ctrl:3; unsigned int blk8_cmd_ctrl:3; unsigned int blk_ctrl:2; unsigned int dual_xor_en:1; unsigned int tx_complete:1; unsigned int zero_result_err:1; unsigned int zero_result_en:1; unsigned int dest_write_en:1; }; struct iop3xx_aau_e_desc_ctrl { unsigned int reserved:1; unsigned int blk1_cmd_ctrl:3; unsigned int blk2_cmd_ctrl:3; unsigned int blk3_cmd_ctrl:3; unsigned int blk4_cmd_ctrl:3; unsigned int blk5_cmd_ctrl:3; unsigned int blk6_cmd_ctrl:3; unsigned int blk7_cmd_ctrl:3; unsigned int blk8_cmd_ctrl:3; unsigned int reserved2:7; }; struct iop3xx_dma_desc_ctrl { unsigned int pci_transaction:4; unsigned int int_en:1; unsigned int dac_cycle_en:1; unsigned int mem_to_mem_en:1; unsigned int crc_data_tx_en:1; unsigned int crc_gen_en:1; unsigned int crc_seed_dis:1; unsigned int reserved:21; unsigned int crc_tx_complete:1; }; struct iop3xx_desc_dma { u32 next_desc; union { u32 pci_src_addr; u32 pci_dest_addr; u32 src_addr; }; union { u32 upper_pci_src_addr; u32 upper_pci_dest_addr; }; union { u32 local_pci_src_addr; u32 local_pci_dest_addr; u32 dest_addr; }; u32 byte_count; union { u32 desc_ctrl; struct iop3xx_dma_desc_ctrl desc_ctrl_field; }; u32 crc_addr; }; struct iop3xx_desc_aau { u32 next_desc; u32 src[4]; u32 dest_addr; u32 byte_count; union { u32 desc_ctrl; struct iop3xx_aau_desc_ctrl desc_ctrl_field; }; union { u32 src_addr; u32 e_desc_ctrl; struct iop3xx_aau_e_desc_ctrl e_desc_ctrl_field; } src_edc[31]; }; struct iop3xx_aau_gfmr { unsigned int gfmr1:8; unsigned int gfmr2:8; unsigned int gfmr3:8; unsigned int gfmr4:8; }; struct iop3xx_desc_pq_xor { u32 next_desc; u32 src[3]; union { u32 data_mult1; struct iop3xx_aau_gfmr data_mult1_field; }; u32 dest_addr; u32 byte_count; union { u32 desc_ctrl; struct iop3xx_aau_desc_ctrl desc_ctrl_field; }; union { u32 src_addr; u32 e_desc_ctrl; struct iop3xx_aau_e_desc_ctrl e_desc_ctrl_field; u32 data_multiplier; struct iop3xx_aau_gfmr data_mult_field; u32 reserved; } src_edc_gfmr[19]; }; struct iop3xx_desc_dual_xor { u32 next_desc; u32 src0_addr; u32 src1_addr; u32 h_src_addr; u32 d_src_addr; u32 h_dest_addr; u32 byte_count; union { u32 desc_ctrl; struct iop3xx_aau_desc_ctrl desc_ctrl_field; }; u32 d_dest_addr; }; union iop3xx_desc { struct iop3xx_desc_aau *aau; struct iop3xx_desc_dma *dma; struct iop3xx_desc_pq_xor *pq_xor; struct iop3xx_desc_dual_xor *dual_xor; void *ptr; }; static inline int iop_adma_get_max_xor(void) { return 32; } static inline u32 iop_chan_get_current_descriptor(struct iop_adma_chan *chan) { int id = chan->device->id; switch (id) { case DMA0_ID: case DMA1_ID: return __raw_readl(DMA_DAR(chan)); case AAU_ID: return __raw_readl(AAU_ADAR(chan)); default: BUG(); } return 0; } static inline void iop_chan_set_next_descriptor(struct iop_adma_chan *chan, u32 next_desc_addr) { int id = chan->device->id; switch (id) { case DMA0_ID: case DMA1_ID: __raw_writel(next_desc_addr, DMA_NDAR(chan)); break; case AAU_ID: __raw_writel(next_desc_addr, AAU_ANDAR(chan)); break; } } #define IOP_ADMA_STATUS_BUSY (1 << 10) #define IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT (1024) #define IOP_ADMA_XOR_MAX_BYTE_COUNT (16 * 1024 * 1024) #define IOP_ADMA_MAX_BYTE_COUNT (16 * 1024 * 1024) static inline int iop_chan_is_busy(struct iop_adma_chan *chan) { u32 status = __raw_readl(DMA_CSR(chan)); return (status & IOP_ADMA_STATUS_BUSY) ? 1 : 0; } static inline int iop_desc_is_aligned(struct iop_adma_desc_slot *desc, int num_slots) { /* num_slots will only ever be 1, 2, 4, or 8 */ return (desc->idx & (num_slots - 1)) ? 0 : 1; } /* to do: support large (i.e. > hw max) buffer sizes */ static inline int iop_chan_memcpy_slot_count(size_t len, int *slots_per_op) { *slots_per_op = 1; return 1; } /* to do: support large (i.e. > hw max) buffer sizes */ static inline int iop_chan_memset_slot_count(size_t len, int *slots_per_op) { *slots_per_op = 1; return 1; } static inline int iop3xx_aau_xor_slot_count(size_t len, int src_cnt, int *slots_per_op) { const static int slot_count_table[] = { 0, 1, 1, 1, 1, /* 01 - 04 */ 2, 2, 2, 2, /* 05 - 08 */ 4, 4, 4, 4, /* 09 - 12 */ 4, 4, 4, 4, /* 13 - 16 */ 8, 8, 8, 8, /* 17 - 20 */ 8, 8, 8, 8, /* 21 - 24 */ 8, 8, 8, 8, /* 25 - 28 */ 8, 8, 8, 8, /* 29 - 32 */ }; *slots_per_op = slot_count_table[src_cnt]; return *slots_per_op; } static inline int iop_chan_interrupt_slot_count(int *slots_per_op, struct iop_adma_chan *chan) { switch (chan->device->id) { case DMA0_ID: case DMA1_ID: return iop_chan_memcpy_slot_count(0, slots_per_op); case AAU_ID: return iop3xx_aau_xor_slot_count(0, 2, slots_per_op); default: BUG(); } return 0; } static inline int iop_chan_xor_slot_count(size_t len, int src_cnt, int *slots_per_op) { int slot_cnt = iop3xx_aau_xor_slot_count(len, src_cnt, slots_per_op); if (len <= IOP_ADMA_XOR_MAX_BYTE_COUNT) return slot_cnt; len -= IOP_ADMA_XOR_MAX_BYTE_COUNT; while (len > IOP_ADMA_XOR_MAX_BYTE_COUNT) { len -= IOP_ADMA_XOR_MAX_BYTE_COUNT; slot_cnt += *slots_per_op; } if (len) slot_cnt += *slots_per_op; return slot_cnt; } /* zero sum on iop3xx is limited to 1k at a time so it requires multiple * descriptors */ static inline int iop_chan_zero_sum_slot_count(size_t len, int src_cnt, int *slots_per_op) { int slot_cnt = iop3xx_aau_xor_slot_count(len, src_cnt, slots_per_op); if (len <= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) return slot_cnt; len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT; while (len > IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) { len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT; slot_cnt += *slots_per_op; } if (len) slot_cnt += *slots_per_op; return slot_cnt; } static inline u32 iop_desc_get_dest_addr(struct iop_adma_desc_slot *desc, struct iop_adma_chan *chan) { union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, }; switch (chan->device->id) { case DMA0_ID: case DMA1_ID: return hw_desc.dma->dest_addr; case AAU_ID: return hw_desc.aau->dest_addr; default: BUG(); } return 0; } static inline u32 iop_desc_get_byte_count(struct iop_adma_desc_slot *desc, struct iop_adma_chan *chan) { union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, }; switch (chan->device->id) { case DMA0_ID: case DMA1_ID: return hw_desc.dma->byte_count; case AAU_ID: return hw_desc.aau->byte_count; default: BUG(); } return 0; } /* translate the src_idx to a descriptor word index */ static inline int __desc_idx(int src_idx) { const static int desc_idx_table[] = { 0, 0, 0, 0, 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, }; return desc_idx_table[src_idx]; } static inline u32 iop_desc_get_src_addr(struct iop_adma_desc_slot *desc, struct iop_adma_chan *chan, int src_idx) { union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, }; switch (chan->device->id) { case DMA0_ID: case DMA1_ID: return hw_desc.dma->src_addr; case AAU_ID: break; default: BUG(); } if (src_idx < 4) return hw_desc.aau->src[src_idx]; else return hw_desc.aau->src_edc[__desc_idx(src_idx)].src_addr; } static inline void iop3xx_aau_desc_set_src_addr(struct iop3xx_desc_aau *hw_desc, int src_idx, dma_addr_t addr) { if (src_idx < 4) hw_desc->src[src_idx] = addr; else hw_desc->src_edc[__desc_idx(src_idx)].src_addr = addr; } static inline void iop_desc_init_memcpy(struct iop_adma_desc_slot *desc, unsigned long flags) { struct iop3xx_desc_dma *hw_desc = desc->hw_desc; union { u32 value; struct iop3xx_dma_desc_ctrl field; } u_desc_ctrl; u_desc_ctrl.value = 0; u_desc_ctrl.field.mem_to_mem_en = 1; u_desc_ctrl.field.pci_transaction = 0xe; /* memory read block */ u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT; hw_desc->desc_ctrl = u_desc_ctrl.value; hw_desc->upper_pci_src_addr = 0; hw_desc->crc_addr = 0; } static inline void iop_desc_init_memset(struct iop_adma_desc_slot *desc, unsigned long flags) { struct iop3xx_desc_aau *hw_desc = desc->hw_desc; union { u32 value; struct iop3xx_aau_desc_ctrl field; } u_desc_ctrl; u_desc_ctrl.value = 0; u_desc_ctrl.field.blk1_cmd_ctrl = 0x2; /* memory block fill */ u_desc_ctrl.field.dest_write_en = 1; u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT; hw_desc->desc_ctrl = u_desc_ctrl.value; } static inline u32 iop3xx_desc_init_xor(struct iop3xx_desc_aau *hw_desc, int src_cnt, unsigned long flags) { int i, shift; u32 edcr; union { u32 value; struct iop3xx_aau_desc_ctrl field; } u_desc_ctrl; u_desc_ctrl.value = 0; switch (src_cnt) { case 25 ... 32: u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */ edcr = 0; shift = 1; for (i = 24; i < src_cnt; i++) { edcr |= (1 << shift); shift += 3; } hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = edcr; src_cnt = 24; /* fall through */ case 17 ... 24: if (!u_desc_ctrl.field.blk_ctrl) { hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0; u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */ } edcr = 0; shift = 1; for (i = 16; i < src_cnt; i++) { edcr |= (1 << shift); shift += 3; } hw_desc->src_edc[AAU_EDCR1_IDX].e_desc_ctrl = edcr; src_cnt = 16; /* fall through */ case 9 ... 16: if (!u_desc_ctrl.field.blk_ctrl) u_desc_ctrl.field.blk_ctrl = 0x2; /* use EDCR0 */ edcr = 0; shift = 1; for (i = 8; i < src_cnt; i++) { edcr |= (1 << shift); shift += 3; } hw_desc->src_edc[AAU_EDCR0_IDX].e_desc_ctrl = edcr; src_cnt = 8; /* fall through */ case 2 ... 8: shift = 1; for (i = 0; i < src_cnt; i++) { u_desc_ctrl.value |= (1 << shift); shift += 3; } if (!u_desc_ctrl.field.blk_ctrl && src_cnt > 4) u_desc_ctrl.field.blk_ctrl = 0x1; /* use mini-desc */ } u_desc_ctrl.field.dest_write_en = 1; u_desc_ctrl.field.blk1_cmd_ctrl = 0x7; /* direct fill */ u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT; hw_desc->desc_ctrl = u_desc_ctrl.value; return u_desc_ctrl.value; } static inline void iop_desc_init_xor(struct iop_adma_desc_slot *desc, int src_cnt, unsigned long flags) { iop3xx_desc_init_xor(desc->hw_desc, src_cnt, flags); } /* return the number of operations */ static inline int iop_desc_init_zero_sum(struct iop_adma_desc_slot *desc, int src_cnt, unsigned long flags) { int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op; struct iop3xx_desc_aau *hw_desc, *prev_hw_desc, *iter; union { u32 value; struct iop3xx_aau_desc_ctrl field; } u_desc_ctrl; int i, j; hw_desc = desc->hw_desc; for (i = 0, j = 0; (slot_cnt -= slots_per_op) >= 0; i += slots_per_op, j++) { iter = iop_hw_desc_slot_idx(hw_desc, i); u_desc_ctrl.value = iop3xx_desc_init_xor(iter, src_cnt, flags); u_desc_ctrl.field.dest_write_en = 0; u_desc_ctrl.field.zero_result_en = 1; u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT; iter->desc_ctrl = u_desc_ctrl.value; /* for the subsequent descriptors preserve the store queue * and chain them together */ if (i) { prev_hw_desc = iop_hw_desc_slot_idx(hw_desc, i - slots_per_op); prev_hw_desc->next_desc = (u32) (desc->async_tx.phys + (i << 5)); } } return j; } static inline void iop_desc_init_null_xor(struct iop_adma_desc_slot *desc, int src_cnt, unsigned long flags) { struct iop3xx_desc_aau *hw_desc = desc->hw_desc; union { u32 value; struct iop3xx_aau_desc_ctrl field; } u_desc_ctrl; u_desc_ctrl.value = 0; switch (src_cnt) { case 25 ... 32: u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */ hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0; /* fall through */ case 17 ... 24: if (!u_desc_ctrl.field.blk_ctrl) { hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0; u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */ } hw_desc->src_edc[AAU_EDCR1_IDX].e_desc_ctrl = 0; /* fall through */ case 9 ... 16: if (!u_desc_ctrl.field.blk_ctrl) u_desc_ctrl.field.blk_ctrl = 0x2; /* use EDCR0 */ hw_desc->src_edc[AAU_EDCR0_IDX].e_desc_ctrl = 0; /* fall through */ case 1 ... 8: if (!u_desc_ctrl.field.blk_ctrl && src_cnt > 4) u_desc_ctrl.field.blk_ctrl = 0x1; /* use mini-desc */ } u_desc_ctrl.field.dest_write_en = 0; u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT; hw_desc->desc_ctrl = u_desc_ctrl.value; } static inline void iop_desc_set_byte_count(struct iop_adma_desc_slot *desc, struct iop_adma_chan *chan, u32 byte_count) { union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, }; switch (chan->device->id) { case DMA0_ID: case DMA1_ID: hw_desc.dma->byte_count = byte_count; break; case AAU_ID: hw_desc.aau->byte_count = byte_count; break; default: BUG(); } } static inline void iop_desc_init_interrupt(struct iop_adma_desc_slot *desc, struct iop_adma_chan *chan) { union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, }; switch (chan->device->id) { case DMA0_ID: case DMA1_ID: iop_desc_init_memcpy(desc, 1); hw_desc.dma->byte_count = 0; hw_desc.dma->dest_addr = 0; hw_desc.dma->src_addr = 0; break; case AAU_ID: iop_desc_init_null_xor(desc, 2, 1); hw_desc.aau->byte_count = 0; hw_desc.aau->dest_addr = 0; hw_desc.aau->src[0] = 0; hw_desc.aau->src[1] = 0; break; default: BUG(); } } static inline void iop_desc_set_zero_sum_byte_count(struct iop_adma_desc_slot *desc, u32 len) { int slots_per_op = desc->slots_per_op; struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter; int i = 0; if (len <= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) { hw_desc->byte_count = len; } else { do { iter = iop_hw_desc_slot_idx(hw_desc, i); iter->byte_count = IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT; len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT; i += slots_per_op; } while (len > IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT); if (len) { iter = iop_hw_desc_slot_idx(hw_desc, i); iter->byte_count = len; } } } static inline void iop_desc_set_dest_addr(struct iop_adma_desc_slot *desc, struct iop_adma_chan *chan, dma_addr_t addr) { union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, }; switch (chan->device->id) { case DMA0_ID: case DMA1_ID: hw_desc.dma->dest_addr = addr; break; case AAU_ID: hw_desc.aau->dest_addr = addr; break; default: BUG(); } } static inline void iop_desc_set_memcpy_src_addr(struct iop_adma_desc_slot *desc, dma_addr_t addr) { struct iop3xx_desc_dma *hw_desc = desc->hw_desc; hw_desc->src_addr = addr; } static inline void iop_desc_set_zero_sum_src_addr(struct iop_adma_desc_slot *desc, int src_idx, dma_addr_t addr) { struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter; int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op; int i; for (i = 0; (slot_cnt -= slots_per_op) >= 0; i += slots_per_op, addr += IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) { iter = iop_hw_desc_slot_idx(hw_desc, i); iop3xx_aau_desc_set_src_addr(iter, src_idx, addr); } } static inline void iop_desc_set_xor_src_addr(struct iop_adma_desc_slot *desc, int src_idx, dma_addr_t addr) { struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter; int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op; int i; for (i = 0; (slot_cnt -= slots_per_op) >= 0; i += slots_per_op, addr += IOP_ADMA_XOR_MAX_BYTE_COUNT) { iter = iop_hw_desc_slot_idx(hw_desc, i); iop3xx_aau_desc_set_src_addr(iter, src_idx, addr); } } static inline void iop_desc_set_next_desc(struct iop_adma_desc_slot *desc, u32 next_desc_addr) { /* hw_desc->next_desc is the same location for all channels */ union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, }; BUG_ON(hw_desc.dma->next_desc); hw_desc.dma->next_desc = next_desc_addr; } static inline u32 iop_desc_get_next_desc(struct iop_adma_desc_slot *desc) { /* hw_desc->next_desc is the same location for all channels */ union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, }; return hw_desc.dma->next_desc; } static inline void iop_desc_clear_next_desc(struct iop_adma_desc_slot *desc) { /* hw_desc->next_desc is the same location for all channels */ union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, }; hw_desc.dma->next_desc = 0; } static inline void iop_desc_set_block_fill_val(struct iop_adma_desc_slot *desc, u32 val) { struct iop3xx_desc_aau *hw_desc = desc->hw_desc; hw_desc->src[0] = val; } static inline int iop_desc_get_zero_result(struct iop_adma_desc_slot *desc) { struct iop3xx_desc_aau *hw_desc = desc->hw_desc; struct iop3xx_aau_desc_ctrl desc_ctrl = hw_desc->desc_ctrl_field; BUG_ON(!(desc_ctrl.tx_complete && desc_ctrl.zero_result_en)); return desc_ctrl.zero_result_err; } static inline void iop_chan_append(struct iop_adma_chan *chan) { u32 dma_chan_ctrl; dma_chan_ctrl = __raw_readl(DMA_CCR(chan)); dma_chan_ctrl |= 0x2; __raw_writel(dma_chan_ctrl, DMA_CCR(chan)); } static inline u32 iop_chan_get_status(struct iop_adma_chan *chan) { return __raw_readl(DMA_CSR(chan)); } static inline void iop_chan_disable(struct iop_adma_chan *chan) { u32 dma_chan_ctrl = __raw_readl(DMA_CCR(chan)); dma_chan_ctrl &= ~1; __raw_writel(dma_chan_ctrl, DMA_CCR(chan)); } static inline void iop_chan_enable(struct iop_adma_chan *chan) { u32 dma_chan_ctrl = __raw_readl(DMA_CCR(chan)); dma_chan_ctrl |= 1; __raw_writel(dma_chan_ctrl, DMA_CCR(chan)); } static inline void iop_adma_device_clear_eot_status(struct iop_adma_chan *chan) { u32 status = __raw_readl(DMA_CSR(chan)); status &= (1 << 9); __raw_writel(status, DMA_CSR(chan)); } static inline void iop_adma_device_clear_eoc_status(struct iop_adma_chan *chan) { u32 status = __raw_readl(DMA_CSR(chan)); status &= (1 << 8); __raw_writel(status, DMA_CSR(chan)); } static inline void iop_adma_device_clear_err_status(struct iop_adma_chan *chan) { u32 status = __raw_readl(DMA_CSR(chan)); switch (chan->device->id) { case DMA0_ID: case DMA1_ID: status &= (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1); break; case AAU_ID: status &= (1 << 5); break; default: BUG(); } __raw_writel(status, DMA_CSR(chan)); } static inline int iop_is_err_int_parity(unsigned long status, struct iop_adma_chan *chan) { return 0; } static inline int iop_is_err_mcu_abort(unsigned long status, struct iop_adma_chan *chan) { return 0; } static inline int iop_is_err_int_tabort(unsigned long status, struct iop_adma_chan *chan) { return 0; } static inline int iop_is_err_int_mabort(unsigned long status, struct iop_adma_chan *chan) { return test_bit(5, &status); } static inline int iop_is_err_pci_tabort(unsigned long status, struct iop_adma_chan *chan) { switch (chan->device->id) { case DMA0_ID: case DMA1_ID: return test_bit(2, &status); default: return 0; } } static inline int iop_is_err_pci_mabort(unsigned long status, struct iop_adma_chan *chan) { switch (chan->device->id) { case DMA0_ID: case DMA1_ID: return test_bit(3, &status); default: return 0; } } static inline int iop_is_err_split_tx(unsigned long status, struct iop_adma_chan *chan) { switch (chan->device->id) { case DMA0_ID: case DMA1_ID: return test_bit(1, &status); default: return 0; } } #endif /* _ADMA_H */