#ifndef _ASMARM_UACCESS_H #define _ASMARM_UACCESS_H /* * User space memory access functions */ #include #include #define VERIFY_READ 0 #define VERIFY_WRITE 1 /* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { unsigned long insn, fixup; }; /* Returns 0 if exception not found and fixup otherwise. */ extern unsigned long search_exception_table(unsigned long); extern int fixup_exception(struct pt_regs *regs); #define get_ds() (KERNEL_DS) #define get_fs() (current_thread_info()->addr_limit) #define segment_eq(a,b) ((a) == (b)) #include #define access_ok(type,addr,size) (__range_ok(addr,size) == 0) /* * Single-value transfer routines. They automatically use the right * size if we just have the right pointer type. Note that the functions * which read from user space (*get_*) need to take care not to leak * kernel data even if the calling code is buggy and fails to check * the return value. This means zeroing out the destination variable * or buffer on error. Normally this is done out of line by the * fixup code, but there are a few places where it intrudes on the * main code path. When we only write to user space, there is no * problem. * * The "__xxx" versions of the user access functions do not verify the * address space - it must have been done previously with a separate * "access_ok()" call. * * The "xxx_error" versions set the third argument to EFAULT if an * error occurs, and leave it unchanged on success. Note that these * versions are void (ie, don't return a value as such). */ extern int __get_user_1(void *); extern int __get_user_2(void *); extern int __get_user_4(void *); extern int __get_user_8(void *); extern int __get_user_bad(void); #define __get_user_x(__r1,__p,__e,__s,__i...) \ __asm__ __volatile__ ("bl __get_user_" #__s \ : "=&r" (__e), "=r" (__r1) \ : "0" (__p) \ : __i) #define get_user(x,p) \ ({ \ const register typeof(*(p)) *__p asm("r0") = (p); \ register typeof(*(p)) __r1 asm("r1"); \ register int __e asm("r0"); \ switch (sizeof(*(p))) { \ case 1: \ __get_user_x(__r1, __p, __e, 1, "lr"); \ break; \ case 2: \ __get_user_x(__r1, __p, __e, 2, "r2", "lr"); \ break; \ case 4: \ __get_user_x(__r1, __p, __e, 4, "lr"); \ break; \ case 8: \ __get_user_x(__r1, __p, __e, 8, "lr"); \ break; \ default: __e = __get_user_bad(); break; \ } \ x = __r1; \ __e; \ }) #define __get_user(x,ptr) \ ({ \ long __gu_err = 0; \ __get_user_err((x),(ptr),__gu_err); \ __gu_err; \ }) #define __get_user_error(x,ptr,err) \ ({ \ __get_user_err((x),(ptr),err); \ (void) 0; \ }) #define __get_user_err(x,ptr,err) \ do { \ unsigned long __gu_addr = (unsigned long)(ptr); \ unsigned long __gu_val; \ switch (sizeof(*(ptr))) { \ case 1: __get_user_asm_byte(__gu_val,__gu_addr,err); break; \ case 2: __get_user_asm_half(__gu_val,__gu_addr,err); break; \ case 4: __get_user_asm_word(__gu_val,__gu_addr,err); break; \ default: (__gu_val) = __get_user_bad(); \ } \ (x) = (__typeof__(*(ptr)))__gu_val; \ } while (0) extern int __put_user_1(void *, unsigned int); extern int __put_user_2(void *, unsigned int); extern int __put_user_4(void *, unsigned int); extern int __put_user_8(void *, unsigned long long); extern int __put_user_bad(void); #define __put_user_x(__r1,__p,__e,__s) \ __asm__ __volatile__ ( \ __asmeq("%0", "r0") __asmeq("%2", "r1") \ "bl __put_user_" #__s \ : "=&r" (__e) \ : "0" (__p), "r" (__r1) \ : "ip", "lr", "cc") #define put_user(x,p) \ ({ \ const register typeof(*(p)) __r1 asm("r1") = (x); \ const register typeof(*(p)) *__p asm("r0") = (p); \ register int __e asm("r0"); \ switch (sizeof(*(__p))) { \ case 1: \ __put_user_x(__r1, __p, __e, 1); \ break; \ case 2: \ __put_user_x(__r1, __p, __e, 2); \ break; \ case 4: \ __put_user_x(__r1, __p, __e, 4); \ break; \ case 8: \ __put_user_x(__r1, __p, __e, 8); \ break; \ default: __e = __put_user_bad(); break; \ } \ __e; \ }) #if 0 /********************* OLD METHOD *******************/ #define __put_user_x(__r1,__p,__e,__s,__i...) \ __asm__ __volatile__ ("bl __put_user_" #__s \ : "=&r" (__e) \ : "0" (__p), "r" (__r1) \ : __i) #define put_user(x,p) \ ({ \ const register typeof(*(p)) __r1 asm("r1") = (x); \ const register typeof(*(p)) *__p asm("r0") = (p); \ register int __e asm("r0"); \ switch (sizeof(*(p))) { \ case 1: \ __put_user_x(__r1, __p, __e, 1, "r2", "lr"); \ break; \ case 2: \ __put_user_x(__r1, __p, __e, 2, "r2", "lr"); \ break; \ case 4: \ __put_user_x(__r1, __p, __e, 4, "r2", "lr"); \ break; \ case 8: \ __put_user_x(__r1, __p, __e, 8, "r2", "ip", "lr"); \ break; \ default: __e = __put_user_bad(); break; \ } \ __e; \ }) /*************************************************/ #endif #define __put_user(x,ptr) \ ({ \ long __pu_err = 0; \ __put_user_err((x),(ptr),__pu_err); \ __pu_err; \ }) #define __put_user_error(x,ptr,err) \ ({ \ __put_user_err((x),(ptr),err); \ (void) 0; \ }) #define __put_user_err(x,ptr,err) \ do { \ unsigned long __pu_addr = (unsigned long)(ptr); \ __typeof__(*(ptr)) __pu_val = (x); \ switch (sizeof(*(ptr))) { \ case 1: __put_user_asm_byte(__pu_val,__pu_addr,err); break; \ case 2: __put_user_asm_half(__pu_val,__pu_addr,err); break; \ case 4: __put_user_asm_word(__pu_val,__pu_addr,err); break; \ case 8: __put_user_asm_dword(__pu_val,__pu_addr,err); break; \ default: __put_user_bad(); \ } \ } while (0) static __inline__ unsigned long copy_from_user(void *to, const void *from, unsigned long n) { if (access_ok(VERIFY_READ, from, n)) __do_copy_from_user(to, from, n); else /* security hole - plug it */ memzero(to, n); return n; } static __inline__ unsigned long __copy_from_user(void *to, const void *from, unsigned long n) { __do_copy_from_user(to, from, n); return n; } static __inline__ unsigned long copy_to_user(void *to, const void *from, unsigned long n) { if (access_ok(VERIFY_WRITE, to, n)) __do_copy_to_user(to, from, n); return n; } static __inline__ unsigned long __copy_to_user(void *to, const void *from, unsigned long n) { __do_copy_to_user(to, from, n); return n; } #define __copy_to_user_inatomic __copy_to_user #define __copy_from_user_inatomic __copy_from_user static __inline__ unsigned long clear_user (void *to, unsigned long n) { if (access_ok(VERIFY_WRITE, to, n)) __do_clear_user(to, n); return n; } static __inline__ unsigned long __clear_user (void *to, unsigned long n) { __do_clear_user(to, n); return n; } static __inline__ long strncpy_from_user (char *dst, const char *src, long count) { long res = -EFAULT; if (access_ok(VERIFY_READ, src, 1)) __do_strncpy_from_user(dst, src, count, res); return res; } static __inline__ long __strncpy_from_user (char *dst, const char *src, long count) { long res; __do_strncpy_from_user(dst, src, count, res); return res; } #define strlen_user(s) strnlen_user(s, ~0UL >> 1) static inline long strnlen_user(const char *s, long n) { unsigned long res = 0; if (__addr_ok(s)) __do_strnlen_user(s, n, res); return res; } #endif /* _ASMARM_UACCESS_H */