/* * Copyright (C) 1999 Cort Dougan */ #ifndef _ASM_POWERPC_SYSTEM_H #define _ASM_POWERPC_SYSTEM_H #include #include #include /* * Memory barrier. * The sync instruction guarantees that all memory accesses initiated * by this processor have been performed (with respect to all other * mechanisms that access memory). The eieio instruction is a barrier * providing an ordering (separately) for (a) cacheable stores and (b) * loads and stores to non-cacheable memory (e.g. I/O devices). * * mb() prevents loads and stores being reordered across this point. * rmb() prevents loads being reordered across this point. * wmb() prevents stores being reordered across this point. * read_barrier_depends() prevents data-dependent loads being reordered * across this point (nop on PPC). * * We have to use the sync instructions for mb(), since lwsync doesn't * order loads with respect to previous stores. Lwsync is fine for * rmb(), though. Note that rmb() actually uses a sync on 32-bit * architectures. * * For wmb(), we use sync since wmb is used in drivers to order * stores to system memory with respect to writes to the device. * However, smp_wmb() can be a lighter-weight eieio barrier on * SMP since it is only used to order updates to system memory. */ #define mb() __asm__ __volatile__ ("sync" : : : "memory") #define rmb() __asm__ __volatile__ (__stringify(LWSYNC) : : : "memory") #define wmb() __asm__ __volatile__ ("sync" : : : "memory") #define read_barrier_depends() do { } while(0) #define set_mb(var, value) do { var = value; mb(); } while (0) #ifdef __KERNEL__ #ifdef CONFIG_SMP #define smp_mb() mb() #define smp_rmb() rmb() #define smp_wmb() __asm__ __volatile__ ("eieio" : : : "memory") #define smp_read_barrier_depends() read_barrier_depends() #else #define smp_mb() barrier() #define smp_rmb() barrier() #define smp_wmb() barrier() #define smp_read_barrier_depends() do { } while(0) #endif /* CONFIG_SMP */ /* * This is a barrier which prevents following instructions from being * started until the value of the argument x is known. For example, if * x is a variable loaded from memory, this prevents following * instructions from being executed until the load has been performed. */ #define data_barrier(x) \ asm volatile("twi 0,%0,0; isync" : : "r" (x) : "memory"); struct task_struct; struct pt_regs; #ifdef CONFIG_DEBUGGER extern int (*__debugger)(struct pt_regs *regs); extern int (*__debugger_ipi)(struct pt_regs *regs); extern int (*__debugger_bpt)(struct pt_regs *regs); extern int (*__debugger_sstep)(struct pt_regs *regs); extern int (*__debugger_iabr_match)(struct pt_regs *regs); extern int (*__debugger_dabr_match)(struct pt_regs *regs); extern int (*__debugger_fault_handler)(struct pt_regs *regs); #define DEBUGGER_BOILERPLATE(__NAME) \ static inline int __NAME(struct pt_regs *regs) \ { \ if (unlikely(__ ## __NAME)) \ return __ ## __NAME(regs); \ return 0; \ } DEBUGGER_BOILERPLATE(debugger) DEBUGGER_BOILERPLATE(debugger_ipi) DEBUGGER_BOILERPLATE(debugger_bpt) DEBUGGER_BOILERPLATE(debugger_sstep) DEBUGGER_BOILERPLATE(debugger_iabr_match) DEBUGGER_BOILERPLATE(debugger_dabr_match) DEBUGGER_BOILERPLATE(debugger_fault_handler) #else static inline int debugger(struct pt_regs *regs) { return 0; } static inline int debugger_ipi(struct pt_regs *regs) { return 0; } static inline int debugger_bpt(struct pt_regs *regs) { return 0; } static inline int debugger_sstep(struct pt_regs *regs) { return 0; } static inline int debugger_iabr_match(struct pt_regs *regs) { return 0; } static inline int debugger_dabr_match(struct pt_regs *regs) { return 0; } static inline int debugger_fault_handler(struct pt_regs *regs) { return 0; } #endif extern int set_dabr(unsigned long dabr); extern void print_backtrace(unsigned long *); extern void show_regs(struct pt_regs * regs); extern void flush_instruction_cache(void); extern void hard_reset_now(void); extern void poweroff_now(void); #ifdef CONFIG_6xx extern long _get_L2CR(void); extern long _get_L3CR(void); extern void _set_L2CR(unsigned long); extern void _set_L3CR(unsigned long); #else #define _get_L2CR() 0L #define _get_L3CR() 0L #define _set_L2CR(val) do { } while(0) #define _set_L3CR(val) do { } while(0) #endif extern void via_cuda_init(void); extern void read_rtc_time(void); extern void pmac_find_display(void); extern void giveup_fpu(struct task_struct *); extern void disable_kernel_fp(void); extern void enable_kernel_fp(void); extern void flush_fp_to_thread(struct task_struct *); extern void enable_kernel_altivec(void); extern void giveup_altivec(struct task_struct *); extern void load_up_altivec(struct task_struct *); extern int emulate_altivec(struct pt_regs *); extern void giveup_spe(struct task_struct *); extern void load_up_spe(struct task_struct *); extern int fix_alignment(struct pt_regs *); extern void cvt_fd(float *from, double *to, struct thread_struct *thread); extern void cvt_df(double *from, float *to, struct thread_struct *thread); #ifndef CONFIG_SMP extern void discard_lazy_cpu_state(void); #else static inline void discard_lazy_cpu_state(void) { } #endif #ifdef CONFIG_ALTIVEC extern void flush_altivec_to_thread(struct task_struct *); #else static inline void flush_altivec_to_thread(struct task_struct *t) { } #endif #ifdef CONFIG_SPE extern void flush_spe_to_thread(struct task_struct *); #else static inline void flush_spe_to_thread(struct task_struct *t) { } #endif extern int call_rtas(const char *, int, int, unsigned long *, ...); extern void cacheable_memzero(void *p, unsigned int nb); extern void *cacheable_memcpy(void *, const void *, unsigned int); extern int do_page_fault(struct pt_regs *, unsigned long, unsigned long); extern void bad_page_fault(struct pt_regs *, unsigned long, int); extern int die(const char *, struct pt_regs *, long); extern void _exception(int, struct pt_regs *, int, unsigned long); #ifdef CONFIG_BOOKE_WDT extern u32 booke_wdt_enabled; extern u32 booke_wdt_period; #endif /* CONFIG_BOOKE_WDT */ struct device_node; extern void note_scsi_host(struct device_node *, void *); extern struct task_struct *__switch_to(struct task_struct *, struct task_struct *); #define switch_to(prev, next, last) ((last) = __switch_to((prev), (next))) struct thread_struct; extern struct task_struct *_switch(struct thread_struct *prev, struct thread_struct *next); /* * On SMP systems, when the scheduler does migration-cost autodetection, * it needs a way to flush as much of the CPU's caches as possible. * * TODO: fill this in! */ static inline void sched_cacheflush(void) { } extern unsigned int rtas_data; extern int mem_init_done; /* set on boot once kmalloc can be called */ extern unsigned long memory_limit; extern unsigned long klimit; extern int powersave_nap; /* set if nap mode can be used in idle loop */ /* * Atomic exchange * * Changes the memory location '*ptr' to be val and returns * the previous value stored there. */ static __inline__ unsigned long __xchg_u32(volatile void *p, unsigned long val) { unsigned long prev; __asm__ __volatile__( LWSYNC_ON_SMP "1: lwarx %0,0,%2 \n" PPC405_ERR77(0,%2) " stwcx. %3,0,%2 \n\ bne- 1b" ISYNC_ON_SMP : "=&r" (prev), "+m" (*(volatile unsigned int *)p) : "r" (p), "r" (val) : "cc", "memory"); return prev; } #ifdef CONFIG_PPC64 static __inline__ unsigned long __xchg_u64(volatile void *p, unsigned long val) { unsigned long prev; __asm__ __volatile__( LWSYNC_ON_SMP "1: ldarx %0,0,%2 \n" PPC405_ERR77(0,%2) " stdcx. %3,0,%2 \n\ bne- 1b" ISYNC_ON_SMP : "=&r" (prev), "+m" (*(volatile unsigned long *)p) : "r" (p), "r" (val) : "cc", "memory"); return prev; } #endif /* * This function doesn't exist, so you'll get a linker error * if something tries to do an invalid xchg(). */ extern void __xchg_called_with_bad_pointer(void); static __inline__ unsigned long __xchg(volatile void *ptr, unsigned long x, unsigned int size) { switch (size) { case 4: return __xchg_u32(ptr, x); #ifdef CONFIG_PPC64 case 8: return __xchg_u64(ptr, x); #endif } __xchg_called_with_bad_pointer(); return x; } #define xchg(ptr,x) \ ({ \ __typeof__(*(ptr)) _x_ = (x); \ (__typeof__(*(ptr))) __xchg((ptr), (unsigned long)_x_, sizeof(*(ptr))); \ }) #define tas(ptr) (xchg((ptr),1)) /* * Compare and exchange - if *p == old, set it to new, * and return the old value of *p. */ #define __HAVE_ARCH_CMPXCHG 1 static __inline__ unsigned long __cmpxchg_u32(volatile unsigned int *p, unsigned long old, unsigned long new) { unsigned int prev; __asm__ __volatile__ ( LWSYNC_ON_SMP "1: lwarx %0,0,%2 # __cmpxchg_u32\n\ cmpw 0,%0,%3\n\ bne- 2f\n" PPC405_ERR77(0,%2) " stwcx. %4,0,%2\n\ bne- 1b" ISYNC_ON_SMP "\n\ 2:" : "=&r" (prev), "+m" (*p) : "r" (p), "r" (old), "r" (new) : "cc", "memory"); return prev; } #ifdef CONFIG_PPC64 static __inline__ unsigned long __cmpxchg_u64(volatile unsigned long *p, unsigned long old, unsigned long new) { unsigned long prev; __asm__ __volatile__ ( LWSYNC_ON_SMP "1: ldarx %0,0,%2 # __cmpxchg_u64\n\ cmpd 0,%0,%3\n\ bne- 2f\n\ stdcx. %4,0,%2\n\ bne- 1b" ISYNC_ON_SMP "\n\ 2:" : "=&r" (prev), "+m" (*p) : "r" (p), "r" (old), "r" (new) : "cc", "memory"); return prev; } #endif /* This function doesn't exist, so you'll get a linker error if something tries to do an invalid cmpxchg(). */ extern void __cmpxchg_called_with_bad_pointer(void); static __inline__ unsigned long __cmpxchg(volatile void *ptr, unsigned long old, unsigned long new, unsigned int size) { switch (size) { case 4: return __cmpxchg_u32(ptr, old, new); #ifdef CONFIG_PPC64 case 8: return __cmpxchg_u64(ptr, old, new); #endif } __cmpxchg_called_with_bad_pointer(); return old; } #define cmpxchg(ptr,o,n) \ ({ \ __typeof__(*(ptr)) _o_ = (o); \ __typeof__(*(ptr)) _n_ = (n); \ (__typeof__(*(ptr))) __cmpxchg((ptr), (unsigned long)_o_, \ (unsigned long)_n_, sizeof(*(ptr))); \ }) #ifdef CONFIG_PPC64 /* * We handle most unaligned accesses in hardware. On the other hand * unaligned DMA can be very expensive on some ppc64 IO chips (it does * powers of 2 writes until it reaches sufficient alignment). * * Based on this we disable the IP header alignment in network drivers. * We also modify NET_SKB_PAD to be a cacheline in size, thus maintaining * cacheline alignment of buffers. */ #define NET_IP_ALIGN 0 #define NET_SKB_PAD L1_CACHE_BYTES #endif #define arch_align_stack(x) (x) /* Used in very early kernel initialization. */ extern unsigned long reloc_offset(void); extern unsigned long add_reloc_offset(unsigned long); extern void reloc_got2(unsigned long); #define PTRRELOC(x) ((typeof(x)) add_reloc_offset((unsigned long)(x))) static inline void create_instruction(unsigned long addr, unsigned int instr) { unsigned int *p; p = (unsigned int *)addr; *p = instr; asm ("dcbst 0, %0; sync; icbi 0,%0; sync; isync" : : "r" (p)); } /* Flags for create_branch: * "b" == create_branch(addr, target, 0); * "ba" == create_branch(addr, target, BRANCH_ABSOLUTE); * "bl" == create_branch(addr, target, BRANCH_SET_LINK); * "bla" == create_branch(addr, target, BRANCH_ABSOLUTE | BRANCH_SET_LINK); */ #define BRANCH_SET_LINK 0x1 #define BRANCH_ABSOLUTE 0x2 static inline void create_branch(unsigned long addr, unsigned long target, int flags) { unsigned int instruction; if (! (flags & BRANCH_ABSOLUTE)) target = target - addr; /* Mask out the flags and target, so they don't step on each other. */ instruction = 0x48000000 | (flags & 0x3) | (target & 0x03FFFFFC); create_instruction(addr, instruction); } static inline void create_function_call(unsigned long addr, void * func) { unsigned long func_addr; #ifdef CONFIG_PPC64 /* * On PPC64 the function pointer actually points to the function's * descriptor. The first entry in the descriptor is the address * of the function text. */ func_addr = *(unsigned long *)func; #else func_addr = (unsigned long)func; #endif create_branch(addr, func_addr, BRANCH_SET_LINK); } #ifdef CONFIG_VIRT_CPU_ACCOUNTING extern void account_system_vtime(struct task_struct *); #endif #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_SYSTEM_H */