/* * eeh.h * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _PPC64_EEH_H #define _PPC64_EEH_H #include #include #include #include struct pci_dev; struct device_node; struct device_node; struct notifier_block; #ifdef CONFIG_EEH /* Values for eeh_mode bits in device_node */ #define EEH_MODE_SUPPORTED (1<<0) #define EEH_MODE_NOCHECK (1<<1) #define EEH_MODE_ISOLATED (1<<2) void __init eeh_init(void); unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val); int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev); void __init pci_addr_cache_build(void); /** * eeh_add_device_early * eeh_add_device_late * * Perform eeh initialization for devices added after boot. * Call eeh_add_device_early before doing any i/o to the * device (including config space i/o). Call eeh_add_device_late * to finish the eeh setup for this device. */ void eeh_add_device_early(struct device_node *); void eeh_add_device_late(struct pci_dev *); /** * eeh_remove_device - undo EEH setup for the indicated pci device * @dev: pci device to be removed * * This routine should be when a device is removed from a running * system (e.g. by hotplug or dlpar). */ void eeh_remove_device(struct pci_dev *); #define EEH_DISABLE 0 #define EEH_ENABLE 1 #define EEH_RELEASE_LOADSTORE 2 #define EEH_RELEASE_DMA 3 /** * Notifier event flags. */ #define EEH_NOTIFY_FREEZE 1 /** EEH event -- structure holding pci slot data that describes * a change in the isolation status of a PCI slot. A pointer * to this struct is passed as the data pointer in a notify callback. */ struct eeh_event { struct list_head list; struct pci_dev *dev; struct device_node *dn; int reset_state; }; /** Register to find out about EEH events. */ int eeh_register_notifier(struct notifier_block *nb); int eeh_unregister_notifier(struct notifier_block *nb); /** * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure. * * If this macro yields TRUE, the caller relays to eeh_check_failure() * which does further tests out of line. */ #define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0) /* * Reads from a device which has been isolated by EEH will return * all 1s. This macro gives an all-1s value of the given size (in * bytes: 1, 2, or 4) for comparing with the result of a read. */ #define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8)) #else /* !CONFIG_EEH */ static inline void eeh_init(void) { } static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val) { return val; } static inline int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev) { return 0; } static inline void pci_addr_cache_build(void) { } static inline void eeh_add_device_early(struct device_node *dn) { } static inline void eeh_add_device_late(struct pci_dev *dev) { } static inline void eeh_remove_device(struct pci_dev *dev) { } #define EEH_POSSIBLE_ERROR(val, type) (0) #define EEH_IO_ERROR_VALUE(size) (-1UL) #endif /* CONFIG_EEH */ /* * MMIO read/write operations with EEH support. */ static inline u8 eeh_readb(const volatile void __iomem *addr) { u8 val = in_8(addr); if (EEH_POSSIBLE_ERROR(val, u8)) return eeh_check_failure(addr, val); return val; } static inline void eeh_writeb(u8 val, volatile void __iomem *addr) { out_8(addr, val); } static inline u16 eeh_readw(const volatile void __iomem *addr) { u16 val = in_le16(addr); if (EEH_POSSIBLE_ERROR(val, u16)) return eeh_check_failure(addr, val); return val; } static inline void eeh_writew(u16 val, volatile void __iomem *addr) { out_le16(addr, val); } static inline u16 eeh_raw_readw(const volatile void __iomem *addr) { u16 val = in_be16(addr); if (EEH_POSSIBLE_ERROR(val, u16)) return eeh_check_failure(addr, val); return val; } static inline void eeh_raw_writew(u16 val, volatile void __iomem *addr) { volatile u16 __iomem *vaddr = (volatile u16 __iomem *) addr; out_be16(vaddr, val); } static inline u32 eeh_readl(const volatile void __iomem *addr) { u32 val = in_le32(addr); if (EEH_POSSIBLE_ERROR(val, u32)) return eeh_check_failure(addr, val); return val; } static inline void eeh_writel(u32 val, volatile void __iomem *addr) { out_le32(addr, val); } static inline u32 eeh_raw_readl(const volatile void __iomem *addr) { u32 val = in_be32(addr); if (EEH_POSSIBLE_ERROR(val, u32)) return eeh_check_failure(addr, val); return val; } static inline void eeh_raw_writel(u32 val, volatile void __iomem *addr) { out_be32(addr, val); } static inline u64 eeh_readq(const volatile void __iomem *addr) { u64 val = in_le64(addr); if (EEH_POSSIBLE_ERROR(val, u64)) return eeh_check_failure(addr, val); return val; } static inline void eeh_writeq(u64 val, volatile void __iomem *addr) { out_le64(addr, val); } static inline u64 eeh_raw_readq(const volatile void __iomem *addr) { u64 val = in_be64(addr); if (EEH_POSSIBLE_ERROR(val, u64)) return eeh_check_failure(addr, val); return val; } static inline void eeh_raw_writeq(u64 val, volatile void __iomem *addr) { out_be64(addr, val); } #define EEH_CHECK_ALIGN(v,a) \ ((((unsigned long)(v)) & ((a) - 1)) == 0) static inline void eeh_memset_io(volatile void __iomem *addr, int c, unsigned long n) { u32 lc = c; lc |= lc << 8; lc |= lc << 16; while(n && !EEH_CHECK_ALIGN(addr, 4)) { *((volatile u8 *)addr) = c; addr = (void *)((unsigned long)addr + 1); n--; } while(n >= 4) { *((volatile u32 *)addr) = lc; addr = (void *)((unsigned long)addr + 4); n -= 4; } while(n) { *((volatile u8 *)addr) = c; addr = (void *)((unsigned long)addr + 1); n--; } __asm__ __volatile__ ("sync" : : : "memory"); } static inline void eeh_memcpy_fromio(void *dest, const volatile void __iomem *src, unsigned long n) { void *vsrc = (void __force *) src; void *destsave = dest; unsigned long nsave = n; while(n && (!EEH_CHECK_ALIGN(vsrc, 4) || !EEH_CHECK_ALIGN(dest, 4))) { *((u8 *)dest) = *((volatile u8 *)vsrc); __asm__ __volatile__ ("eieio" : : : "memory"); vsrc = (void *)((unsigned long)vsrc + 1); dest = (void *)((unsigned long)dest + 1); n--; } while(n > 4) { *((u32 *)dest) = *((volatile u32 *)vsrc); __asm__ __volatile__ ("eieio" : : : "memory"); vsrc = (void *)((unsigned long)vsrc + 4); dest = (void *)((unsigned long)dest + 4); n -= 4; } while(n) { *((u8 *)dest) = *((volatile u8 *)vsrc); __asm__ __volatile__ ("eieio" : : : "memory"); vsrc = (void *)((unsigned long)vsrc + 1); dest = (void *)((unsigned long)dest + 1); n--; } __asm__ __volatile__ ("sync" : : : "memory"); /* Look for ffff's here at dest[n]. Assume that at least 4 bytes * were copied. Check all four bytes. */ if ((nsave >= 4) && (EEH_POSSIBLE_ERROR((*((u32 *) destsave+nsave-4)), u32))) { eeh_check_failure(src, (*((u32 *) destsave+nsave-4))); } } static inline void eeh_memcpy_toio(volatile void __iomem *dest, const void *src, unsigned long n) { void *vdest = (void __force *) dest; while(n && (!EEH_CHECK_ALIGN(vdest, 4) || !EEH_CHECK_ALIGN(src, 4))) { *((volatile u8 *)vdest) = *((u8 *)src); src = (void *)((unsigned long)src + 1); vdest = (void *)((unsigned long)vdest + 1); n--; } while(n > 4) { *((volatile u32 *)vdest) = *((volatile u32 *)src); src = (void *)((unsigned long)src + 4); vdest = (void *)((unsigned long)vdest + 4); n-=4; } while(n) { *((volatile u8 *)vdest) = *((u8 *)src); src = (void *)((unsigned long)src + 1); vdest = (void *)((unsigned long)vdest + 1); n--; } __asm__ __volatile__ ("sync" : : : "memory"); } #undef EEH_CHECK_ALIGN static inline u8 eeh_inb(unsigned long port) { u8 val; if (!_IO_IS_VALID(port)) return ~0; val = in_8((u8 __iomem *)(port+pci_io_base)); if (EEH_POSSIBLE_ERROR(val, u8)) return eeh_check_failure((void __iomem *)(port), val); return val; } static inline void eeh_outb(u8 val, unsigned long port) { if (_IO_IS_VALID(port)) out_8((u8 __iomem *)(port+pci_io_base), val); } static inline u16 eeh_inw(unsigned long port) { u16 val; if (!_IO_IS_VALID(port)) return ~0; val = in_le16((u16 __iomem *)(port+pci_io_base)); if (EEH_POSSIBLE_ERROR(val, u16)) return eeh_check_failure((void __iomem *)(port), val); return val; } static inline void eeh_outw(u16 val, unsigned long port) { if (_IO_IS_VALID(port)) out_le16((u16 __iomem *)(port+pci_io_base), val); } static inline u32 eeh_inl(unsigned long port) { u32 val; if (!_IO_IS_VALID(port)) return ~0; val = in_le32((u32 __iomem *)(port+pci_io_base)); if (EEH_POSSIBLE_ERROR(val, u32)) return eeh_check_failure((void __iomem *)(port), val); return val; } static inline void eeh_outl(u32 val, unsigned long port) { if (_IO_IS_VALID(port)) out_le32((u32 __iomem *)(port+pci_io_base), val); } /* in-string eeh macros */ static inline void eeh_insb(unsigned long port, void * buf, int ns) { _insb((u8 __iomem *)(port+pci_io_base), buf, ns); if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8)) eeh_check_failure((void __iomem *)(port), *(u8*)buf); } static inline void eeh_insw_ns(unsigned long port, void * buf, int ns) { _insw_ns((u16 __iomem *)(port+pci_io_base), buf, ns); if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16)) eeh_check_failure((void __iomem *)(port), *(u16*)buf); } static inline void eeh_insl_ns(unsigned long port, void * buf, int nl) { _insl_ns((u32 __iomem *)(port+pci_io_base), buf, nl); if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32)) eeh_check_failure((void __iomem *)(port), *(u32*)buf); } #endif /* _PPC64_EEH_H */