/* * include/asm-s390/pgtable.h * * S390 version * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Hartmut Penner (hp@de.ibm.com) * Ulrich Weigand (weigand@de.ibm.com) * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/pgtable.h" */ #ifndef _ASM_S390_PGTABLE_H #define _ASM_S390_PGTABLE_H #include /* * The Linux memory management assumes a three-level page table setup. For * s390 31 bit we "fold" the mid level into the top-level page table, so * that we physically have the same two-level page table as the s390 mmu * expects in 31 bit mode. For s390 64 bit we use three of the five levels * the hardware provides (region first and region second tables are not * used). * * The "pgd_xxx()" functions are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) * * This file contains the functions and defines necessary to modify and use * the S390 page table tree. */ #ifndef __ASSEMBLY__ #include #include #include struct vm_area_struct; /* forward declaration (include/linux/mm.h) */ struct mm_struct; extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); extern void paging_init(void); extern void vmem_map_init(void); /* * The S390 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma, address, pte) do { } while (0) /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern char empty_zero_page[PAGE_SIZE]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #endif /* !__ASSEMBLY__ */ /* * PMD_SHIFT determines the size of the area a second-level page * table can map * PGDIR_SHIFT determines what a third-level page table entry can map */ #ifndef __s390x__ # define PMD_SHIFT 22 # define PGDIR_SHIFT 22 #else /* __s390x__ */ # define PMD_SHIFT 21 # define PGDIR_SHIFT 31 #endif /* __s390x__ */ #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the S390 is two-level, so * we don't really have any PMD directory physically. * for S390 segment-table entries are combined to one PGD * that leads to 1024 pte per pgd */ #ifndef __s390x__ # define PTRS_PER_PTE 1024 # define PTRS_PER_PMD 1 # define PTRS_PER_PGD 512 #else /* __s390x__ */ # define PTRS_PER_PTE 512 # define PTRS_PER_PMD 1024 # define PTRS_PER_PGD 2048 #endif /* __s390x__ */ #define FIRST_USER_ADDRESS 0 #define pte_ERROR(e) \ printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) #ifndef __ASSEMBLY__ /* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ extern unsigned long vmalloc_end; #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \ & ~(VMALLOC_OFFSET-1)) #define VMALLOC_END vmalloc_end /* * We need some free virtual space to be able to do vmalloc. * VMALLOC_MIN_SIZE defines the minimum size of the vmalloc * area. On a machine with 2GB memory we make sure that we * have at least 128MB free space for vmalloc. On a machine * with 4TB we make sure we have at least 128GB. */ #ifndef __s390x__ #define VMALLOC_MIN_SIZE 0x8000000UL #define VMALLOC_END_INIT 0x80000000UL #else /* __s390x__ */ #define VMALLOC_MIN_SIZE 0x2000000000UL #define VMALLOC_END_INIT 0x40000000000UL #endif /* __s390x__ */ /* * A 31 bit pagetable entry of S390 has following format: * | PFRA | | OS | * 0 0IP0 * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * * A 31 bit segmenttable entry of S390 has following format: * | P-table origin | |PTL * 0 IC * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) * * The 31 bit segmenttable origin of S390 has following format: * * |S-table origin | | STL | * X **GPS * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * X Space-Switch event: * G Segment-Invalid Bit: * * P Private-Space Bit: Segment is not private (PoP 3-30) * S Storage-Alteration: * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) * * A 64 bit pagetable entry of S390 has following format: * | PFRA |0IP0| OS | * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * * A 64 bit segmenttable entry of S390 has following format: * | P-table origin | TT * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * P Page-Protection Bit: Store access not possible for page * TT Type 00 * * A 64 bit region table entry of S390 has following format: * | S-table origin | TF TTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * TT Type 01 * TF * TL Table lenght * * The 64 bit regiontable origin of S390 has following format: * | region table origon | DTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * X Space-Switch event: * G Segment-Invalid Bit: * P Private-Space Bit: * S Storage-Alteration: * R Real space * TL Table-Length: * * A storage key has the following format: * | ACC |F|R|C|0| * 0 3 4 5 6 7 * ACC: access key * F : fetch protection bit * R : referenced bit * C : changed bit */ /* Hardware bits in the page table entry */ #define _PAGE_RO 0x200 /* HW read-only bit */ #define _PAGE_INVALID 0x400 /* HW invalid bit */ #define _PAGE_SWT 0x001 /* SW pte type bit t */ #define _PAGE_SWX 0x002 /* SW pte type bit x */ /* Six different types of pages. */ #define _PAGE_TYPE_EMPTY 0x400 #define _PAGE_TYPE_NONE 0x401 #define _PAGE_TYPE_SWAP 0x403 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ #define _PAGE_TYPE_RO 0x200 #define _PAGE_TYPE_RW 0x000 #define _PAGE_TYPE_EX_RO 0x202 #define _PAGE_TYPE_EX_RW 0x002 /* * PTE type bits are rather complicated. handle_pte_fault uses pte_present, * pte_none and pte_file to find out the pte type WITHOUT holding the page * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. * This change is done while holding the lock, but the intermediate step * of a previously valid pte with the hw invalid bit set can be observed by * handle_pte_fault. That makes it necessary that all valid pte types with * the hw invalid bit set must be distinguishable from the four pte types * empty, none, swap and file. * * irxt ipte irxt * _PAGE_TYPE_EMPTY 1000 -> 1000 * _PAGE_TYPE_NONE 1001 -> 1001 * _PAGE_TYPE_SWAP 1011 -> 1011 * _PAGE_TYPE_FILE 11?1 -> 11?1 * _PAGE_TYPE_RO 0100 -> 1100 * _PAGE_TYPE_RW 0000 -> 1000 * _PAGE_TYPE_EX_RO 0110 -> 1110 * _PAGE_TYPE_EX_RW 0010 -> 1010 * * pte_none is true for bits combinations 1000, 1010, 1100, 1110 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 * pte_file is true for bits combinations 1101, 1111 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid. */ #ifndef __s390x__ /* Bits in the segment table entry */ #define _PAGE_TABLE_LEN 0xf /* only full page-tables */ #define _PAGE_TABLE_COM 0x10 /* common page-table */ #define _PAGE_TABLE_INV 0x20 /* invalid page-table */ #define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */ /* Bits int the storage key */ #define _PAGE_CHANGED 0x02 /* HW changed bit */ #define _PAGE_REFERENCED 0x04 /* HW referenced bit */ #define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */ #define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */ /* * User and Kernel pagetables are identical */ #define _PAGE_TABLE _PAGE_TABLE_LEN #define _KERNPG_TABLE _PAGE_TABLE_LEN /* * The Kernel segment-tables includes the User segment-table */ #define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100) #define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN #define USER_STD_MASK 0x00000080UL #else /* __s390x__ */ /* Bits in the segment table entry */ #define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */ #define _PMD_ENTRY 0x00 /* Bits in the region third table entry */ #define _PGD_ENTRY_INV 0x20 /* invalid region table entry */ #define _PGD_ENTRY 0x07 /* * User and kernel page directory */ #define _REGION_THIRD 0x4 #define _REGION_THIRD_LEN 0x3 #define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100) #define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN) #define USER_STD_MASK 0x0000000000000080UL /* Bits in the storage key */ #define _PAGE_CHANGED 0x02 /* HW changed bit */ #define _PAGE_REFERENCED 0x04 /* HW referenced bit */ #endif /* __s390x__ */ /* * Page protection definitions. */ #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) #define PAGE_RO __pgprot(_PAGE_TYPE_RO) #define PAGE_RW __pgprot(_PAGE_TYPE_RW) #define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO) #define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW) #define PAGE_KERNEL PAGE_RW #define PAGE_COPY PAGE_RO /* * Dependent on the EXEC_PROTECT option s390 can do execute protection. * Write permission always implies read permission. In theory with a * primary/secondary page table execute only can be implemented but * it would cost an additional bit in the pte to distinguish all the * different pte types. To avoid that execute permission currently * implies read permission as well. */ /*xwr*/ #define __P000 PAGE_NONE #define __P001 PAGE_RO #define __P010 PAGE_RO #define __P011 PAGE_RO #define __P100 PAGE_EX_RO #define __P101 PAGE_EX_RO #define __P110 PAGE_EX_RO #define __P111 PAGE_EX_RO #define __S000 PAGE_NONE #define __S001 PAGE_RO #define __S010 PAGE_RW #define __S011 PAGE_RW #define __S100 PAGE_EX_RO #define __S101 PAGE_EX_RO #define __S110 PAGE_EX_RW #define __S111 PAGE_EX_RW #ifndef __s390x__ # define PMD_SHADOW_SHIFT 1 # define PGD_SHADOW_SHIFT 1 #else /* __s390x__ */ # define PMD_SHADOW_SHIFT 2 # define PGD_SHADOW_SHIFT 2 #endif /* __s390x__ */ static inline struct page *get_shadow_page(struct page *page) { if (s390_noexec && !list_empty(&page->lru)) return virt_to_page(page->lru.next); return NULL; } static inline pte_t *get_shadow_pte(pte_t *ptep) { unsigned long pteptr = (unsigned long) (ptep); if (s390_noexec) { unsigned long offset = pteptr & (PAGE_SIZE - 1); void *addr = (void *) (pteptr ^ offset); struct page *page = virt_to_page(addr); if (!list_empty(&page->lru)) return (pte_t *) ((unsigned long) page->lru.next | offset); } return NULL; } static inline pmd_t *get_shadow_pmd(pmd_t *pmdp) { unsigned long pmdptr = (unsigned long) (pmdp); if (s390_noexec) { unsigned long offset = pmdptr & ((PAGE_SIZE << PMD_SHADOW_SHIFT) - 1); void *addr = (void *) (pmdptr ^ offset); struct page *page = virt_to_page(addr); if (!list_empty(&page->lru)) return (pmd_t *) ((unsigned long) page->lru.next | offset); } return NULL; } static inline pgd_t *get_shadow_pgd(pgd_t *pgdp) { unsigned long pgdptr = (unsigned long) (pgdp); if (s390_noexec) { unsigned long offset = pgdptr & ((PAGE_SIZE << PGD_SHADOW_SHIFT) - 1); void *addr = (void *) (pgdptr ^ offset); struct page *page = virt_to_page(addr); if (!list_empty(&page->lru)) return (pgd_t *) ((unsigned long) page->lru.next | offset); } return NULL; } /* * Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ static inline void set_pte(pte_t *pteptr, pte_t pteval) { pte_t *shadow_pte = get_shadow_pte(pteptr); *pteptr = pteval; if (shadow_pte) { if (!(pte_val(pteval) & _PAGE_INVALID) && (pte_val(pteval) & _PAGE_SWX)) pte_val(*shadow_pte) = pte_val(pteval) | _PAGE_RO; else pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY; } } #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) /* * pgd/pmd/pte query functions */ #ifndef __s390x__ static inline int pgd_present(pgd_t pgd) { return 1; } static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; } static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; } static inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE; } #else /* __s390x__ */ static inline int pgd_present(pgd_t pgd) { return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY; } static inline int pgd_none(pgd_t pgd) { return pgd_val(pgd) & _PGD_ENTRY_INV; } static inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY; } static inline int pmd_present(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY; } static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PMD_ENTRY_INV; } static inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY; } #endif /* __s390x__ */ static inline int pte_none(pte_t pte) { return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); } static inline int pte_present(pte_t pte) { unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || (!(pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT)); } static inline int pte_file(pte_t pte) { unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; } #define pte_same(a,b) (pte_val(a) == pte_val(b)) /* * query functions pte_write/pte_dirty/pte_young only work if * pte_present() is true. Undefined behaviour if not.. */ static inline int pte_write(pte_t pte) { return (pte_val(pte) & _PAGE_RO) == 0; } static inline int pte_dirty(pte_t pte) { /* A pte is neither clean nor dirty on s/390. The dirty bit * is in the storage key. See page_test_and_clear_dirty for * details. */ return 0; } static inline int pte_young(pte_t pte) { /* A pte is neither young nor old on s/390. The young bit * is in the storage key. See page_test_and_clear_young for * details. */ return 0; } /* * pgd/pmd/pte modification functions */ #ifndef __s390x__ static inline void pgd_clear(pgd_t * pgdp) { } static inline void pmd_clear_kernel(pmd_t * pmdp) { pmd_val(pmdp[0]) = _PAGE_TABLE_INV; pmd_val(pmdp[1]) = _PAGE_TABLE_INV; pmd_val(pmdp[2]) = _PAGE_TABLE_INV; pmd_val(pmdp[3]) = _PAGE_TABLE_INV; } static inline void pmd_clear(pmd_t * pmdp) { pmd_t *shadow_pmd = get_shadow_pmd(pmdp); pmd_clear_kernel(pmdp); if (shadow_pmd) pmd_clear_kernel(shadow_pmd); } #else /* __s390x__ */ static inline void pgd_clear_kernel(pgd_t * pgdp) { pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY; } static inline void pgd_clear(pgd_t * pgdp) { pgd_t *shadow_pgd = get_shadow_pgd(pgdp); pgd_clear_kernel(pgdp); if (shadow_pgd) pgd_clear_kernel(shadow_pgd); } static inline void pmd_clear_kernel(pmd_t * pmdp) { pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; } static inline void pmd_clear(pmd_t * pmdp) { pmd_t *shadow_pmd = get_shadow_pmd(pmdp); pmd_clear_kernel(pmdp); if (shadow_pmd) pmd_clear_kernel(shadow_pmd); } #endif /* __s390x__ */ static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t *shadow_pte = get_shadow_pte(ptep); pte_val(*ptep) = _PAGE_TYPE_EMPTY; if (shadow_pte) pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY; } /* * The following pte modification functions only work if * pte_present() is true. Undefined behaviour if not.. */ static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) &= PAGE_MASK; pte_val(pte) |= pgprot_val(newprot); return pte; } static inline pte_t pte_wrprotect(pte_t pte) { /* Do not clobber _PAGE_TYPE_NONE pages! */ if (!(pte_val(pte) & _PAGE_INVALID)) pte_val(pte) |= _PAGE_RO; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RO; return pte; } static inline pte_t pte_mkclean(pte_t pte) { /* The only user of pte_mkclean is the fork() code. We must *not* clear the *physical* page dirty bit just because fork() wants to clear the dirty bit in *one* of the page's mappings. So we just do nothing. */ return pte; } static inline pte_t pte_mkdirty(pte_t pte) { /* We do not explicitly set the dirty bit because the * sske instruction is slow. It is faster to let the * next instruction set the dirty bit. */ return pte; } static inline pte_t pte_mkold(pte_t pte) { /* S/390 doesn't keep its dirty/referenced bit in the pte. * There is no point in clearing the real referenced bit. */ return pte; } static inline pte_t pte_mkyoung(pte_t pte) { /* S/390 doesn't keep its dirty/referenced bit in the pte. * There is no point in setting the real referenced bit. */ return pte; } static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return 0; } static inline int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { /* No need to flush TLB; bits are in storage key */ return ptep_test_and_clear_young(vma, address, ptep); } static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; pte_clear(mm, addr, ptep); return pte; } static inline void __ptep_ipte(unsigned long address, pte_t *ptep) { if (!(pte_val(*ptep) & _PAGE_INVALID)) { #ifndef __s390x__ /* S390 has 1mb segments, we are emulating 4MB segments */ pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); #else /* ipte in zarch mode can do the math */ pte_t *pto = ptep; #endif asm volatile( " ipte %2,%3" : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); } pte_val(*ptep) = _PAGE_TYPE_EMPTY; } static inline void ptep_invalidate(unsigned long address, pte_t *ptep) { __ptep_ipte(address, ptep); ptep = get_shadow_pte(ptep); if (ptep) __ptep_ipte(address, ptep); } static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; ptep_invalidate(address, ptep); return pte; } static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t old_pte = *ptep; set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); } #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \ ({ \ int __changed = !pte_same(*(__ptep), __entry); \ if (__changed) { \ ptep_invalidate(__addr, __ptep); \ set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \ } \ __changed; \ }) /* * Test and clear dirty bit in storage key. * We can't clear the changed bit atomically. This is a potential * race against modification of the referenced bit. This function * should therefore only be called if it is not mapped in any * address space. */ static inline int page_test_dirty(struct page *page) { return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0; } static inline void page_clear_dirty(struct page *page) { page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY); } /* * Test and clear referenced bit in storage key. */ static inline int page_test_and_clear_young(struct page *page) { unsigned long physpage = page_to_phys(page); int ccode; asm volatile( " rrbe 0,%1\n" " ipm %0\n" " srl %0,28\n" : "=d" (ccode) : "a" (physpage) : "cc" ); return ccode & 2; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); return __pte; } static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) { unsigned long physpage = page_to_phys(page); return mk_pte_phys(physpage, pgprot); } static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { unsigned long physpage = __pa((pfn) << PAGE_SHIFT); return mk_pte_phys(physpage, pgprot); } #ifdef __s390x__ static inline pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) { unsigned long physpage = __pa((pfn) << PAGE_SHIFT); return __pmd(physpage + pgprot_val(pgprot)); } #endif /* __s390x__ */ #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pmd_page_vaddr(pmd) (pmd_val(pmd) & PAGE_MASK) #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) #define pgd_page_vaddr(pgd) (pgd_val(pgd) & PAGE_MASK) #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT) /* to find an entry in a page-table-directory */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #ifndef __s390x__ /* Find an entry in the second-level page table.. */ static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } #else /* __s390x__ */ /* Find an entry in the second-level page table.. */ #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) #define pmd_offset(dir,addr) \ ((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(addr)) #endif /* __s390x__ */ /* Find an entry in the third-level page table.. */ #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) #define pte_offset_kernel(pmd, address) \ ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) /* * 31 bit swap entry format: * A page-table entry has some bits we have to treat in a special way. * Bits 0, 20 and bit 23 have to be zero, otherwise an specification * exception will occur instead of a page translation exception. The * specifiation exception has the bad habit not to store necessary * information in the lowcore. * Bit 21 and bit 22 are the page invalid bit and the page protection * bit. We set both to indicate a swapped page. * Bit 30 and 31 are used to distinguish the different page types. For * a swapped page these bits need to be zero. * This leaves the bits 1-19 and bits 24-29 to store type and offset. * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 * plus 24 for the offset. * 0| offset |0110|o|type |00| * 0 0000000001111111111 2222 2 22222 33 * 0 1234567890123456789 0123 4 56789 01 * * 64 bit swap entry format: * A page-table entry has some bits we have to treat in a special way. * Bits 52 and bit 55 have to be zero, otherwise an specification * exception will occur instead of a page translation exception. The * specifiation exception has the bad habit not to store necessary * information in the lowcore. * Bit 53 and bit 54 are the page invalid bit and the page protection * bit. We set both to indicate a swapped page. * Bit 62 and 63 are used to distinguish the different page types. For * a swapped page these bits need to be zero. * This leaves the bits 0-51 and bits 56-61 to store type and offset. * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 * plus 56 for the offset. * | offset |0110|o|type |00| * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 */ #ifndef __s390x__ #define __SWP_OFFSET_MASK (~0UL >> 12) #else #define __SWP_OFFSET_MASK (~0UL >> 11) #endif static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; offset &= __SWP_OFFSET_MASK; pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); return pte; } #define __swp_type(entry) (((entry).val >> 2) & 0x1f) #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #ifndef __s390x__ # define PTE_FILE_MAX_BITS 26 #else /* __s390x__ */ # define PTE_FILE_MAX_BITS 59 #endif /* __s390x__ */ #define pte_to_pgoff(__pte) \ ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) #define pgoff_to_pte(__off) \ ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ | _PAGE_TYPE_FILE }) #endif /* !__ASSEMBLY__ */ #define kern_addr_valid(addr) (1) extern int add_shared_memory(unsigned long start, unsigned long size); extern int remove_shared_memory(unsigned long start, unsigned long size); /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) #define __HAVE_ARCH_MEMMAP_INIT extern void memmap_init(unsigned long, int, unsigned long, unsigned long); #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define __HAVE_ARCH_PTEP_GET_AND_CLEAR #define __HAVE_ARCH_PTEP_CLEAR_FLUSH #define __HAVE_ARCH_PTEP_SET_WRPROTECT #define __HAVE_ARCH_PTE_SAME #define __HAVE_ARCH_PAGE_TEST_DIRTY #define __HAVE_ARCH_PAGE_CLEAR_DIRTY #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG #include #endif /* _S390_PAGE_H */