#ifndef __ASM_SH64_PGTABLE_H #define __ASM_SH64_PGTABLE_H #include /* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * include/asm-sh64/pgtable.h * * Copyright (C) 2000, 2001 Paolo Alberelli * Copyright (C) 2003, 2004 Paul Mundt * Copyright (C) 2003, 2004 Richard Curnow * * This file contains the functions and defines necessary to modify and use * the SuperH page table tree. */ #ifndef __ASSEMBLY__ #include #include #include struct vm_area_struct; extern void paging_init(void); /* We provide our own get_unmapped_area to avoid cache synonym issue */ #define HAVE_ARCH_UNMAPPED_AREA /* * Basically we have the same two-level (which is the logical three level * Linux page table layout folded) page tables as the i386. */ /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned char empty_zero_page[PAGE_SIZE]; #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page)) #endif /* !__ASSEMBLY__ */ /* * NEFF and NPHYS related defines. * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103 * implement 32 bits effective and 32 bits physical. But future implementations may * extend beyond this. */ #define NEFF 32 #define NEFF_SIGN (1LL << (NEFF - 1)) #define NEFF_MASK (-1LL << NEFF) #define NPHYS 32 #define NPHYS_SIGN (1LL << (NPHYS - 1)) #define NPHYS_MASK (-1LL << NPHYS) /* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond that 3-level would be appropriate. */ #if defined(CONFIG_SH64_PGTABLE_2_LEVEL) /* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */ #define PTRS_PER_PTE ((1<> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define __pgd_offset(address) pgd_index(address) #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) /* To find an entry in a kernel PGD. */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* * PGD level access routines. * * Note1: * There's no need to use physical addresses since the tree walk is all * in performed in software, until the PTE translation. * * Note 2: * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad, * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a * bad pgd that must be notified via printk(). * */ #define _PGD_EMPTY 0x0 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL) static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } #define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0) #define pgd_clear(xx) do { } while(0) #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) #define pgd_present(pgd_entry) (1) #define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY) /* TODO: Think later about what a useful definition of 'bad' would be now. */ #define pgd_bad(pgd_entry) (0) #define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY))) #endif #define pgd_page_vaddr(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK)) #define pgd_page(pgd) (virt_to_page(pgd_val(pgd))) /* * PMD defines. Middle level. */ /* PGD to PMD dereferencing */ #if defined(CONFIG_SH64_PGTABLE_2_LEVEL) static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) #define __pmd_offset(address) \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) #define pmd_offset(dir, addr) \ ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr))) #endif /* * PMD level access routines. Same notes as above. */ #define _PMD_EMPTY 0x0 /* Either the PMD is empty or present, it's not paged out */ #define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT) #define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY))) #define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY) #define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) #define pmd_page_vaddr(pmd_entry) \ ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK)) #define pmd_page(pmd) \ (virt_to_page(pmd_val(pmd))) /* PMD to PTE dereferencing */ #define pte_index(address) \ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir, addr) \ ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr))) #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) #define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) /* Round it up ! */ #define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE) #define FIRST_USER_ADDRESS 0 #ifndef __ASSEMBLY__ #define VMALLOC_END 0xff000000 #define VMALLOC_START 0xf0000000 #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define IOBASE_VADDR 0xff000000 #define IOBASE_END 0xffffffff /* * PTEL coherent flags. * See Chapter 17 ST50 CPU Core Volume 1, Architecture. */ /* The bits that are required in the SH-5 TLB are placed in the h/w-defined positions, to avoid expensive bit shuffling on every refill. The remaining bits are used for s/w purposes and masked out on each refill. Note, the PTE slots are used to hold data of type swp_entry_t when a page is swapped out. Only the _PAGE_PRESENT flag is significant when the page is swapped out, and it must be placed so that it doesn't overlap either the type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */ #define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */ #define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */ #define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */ #define _PAGE_PRESENT 0x004 /* software: page referenced */ #define _PAGE_FILE 0x004 /* software: only when !present */ #define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */ #define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */ #define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */ #define _PAGE_READ 0x040 /* PR0-bit : read access allowed */ #define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */ #define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */ #define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */ #define _PAGE_DIRTY 0x400 /* software: page accessed in write */ #define _PAGE_ACCESSED 0x800 /* software: page referenced */ /* Mask which drops software flags */ #define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL /* * HugeTLB support */ #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K) #define _PAGE_SZHUGE (_PAGE_SIZE0) #elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB) #define _PAGE_SZHUGE (_PAGE_SIZE1) #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB) #define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1) #endif /* * Default flags for a Kernel page. * This is fundametally also SHARED because the main use of this define * (other than for PGD/PMD entries) is for the VMALLOC pool which is * contextless. * * _PAGE_EXECUTE is required for modules * */ #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_EXECUTE | \ _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \ _PAGE_SHARED) /* Default flags for a User page */ #define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER) #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \ _PAGE_SHARED) /* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default * protection mode for the stack. */ #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ _PAGE_ACCESSED | _PAGE_USER) #define PAGE_KERNEL __pgprot(_KERNPG_TABLE) /* * In ST50 we have full permissions (Read/Write/Execute/Shared). * Just match'em all. These are for mmap(), therefore all at least * User/Cachable/Present/Accessed. No point in making Fault on Write. */ #define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED) /* sxwr */ #define __P000 __pgprot(__MMAP_COMMON) #define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ) #define __P010 __pgprot(__MMAP_COMMON) #define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ) #define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) #define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) #define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) #define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) #define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED) #define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ) #define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE) #define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE) #define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE) #define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ) #define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE) #define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE) /* Make it a device mapping for maximum safety (e.g. for mapping device registers into user-space via /dev/map). */ #define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE) #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE) /* * Handling allocation failures during page table setup. */ extern void __handle_bad_pmd_kernel(pmd_t * pmd); #define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x) /* * PTE level access routines. * * Note1: * It's the tree walk leaf. This is physical address to be stored. * * Note 2: * Regarding the choice of _PTE_EMPTY: We must choose a bit pattern that cannot be valid, whether or not the page is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is left for us to select. If we force bit[7]==0 when swapped out, we could use the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if we force bit[7]==1 when swapped out, we can use all zeroes to indicate empty. This is convenient, because the page tables get cleared to zero when they are allocated. */ #define _PTE_EMPTY 0x0 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) #define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY))) #define pte_none(x) (pte_val(x) == _PTE_EMPTY) /* * Some definitions to translate between mem_map, PTEs, and page * addresses: */ /* * Given a PTE, return the index of the mem_map[] entry corresponding * to the page frame the PTE. Get the absolute physical address, make * a relative physical address and translate it to an index. */ #define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \ __MEMORY_START) >> PAGE_SHIFT) /* * Given a PTE, return the "struct page *". */ #define pte_page(x) (mem_map + pte_pagenr(x)) /* * Return number of (down rounded) MB corresponding to x pages. */ #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* * The following have defined behavior only work if pte_present() is true. */ static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; } static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; } static inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; } static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; } static inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; } static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } static inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; } static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; } static inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; } static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; } /* * Conversion functions: convert a page and protection to a page entry. * * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) */ #define mk_pte(page,pgprot) \ ({ \ pte_t __pte; \ \ set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \ __MEMORY_START | pgprot_val((pgprot)))); \ __pte; \ }) /* * This takes a (absolute) physical page address that is used * by the remapping functions */ #define mk_pte_phys(physpage, pgprot) \ ({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; }) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } typedef pte_t *pte_addr_t; #define pgtable_cache_init() do { } while (0) extern void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte); /* Encode and decode a swap entry */ #define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c)) #define __swp_offset(x) ((x).val >> 8) #define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) /* Encode and decode a nonlinear file mapping entry */ #define PTE_FILE_MAX_BITS 29 #define pte_to_pgoff(pte) (pte_val(pte)) #define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE }) /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define kern_addr_valid(addr) (1) #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) #define MK_IOSPACE_PFN(space, pfn) (pfn) #define GET_IOSPACE(pfn) 0 #define GET_PFN(pfn) (pfn) #endif /* !__ASSEMBLY__ */ /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) #define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT) #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; #include #endif /* __ASM_SH64_PGTABLE_H */