/* * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) * Copyright 2003 PathScale, Inc. * Derived from include/asm-i386/pgtable.h * Licensed under the GPL */ #ifndef __UM_PGTABLE_H #define __UM_PGTABLE_H #include #define _PAGE_PRESENT 0x001 #define _PAGE_NEWPAGE 0x002 #define _PAGE_NEWPROT 0x004 #define _PAGE_RW 0x020 #define _PAGE_USER 0x040 #define _PAGE_ACCESSED 0x080 #define _PAGE_DIRTY 0x100 /* If _PAGE_PRESENT is clear, we use these: */ #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */ #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; pte_present gives true */ #ifdef CONFIG_3_LEVEL_PGTABLES #include "asm/pgtable-3level.h" #else #include "asm/pgtable-2level.h" #endif extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* zero page used for uninitialized stuff */ extern unsigned long *empty_zero_page; #define pgtable_cache_init() do ; while (0) /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ extern unsigned long end_iomem; #define VMALLOC_OFFSET (__va_space) #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) #ifdef CONFIG_HIGHMEM # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) #else # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) #endif #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) /* * The i386 can't do page protection for execute, and considers that the same * are read. * Also, write permissions imply read permissions. This is the closest we can * get.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) /* * ================================= * Flags checking section. * ================================= */ static inline int pte_none(pte_t pte) { return pte_is_zero(pte); } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_read(pte_t pte) { return((pte_get_bits(pte, _PAGE_USER)) && !(pte_get_bits(pte, _PAGE_PROTNONE))); } static inline int pte_exec(pte_t pte){ return((pte_get_bits(pte, _PAGE_USER)) && !(pte_get_bits(pte, _PAGE_PROTNONE))); } static inline int pte_write(pte_t pte) { return((pte_get_bits(pte, _PAGE_RW)) && !(pte_get_bits(pte, _PAGE_PROTNONE))); } /* * The following only works if pte_present() is not true. */ static inline int pte_file(pte_t pte) { return pte_get_bits(pte, _PAGE_FILE); } static inline int pte_dirty(pte_t pte) { return pte_get_bits(pte, _PAGE_DIRTY); } static inline int pte_young(pte_t pte) { return pte_get_bits(pte, _PAGE_ACCESSED); } static inline int pte_newpage(pte_t pte) { return pte_get_bits(pte, _PAGE_NEWPAGE); } static inline int pte_newprot(pte_t pte) { return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); } static inline int pte_special(pte_t pte) { return 0; } /* * ================================= * Flags setting section. * ================================= */ static inline pte_t pte_mknewprot(pte_t pte) { pte_set_bits(pte, _PAGE_NEWPROT); return(pte); } static inline pte_t pte_mkclean(pte_t pte) { pte_clear_bits(pte, _PAGE_DIRTY); return(pte); } static inline pte_t pte_mkold(pte_t pte) { pte_clear_bits(pte, _PAGE_ACCESSED); return(pte); } static inline pte_t pte_wrprotect(pte_t pte) { pte_clear_bits(pte, _PAGE_RW); return(pte_mknewprot(pte)); } static inline pte_t pte_mkread(pte_t pte) { pte_set_bits(pte, _PAGE_USER); return(pte_mknewprot(pte)); } static inline pte_t pte_mkdirty(pte_t pte) { pte_set_bits(pte, _PAGE_DIRTY); return(pte); } static inline pte_t pte_mkyoung(pte_t pte) { pte_set_bits(pte, _PAGE_ACCESSED); return(pte); } static inline pte_t pte_mkwrite(pte_t pte) { pte_set_bits(pte, _PAGE_RW); return(pte_mknewprot(pte)); } static inline pte_t pte_mkuptodate(pte_t pte) { pte_clear_bits(pte, _PAGE_NEWPAGE); if(pte_present(pte)) pte_clear_bits(pte, _PAGE_NEWPROT); return(pte); } static inline pte_t pte_mknewpage(pte_t pte) { pte_set_bits(pte, _PAGE_NEWPAGE); return(pte); } static inline pte_t pte_mkspecial(pte_t pte) { return(pte); } static inline void set_pte(pte_t *pteptr, pte_t pteval) { pte_copy(*pteptr, pteval); /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so * fix_range knows to unmap it. _PAGE_NEWPROT is specific to * mapped pages. */ *pteptr = pte_mknewpage(*pteptr); if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); } #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) #define __virt_to_page(virt) phys_to_page(__pa(virt)) #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page)) #define virt_to_page(addr) __virt_to_page((const unsigned long) addr) #define mk_pte(page, pgprot) \ ({ pte_t pte; \ \ pte_set_val(pte, page_to_phys(page), (pgprot)); \ if (pte_present(pte)) \ pte_mknewprot(pte_mknewpage(pte)); \ pte;}) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); return pte; } /* * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] * * this macro returns the index of the entry in the pgd page which would * control the given virtual address */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) /* * pgd_offset() returns a (pgd_t *) * pgd_index() is used get the offset into the pgd page's array of pgd_t's; */ #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] * * this macro returns the index of the entry in the pmd page which would * control the given virtual address */ #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) #define pmd_page_vaddr(pmd) \ ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) /* * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] * * this macro returns the index of the entry in the pte page which would * control the given virtual address */ #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) #define pte_offset_map(dir, address) \ ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) struct mm_struct; extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); #define update_mmu_cache(vma,address,pte) do ; while (0) /* Encode and de-code a swap entry */ #define __swp_type(x) (((x).val >> 4) & 0x3f) #define __swp_offset(x) ((x).val >> 11) #define __swp_entry(type, offset) \ ((swp_entry_t) { ((type) << 4) | ((offset) << 11) }) #define __pte_to_swp_entry(pte) \ ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #define kern_addr_valid(addr) (1) #include #endif