/* SPDX-License-Identifier: GPL-2.0-only */ /******************************************************************************* * * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver * Copyright(c) 2013 - 2014 Intel Corporation. * * Contact Information: * e1000-devel Mailing List * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * ******************************************************************************/ #ifndef _VIRTCHNL_H_ #define _VIRTCHNL_H_ /* Description: * This header file describes the VF-PF communication protocol used * by the drivers for all devices starting from our 40G product line * * Admin queue buffer usage: * desc->opcode is always aqc_opc_send_msg_to_pf * flags, retval, datalen, and data addr are all used normally. * The Firmware copies the cookie fields when sending messages between the * PF and VF, but uses all other fields internally. Due to this limitation, * we must send all messages as "indirect", i.e. using an external buffer. * * All the VSI indexes are relative to the VF. Each VF can have maximum of * three VSIs. All the queue indexes are relative to the VSI. Each VF can * have a maximum of sixteen queues for all of its VSIs. * * The PF is required to return a status code in v_retval for all messages * except RESET_VF, which does not require any response. The return value * is of status_code type, defined in the shared type.h. * * In general, VF driver initialization should roughly follow the order of * these opcodes. The VF driver must first validate the API version of the * PF driver, then request a reset, then get resources, then configure * queues and interrupts. After these operations are complete, the VF * driver may start its queues, optionally add MAC and VLAN filters, and * process traffic. */ /* START GENERIC DEFINES * Need to ensure the following enums and defines hold the same meaning and * value in current and future projects */ /* Error Codes */ enum virtchnl_status_code { VIRTCHNL_STATUS_SUCCESS = 0, VIRTCHNL_STATUS_ERR_PARAM = -5, VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, }; /* Backward compatibility */ #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 enum virtchnl_link_speed { VIRTCHNL_LINK_SPEED_UNKNOWN = 0, VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), }; /* for hsplit_0 field of Rx HMC context */ /* deprecated with AVF 1.0 */ enum virtchnl_rx_hsplit { VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, }; /* END GENERIC DEFINES */ /* Opcodes for VF-PF communication. These are placed in the v_opcode field * of the virtchnl_msg structure. */ enum virtchnl_ops { /* The PF sends status change events to VFs using * the VIRTCHNL_OP_EVENT opcode. * VFs send requests to the PF using the other ops. * Use of "advanced opcode" features must be negotiated as part of capabilities * exchange and are not considered part of base mode feature set. */ VIRTCHNL_OP_UNKNOWN = 0, VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ VIRTCHNL_OP_RESET_VF = 2, VIRTCHNL_OP_GET_VF_RESOURCES = 3, VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, VIRTCHNL_OP_ENABLE_QUEUES = 8, VIRTCHNL_OP_DISABLE_QUEUES = 9, VIRTCHNL_OP_ADD_ETH_ADDR = 10, VIRTCHNL_OP_DEL_ETH_ADDR = 11, VIRTCHNL_OP_ADD_VLAN = 12, VIRTCHNL_OP_DEL_VLAN = 13, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, VIRTCHNL_OP_GET_STATS = 15, VIRTCHNL_OP_RSVD = 16, VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ VIRTCHNL_OP_IWARP = 20, /* advanced opcode */ VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */ VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */ VIRTCHNL_OP_CONFIG_RSS_KEY = 23, VIRTCHNL_OP_CONFIG_RSS_LUT = 24, VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, VIRTCHNL_OP_SET_RSS_HENA = 26, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, VIRTCHNL_OP_REQUEST_QUEUES = 29, VIRTCHNL_OP_ENABLE_CHANNELS = 30, VIRTCHNL_OP_DISABLE_CHANNELS = 31, VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, /* opcode 34 - 44 are reserved */ VIRTCHNL_OP_ADD_RSS_CFG = 45, VIRTCHNL_OP_DEL_RSS_CFG = 46, VIRTCHNL_OP_ADD_FDIR_FILTER = 47, VIRTCHNL_OP_DEL_FDIR_FILTER = 48, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, VIRTCHNL_OP_ADD_VLAN_V2 = 52, VIRTCHNL_OP_DEL_VLAN_V2 = 53, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, VIRTCHNL_OP_MAX, }; /* These macros are used to generate compilation errors if a structure/union * is not exactly the correct length. It gives a divide by zero error if the * structure/union is not of the correct size, otherwise it creates an enum * that is never used. */ #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } /* Virtual channel message descriptor. This overlays the admin queue * descriptor. All other data is passed in external buffers. */ struct virtchnl_msg { u8 pad[8]; /* AQ flags/opcode/len/retval fields */ enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */ enum virtchnl_status_code v_retval; /* ditto for desc->retval */ u32 vfid; /* used by PF when sending to VF */ }; VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg); /* Message descriptions and data structures. */ /* VIRTCHNL_OP_VERSION * VF posts its version number to the PF. PF responds with its version number * in the same format, along with a return code. * Reply from PF has its major/minor versions also in param0 and param1. * If there is a major version mismatch, then the VF cannot operate. * If there is a minor version mismatch, then the VF can operate but should * add a warning to the system log. * * This enum element MUST always be specified as == 1, regardless of other * changes in the API. The PF must always respond to this message without * error regardless of version mismatch. */ #define VIRTCHNL_VERSION_MAJOR 1 #define VIRTCHNL_VERSION_MINOR 1 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 struct virtchnl_version_info { u32 major; u32 minor; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0)) #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) /* VIRTCHNL_OP_RESET_VF * VF sends this request to PF with no parameters * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register * until reset completion is indicated. The admin queue must be reinitialized * after this operation. * * When reset is complete, PF must ensure that all queues in all VSIs associated * with the VF are stopped, all queue configurations in the HMC are set to 0, * and all MAC and VLAN filters (except the default MAC address) on all VSIs * are cleared. */ /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV * vsi_type should always be 6 for backward compatibility. Add other fields * as needed. */ enum virtchnl_vsi_type { VIRTCHNL_VSI_TYPE_INVALID = 0, VIRTCHNL_VSI_SRIOV = 6, }; /* VIRTCHNL_OP_GET_VF_RESOURCES * Version 1.0 VF sends this request to PF with no parameters * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities * PF responds with an indirect message containing * virtchnl_vf_resource and one or more * virtchnl_vsi_resource structures. */ struct virtchnl_vsi_resource { u16 vsi_id; u16 num_queue_pairs; enum virtchnl_vsi_type vsi_type; u16 qset_handle; u8 default_mac_addr[ETH_ALEN]; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); /* VF capability flags * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including * TX/RX Checksum offloading and TSO for non-tunnelled packets. */ #define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) #define VIRTCHNL_VF_OFFLOAD_IWARP BIT(1) #define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) #define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) /* used to negotiate communicating link speeds in Mbps */ #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) #define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) #define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) #define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) #define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) #define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) #define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) #define VIRTCHNL_VF_OFFLOAD_USO BIT(25) #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) #define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ VIRTCHNL_VF_OFFLOAD_VLAN | \ VIRTCHNL_VF_OFFLOAD_RSS_PF) struct virtchnl_vf_resource { u16 num_vsis; u16 num_queue_pairs; u16 max_vectors; u16 max_mtu; u32 vf_cap_flags; u32 rss_key_size; u32 rss_lut_size; struct virtchnl_vsi_resource vsi_res[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource); /* VIRTCHNL_OP_CONFIG_TX_QUEUE * VF sends this message to set up parameters for one TX queue. * External data buffer contains one instance of virtchnl_txq_info. * PF configures requested queue and returns a status code. */ /* Tx queue config info */ struct virtchnl_txq_info { u16 vsi_id; u16 queue_id; u16 ring_len; /* number of descriptors, multiple of 8 */ u16 headwb_enabled; /* deprecated with AVF 1.0 */ u64 dma_ring_addr; u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ }; VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); /* VIRTCHNL_OP_CONFIG_RX_QUEUE * VF sends this message to set up parameters for one RX queue. * External data buffer contains one instance of virtchnl_rxq_info. * PF configures requested queue and returns a status code. */ /* Rx queue config info */ struct virtchnl_rxq_info { u16 vsi_id; u16 queue_id; u32 ring_len; /* number of descriptors, multiple of 32 */ u16 hdr_size; u16 splithdr_enabled; /* deprecated with AVF 1.0 */ u32 databuffer_size; u32 max_pkt_size; u32 pad1; u64 dma_ring_addr; enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */ u32 pad2; }; VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); /* VIRTCHNL_OP_CONFIG_VSI_QUEUES * VF sends this message to set parameters for all active TX and RX queues * associated with the specified VSI. * PF configures queues and returns status. * If the number of queues specified is greater than the number of queues * associated with the VSI, an error is returned and no queues are configured. */ struct virtchnl_queue_pair_info { /* NOTE: vsi_id and queue_id should be identical for both queues. */ struct virtchnl_txq_info txq; struct virtchnl_rxq_info rxq; }; VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); struct virtchnl_vsi_queue_config_info { u16 vsi_id; u16 num_queue_pairs; u32 pad; struct virtchnl_queue_pair_info qpair[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info); /* VIRTCHNL_OP_REQUEST_QUEUES * VF sends this message to request the PF to allocate additional queues to * this VF. Each VF gets a guaranteed number of queues on init but asking for * additional queues must be negotiated. This is a best effort request as it * is possible the PF does not have enough queues left to support the request. * If the PF cannot support the number requested it will respond with the * maximum number it is able to support. If the request is successful, PF will * then reset the VF to institute required changes. */ /* VF resource request */ struct virtchnl_vf_res_request { u16 num_queue_pairs; }; /* VIRTCHNL_OP_CONFIG_IRQ_MAP * VF uses this message to map vectors to queues. * The rxq_map and txq_map fields are bitmaps used to indicate which queues * are to be associated with the specified vector. * The "other" causes are always mapped to vector 0. * PF configures interrupt mapping and returns status. */ struct virtchnl_vector_map { u16 vsi_id; u16 vector_id; u16 rxq_map; u16 txq_map; u16 rxitr_idx; u16 txitr_idx; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); struct virtchnl_irq_map_info { u16 num_vectors; struct virtchnl_vector_map vecmap[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info); /* VIRTCHNL_OP_ENABLE_QUEUES * VIRTCHNL_OP_DISABLE_QUEUES * VF sends these message to enable or disable TX/RX queue pairs. * The queues fields are bitmaps indicating which queues to act upon. * (Currently, we only support 16 queues per VF, but we make the field * u32 to allow for expansion.) * PF performs requested action and returns status. */ struct virtchnl_queue_select { u16 vsi_id; u16 pad; u32 rx_queues; u32 tx_queues; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); /* VIRTCHNL_OP_ADD_ETH_ADDR * VF sends this message in order to add one or more unicast or multicast * address filters for the specified VSI. * PF adds the filters and returns status. */ /* VIRTCHNL_OP_DEL_ETH_ADDR * VF sends this message in order to remove one or more unicast or multicast * filters for the specified VSI. * PF removes the filters and returns status. */ /* VIRTCHNL_ETHER_ADDR_LEGACY * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad * bytes. Moving forward all VF drivers should not set type to * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy * behavior. The control plane function (i.e. PF) can use a best effort method * of tracking the primary/device unicast in this case, but there is no * guarantee and functionality depends on the implementation of the PF. */ /* VIRTCHNL_ETHER_ADDR_PRIMARY * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane * function (i.e. PF) to accurately track and use this MAC address for * displaying on the host and for VM/function reset. */ /* VIRTCHNL_ETHER_ADDR_EXTRA * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra * unicast and/or multicast filters that are being added/deleted via * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. */ struct virtchnl_ether_addr { u8 addr[ETH_ALEN]; u8 type; #define VIRTCHNL_ETHER_ADDR_LEGACY 0 #define VIRTCHNL_ETHER_ADDR_PRIMARY 1 #define VIRTCHNL_ETHER_ADDR_EXTRA 2 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ u8 pad; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); struct virtchnl_ether_addr_list { u16 vsi_id; u16 num_elements; struct virtchnl_ether_addr list[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list); /* VIRTCHNL_OP_ADD_VLAN * VF sends this message to add one or more VLAN tag filters for receives. * PF adds the filters and returns status. * If a port VLAN is configured by the PF, this operation will return an * error to the VF. */ /* VIRTCHNL_OP_DEL_VLAN * VF sends this message to remove one or more VLAN tag filters for receives. * PF removes the filters and returns status. * If a port VLAN is configured by the PF, this operation will return an * error to the VF. */ struct virtchnl_vlan_filter_list { u16 vsi_id; u16 num_elements; u16 vlan_id[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list); /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related * structures and opcodes. * * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. * * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. * * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported * by the PF concurrently. For example, if the PF can support * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it * would OR the following bits: * * VIRTHCNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_AND; * * The VF would interpret this as VLAN filtering can be supported on both 0x8100 * and 0x88A8 VLAN ethertypes. * * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported * by the PF concurrently. For example if the PF can support * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping * offload it would OR the following bits: * * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_XOR; * * The VF would interpret this as VLAN stripping can be supported on either * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override * the previously set value. * * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. * * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. * * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. * * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for * VLAN filtering if the underlying PF supports it. * * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a * certain VLAN capability can be toggled. For example if the underlying PF/CP * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should * set this bit along with the supported ethertypes. */ enum virtchnl_vlan_support { VIRTCHNL_VLAN_UNSUPPORTED = 0, VIRTCHNL_VLAN_ETHERTYPE_8100 = BIT(0), VIRTCHNL_VLAN_ETHERTYPE_88A8 = BIT(1), VIRTCHNL_VLAN_ETHERTYPE_9100 = BIT(2), VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = BIT(8), VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = BIT(9), VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = BIT(10), VIRTCHNL_VLAN_PRIO = BIT(24), VIRTCHNL_VLAN_FILTER_MASK = BIT(28), VIRTCHNL_VLAN_ETHERTYPE_AND = BIT(29), VIRTCHNL_VLAN_ETHERTYPE_XOR = BIT(30), VIRTCHNL_VLAN_TOGGLE = BIT(31), }; /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS * for filtering, insertion, and stripping capabilities. * * If only outer capabilities are supported (for filtering, insertion, and/or * stripping) then this refers to the outer most or single VLAN from the VF's * perspective. * * If only inner capabilities are supported (for filtering, insertion, and/or * stripping) then this refers to the outer most or single VLAN from the VF's * perspective. Functionally this is the same as if only outer capabilities are * supported. The VF driver is just forced to use the inner fields when * adding/deleting filters and enabling/disabling offloads (if supported). * * If both outer and inner capabilities are supported (for filtering, insertion, * and/or stripping) then outer refers to the outer most or single VLAN and * inner refers to the second VLAN, if it exists, in the packet. * * There is no support for tunneled VLAN offloads, so outer or inner are never * referring to a tunneled packet from the VF's perspective. */ struct virtchnl_vlan_supported_caps { u32 outer; u32 inner; }; /* The PF populates these fields based on the supported VLAN filtering. If a * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using * the unsupported fields. * * Also, a VF is only allowed to toggle its VLAN filtering setting if the * VIRTCHNL_VLAN_TOGGLE bit is set. * * The ethertype(s) specified in the ethertype_init field are the ethertypes * enabled for VLAN filtering. VLAN filtering in this case refers to the outer * most VLAN from the VF's perspective. If both inner and outer filtering are * allowed then ethertype_init only refers to the outer most VLAN as only * VLAN ethertype supported for inner VLAN filtering is * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled * when both inner and outer filtering are allowed. * * The max_filters field tells the VF how many VLAN filters it's allowed to have * at any one time. If it exceeds this amount and tries to add another filter, * then the request will be rejected by the PF. To prevent failures, the VF * should keep track of how many VLAN filters it has added and not attempt to * add more than max_filters. */ struct virtchnl_vlan_filtering_caps { struct virtchnl_vlan_supported_caps filtering_support; u32 ethertype_init; u16 max_filters; u8 pad[2]; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); /* This enum is used for the virtchnl_vlan_offload_caps structure to specify * if the PF supports a different ethertype for stripping and insertion. * * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified * for stripping affect the ethertype(s) specified for insertion and visa versa * as well. If the VF tries to configure VLAN stripping via * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then * that will be the ethertype for both stripping and insertion. * * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for * stripping do not affect the ethertype(s) specified for insertion and visa * versa. */ enum virtchnl_vlan_ethertype_match { VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, }; /* The PF populates these fields based on the supported VLAN offloads. If a * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. * * Also, a VF is only allowed to toggle its VLAN offload setting if the * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. * * The VF driver needs to be aware of how the tags are stripped by hardware and * inserted by the VF driver based on the level of offload support. The PF will * populate these fields based on where the VLAN tags are expected to be * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to * interpret these fields. See the definition of the * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support * enumeration. */ struct virtchnl_vlan_offload_caps { struct virtchnl_vlan_supported_caps stripping_support; struct virtchnl_vlan_supported_caps insertion_support; u32 ethertype_init; u8 ethertype_match; u8 pad[3]; }; VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS * VF sends this message to determine its VLAN capabilities. * * PF will mark which capabilities it supports based on hardware support and * current configuration. For example, if a port VLAN is configured the PF will * not allow outer VLAN filtering, stripping, or insertion to be configured so * it will block these features from the VF. * * The VF will need to cross reference its capabilities with the PFs * capabilities in the response message from the PF to determine the VLAN * support. */ struct virtchnl_vlan_caps { struct virtchnl_vlan_filtering_caps filtering; struct virtchnl_vlan_offload_caps offloads; }; VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); struct virtchnl_vlan { u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in * filtering caps */ u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in * filtering caps. Note that tpid here does not refer to * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the * actual 2-byte VLAN TPID */ u8 pad[2]; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); struct virtchnl_vlan_filter { struct virtchnl_vlan inner; struct virtchnl_vlan outer; u8 pad[16]; }; VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); /* VIRTCHNL_OP_ADD_VLAN_V2 * VIRTCHNL_OP_DEL_VLAN_V2 * * VF sends these messages to add/del one or more VLAN tag filters for Rx * traffic. * * The PF attempts to add the filters and returns status. * * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. */ struct virtchnl_vlan_filter_list_v2 { u16 vport_id; u16 num_elements; u8 pad[4]; struct virtchnl_vlan_filter filters[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2); /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 * * VF sends this message to enable or disable VLAN stripping or insertion. It * also needs to specify an ethertype. The VF knows which VLAN ethertypes are * allowed and whether or not it's allowed to enable/disable the specific * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to * parse the virtchnl_vlan_caps.offloads fields to determine which offload * messages are allowed. * * For example, if the PF populates the virtchnl_vlan_caps.offloads in the * following manner the VF will be allowed to enable and/or disable 0x8100 inner * VLAN insertion and/or stripping via the opcodes listed above. Inner in this * case means the outer most or single VLAN from the VF's perspective. This is * because no outer offloads are supported. See the comments above the * virtchnl_vlan_supported_caps structure for more details. * * virtchnl_vlan_caps.offloads.stripping_support.inner = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100; * * virtchnl_vlan_caps.offloads.insertion_support.inner = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100; * * In order to enable inner (again note that in this case inner is the outer * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. * * virtchnl_vlan_setting.inner_ethertype_setting = * VIRTCHNL_VLAN_ETHERTYPE_8100; * * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on * initialization. * * The reason that VLAN TPID(s) are not being used for the * outer_ethertype_setting and inner_ethertype_setting fields is because it's * possible a device could support VLAN insertion and/or stripping offload on * multiple ethertypes concurrently, so this method allows a VF to request * multiple ethertypes in one message using the virtchnl_vlan_support * enumeration. * * For example, if the PF populates the virtchnl_vlan_caps.offloads in the * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer * VLAN insertion and stripping simultaneously. The * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be * populated based on what the PF can support. * * virtchnl_vlan_caps.offloads.stripping_support.outer = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_AND; * * virtchnl_vlan_caps.offloads.insertion_support.outer = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_AND; * * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF * would populate the virthcnl_vlan_offload_structure in the following manner * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. * * virtchnl_vlan_setting.outer_ethertype_setting = * VIRTHCNL_VLAN_ETHERTYPE_8100 | * VIRTHCNL_VLAN_ETHERTYPE_88A8; * * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on * initialization. * * There is also the case where a PF and the underlying hardware can support * VLAN offloads on multiple ethertypes, but not concurrently. For example, if * the PF populates the virtchnl_vlan_caps.offloads in the following manner the * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN * offloads. The ethertypes must match for stripping and insertion. * * virtchnl_vlan_caps.offloads.stripping_support.outer = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_XOR; * * virtchnl_vlan_caps.offloads.insertion_support.outer = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_XOR; * * virtchnl_vlan_caps.offloads.ethertype_match = * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; * * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would * populate the virtchnl_vlan_setting structure in the following manner and send * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the * ethertype for VLAN insertion if it's enabled. So, for completeness, a * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. * * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; * * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on * initialization. */ struct virtchnl_vlan_setting { u32 outer_ethertype_setting; u32 inner_ethertype_setting; u16 vport_id; u8 pad[6]; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE * VF sends VSI id and flags. * PF returns status code in retval. * Note: we assume that broadcast accept mode is always enabled. */ struct virtchnl_promisc_info { u16 vsi_id; u16 flags; }; VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); #define FLAG_VF_UNICAST_PROMISC 0x00000001 #define FLAG_VF_MULTICAST_PROMISC 0x00000002 /* VIRTCHNL_OP_GET_STATS * VF sends this message to request stats for the selected VSI. VF uses * the virtchnl_queue_select struct to specify the VSI. The queue_id * field is ignored by the PF. * * PF replies with struct eth_stats in an external buffer. */ /* VIRTCHNL_OP_CONFIG_RSS_KEY * VIRTCHNL_OP_CONFIG_RSS_LUT * VF sends these messages to configure RSS. Only supported if both PF * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during * configuration negotiation. If this is the case, then the RSS fields in * the VF resource struct are valid. * Both the key and LUT are initialized to 0 by the PF, meaning that * RSS is effectively disabled until set up by the VF. */ struct virtchnl_rss_key { u16 vsi_id; u16 key_len; u8 key[1]; /* RSS hash key, packed bytes */ }; VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key); struct virtchnl_rss_lut { u16 vsi_id; u16 lut_entries; u8 lut[1]; /* RSS lookup table */ }; VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut); /* VIRTCHNL_OP_GET_RSS_HENA_CAPS * VIRTCHNL_OP_SET_RSS_HENA * VF sends these messages to get and set the hash filter enable bits for RSS. * By default, the PF sets these to all possible traffic types that the * hardware supports. The VF can query this value if it wants to change the * traffic types that are hashed by the hardware. */ struct virtchnl_rss_hena { u64 hena; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); /* VIRTCHNL_OP_ENABLE_CHANNELS * VIRTCHNL_OP_DISABLE_CHANNELS * VF sends these messages to enable or disable channels based on * the user specified queue count and queue offset for each traffic class. * This struct encompasses all the information that the PF needs from * VF to create a channel. */ struct virtchnl_channel_info { u16 count; /* number of queues in a channel */ u16 offset; /* queues in a channel start from 'offset' */ u32 pad; u64 max_tx_rate; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); struct virtchnl_tc_info { u32 num_tc; u32 pad; struct virtchnl_channel_info list[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info); /* VIRTCHNL_ADD_CLOUD_FILTER * VIRTCHNL_DEL_CLOUD_FILTER * VF sends these messages to add or delete a cloud filter based on the * user specified match and action filters. These structures encompass * all the information that the PF needs from the VF to add/delete a * cloud filter. */ struct virtchnl_l4_spec { u8 src_mac[ETH_ALEN]; u8 dst_mac[ETH_ALEN]; __be16 vlan_id; __be16 pad; /* reserved for future use */ __be32 src_ip[4]; __be32 dst_ip[4]; __be16 src_port; __be16 dst_port; }; VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); union virtchnl_flow_spec { struct virtchnl_l4_spec tcp_spec; u8 buffer[128]; /* reserved for future use */ }; VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); enum virtchnl_action { /* action types */ VIRTCHNL_ACTION_DROP = 0, VIRTCHNL_ACTION_TC_REDIRECT, VIRTCHNL_ACTION_PASSTHRU, VIRTCHNL_ACTION_QUEUE, VIRTCHNL_ACTION_Q_REGION, VIRTCHNL_ACTION_MARK, VIRTCHNL_ACTION_COUNT, }; enum virtchnl_flow_type { /* flow types */ VIRTCHNL_TCP_V4_FLOW = 0, VIRTCHNL_TCP_V6_FLOW, }; struct virtchnl_filter { union virtchnl_flow_spec data; union virtchnl_flow_spec mask; enum virtchnl_flow_type flow_type; enum virtchnl_action action; u32 action_meta; u8 field_flags; u8 pad[3]; }; VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); /* VIRTCHNL_OP_EVENT * PF sends this message to inform the VF driver of events that may affect it. * No direct response is expected from the VF, though it may generate other * messages in response to this one. */ enum virtchnl_event_codes { VIRTCHNL_EVENT_UNKNOWN = 0, VIRTCHNL_EVENT_LINK_CHANGE, VIRTCHNL_EVENT_RESET_IMPENDING, VIRTCHNL_EVENT_PF_DRIVER_CLOSE, }; #define PF_EVENT_SEVERITY_INFO 0 #define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 struct virtchnl_pf_event { enum virtchnl_event_codes event; union { /* If the PF driver does not support the new speed reporting * capabilities then use link_event else use link_event_adv to * get the speed and link information. The ability to understand * new speeds is indicated by setting the capability flag * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter * in virtchnl_vf_resource struct and can be used to determine * which link event struct to use below. */ struct { enum virtchnl_link_speed link_speed; bool link_status; } link_event; struct { /* link_speed provided in Mbps */ u32 link_speed; u8 link_status; u8 pad[3]; } link_event_adv; } event_data; int severity; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); /* VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP * VF uses this message to request PF to map IWARP vectors to IWARP queues. * The request for this originates from the VF IWARP driver through * a client interface between VF LAN and VF IWARP driver. * A vector could have an AEQ and CEQ attached to it although * there is a single AEQ per VF IWARP instance in which case * most vectors will have an INVALID_IDX for aeq and valid idx for ceq. * There will never be a case where there will be multiple CEQs attached * to a single vector. * PF configures interrupt mapping and returns status. */ struct virtchnl_iwarp_qv_info { u32 v_idx; /* msix_vector */ u16 ceq_idx; u16 aeq_idx; u8 itr_idx; u8 pad[3]; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_iwarp_qv_info); struct virtchnl_iwarp_qvlist_info { u32 num_vectors; struct virtchnl_iwarp_qv_info qv_info[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_iwarp_qvlist_info); /* VF reset states - these are written into the RSTAT register: * VFGEN_RSTAT on the VF * When the PF initiates a reset, it writes 0 * When the reset is complete, it writes 1 * When the PF detects that the VF has recovered, it writes 2 * VF checks this register periodically to determine if a reset has occurred, * then polls it to know when the reset is complete. * If either the PF or VF reads the register while the hardware * is in a reset state, it will return DEADBEEF, which, when masked * will result in 3. */ enum virtchnl_vfr_states { VIRTCHNL_VFR_INPROGRESS = 0, VIRTCHNL_VFR_COMPLETED, VIRTCHNL_VFR_VFACTIVE, }; /* Type of RSS algorithm */ enum virtchnl_rss_algorithm { VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, }; #define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 #define PROTO_HDR_SHIFT 5 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT) #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) /* VF use these macros to configure each protocol header. * Specify which protocol headers and protocol header fields base on * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. * @param hdr: a struct of virtchnl_proto_hdr * @param hdr_type: ETH/IPV4/TCP, etc * @param field: SRC/DST/TEID/SPI, etc */ #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ (((hdr)->type) >> PROTO_HDR_SHIFT) #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ ((hdr)->type == ((val) >> PROTO_HDR_SHIFT)) #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ (VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \ VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val))) /* Protocol header type within a packet segment. A segment consists of one or * more protocol headers that make up a logical group of protocol headers. Each * logical group of protocol headers encapsulates or is encapsulated using/by * tunneling or encapsulation protocols for network virtualization. */ enum virtchnl_proto_hdr_type { VIRTCHNL_PROTO_HDR_NONE, VIRTCHNL_PROTO_HDR_ETH, VIRTCHNL_PROTO_HDR_S_VLAN, VIRTCHNL_PROTO_HDR_C_VLAN, VIRTCHNL_PROTO_HDR_IPV4, VIRTCHNL_PROTO_HDR_IPV6, VIRTCHNL_PROTO_HDR_TCP, VIRTCHNL_PROTO_HDR_UDP, VIRTCHNL_PROTO_HDR_SCTP, VIRTCHNL_PROTO_HDR_GTPU_IP, VIRTCHNL_PROTO_HDR_GTPU_EH, VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, VIRTCHNL_PROTO_HDR_PPPOE, VIRTCHNL_PROTO_HDR_L2TPV3, VIRTCHNL_PROTO_HDR_ESP, VIRTCHNL_PROTO_HDR_AH, VIRTCHNL_PROTO_HDR_PFCP, }; /* Protocol header field within a protocol header. */ enum virtchnl_proto_hdr_field { /* ETHER */ VIRTCHNL_PROTO_HDR_ETH_SRC = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), VIRTCHNL_PROTO_HDR_ETH_DST, VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, /* S-VLAN */ VIRTCHNL_PROTO_HDR_S_VLAN_ID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), /* C-VLAN */ VIRTCHNL_PROTO_HDR_C_VLAN_ID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), /* IPV4 */ VIRTCHNL_PROTO_HDR_IPV4_SRC = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), VIRTCHNL_PROTO_HDR_IPV4_DST, VIRTCHNL_PROTO_HDR_IPV4_DSCP, VIRTCHNL_PROTO_HDR_IPV4_TTL, VIRTCHNL_PROTO_HDR_IPV4_PROT, /* IPV6 */ VIRTCHNL_PROTO_HDR_IPV6_SRC = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), VIRTCHNL_PROTO_HDR_IPV6_DST, VIRTCHNL_PROTO_HDR_IPV6_TC, VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, VIRTCHNL_PROTO_HDR_IPV6_PROT, /* TCP */ VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), VIRTCHNL_PROTO_HDR_TCP_DST_PORT, /* UDP */ VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), VIRTCHNL_PROTO_HDR_UDP_DST_PORT, /* SCTP */ VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, /* GTPU_IP */ VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), /* GTPU_EH */ VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, /* PPPOE */ VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), /* L2TPV3 */ VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), /* ESP */ VIRTCHNL_PROTO_HDR_ESP_SPI = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), /* AH */ VIRTCHNL_PROTO_HDR_AH_SPI = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), /* PFCP */ VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), VIRTCHNL_PROTO_HDR_PFCP_SEID, }; struct virtchnl_proto_hdr { enum virtchnl_proto_hdr_type type; u32 field_selector; /* a bit mask to select field for header type */ u8 buffer[64]; /** * binary buffer in network order for specific header type. * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 * header is expected to be copied into the buffer. */ }; VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); struct virtchnl_proto_hdrs { u8 tunnel_level; u8 pad[3]; /** * specify where protocol header start from. * 0 - from the outer layer * 1 - from the first inner layer * 2 - from the second inner layer * .... **/ int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */ struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; }; VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); struct virtchnl_rss_cfg { struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ enum virtchnl_rss_algorithm rss_algorithm; /* RSS algorithm type */ u8 reserved[128]; /* reserve for future */ }; VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); /* action configuration for FDIR */ struct virtchnl_filter_action { enum virtchnl_action type; union { /* used for queue and qgroup action */ struct { u16 index; u8 region; } queue; /* used for count action */ struct { /* share counter ID with other flow rules */ u8 shared; u32 id; /* counter ID */ } count; /* used for mark action */ u32 mark_id; u8 reserve[32]; } act_conf; }; VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); #define VIRTCHNL_MAX_NUM_ACTIONS 8 struct virtchnl_filter_action_set { /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ int count; struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; }; VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); /* pattern and action for FDIR rule */ struct virtchnl_fdir_rule { struct virtchnl_proto_hdrs proto_hdrs; struct virtchnl_filter_action_set action_set; }; VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); /* Status returned to VF after VF requests FDIR commands * VIRTCHNL_FDIR_SUCCESS * VF FDIR related request is successfully done by PF * The request can be OP_ADD/DEL. * * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. * * VIRTCHNL_FDIR_FAILURE_RULE_EXIST * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. * * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. * * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. * * VIRTCHNL_FDIR_FAILURE_RULE_INVALID * OP_ADD_FDIR_FILTER request is failed due to parameters validation * or HW doesn't support. * * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out * for programming. */ enum virtchnl_fdir_prgm_status { VIRTCHNL_FDIR_SUCCESS = 0, VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, VIRTCHNL_FDIR_FAILURE_RULE_EXIST, VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, VIRTCHNL_FDIR_FAILURE_RULE_INVALID, VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, }; /* VIRTCHNL_OP_ADD_FDIR_FILTER * VF sends this request to PF by filling out vsi_id, * validate_only and rule_cfg. PF will return flow_id * if the request is successfully done and return add_status to VF. */ struct virtchnl_fdir_add { u16 vsi_id; /* INPUT */ /* * 1 for validating a fdir rule, 0 for creating a fdir rule. * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. */ u16 validate_only; /* INPUT */ u32 flow_id; /* OUTPUT */ struct virtchnl_fdir_rule rule_cfg; /* INPUT */ enum virtchnl_fdir_prgm_status status; /* OUTPUT */ }; VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); /* VIRTCHNL_OP_DEL_FDIR_FILTER * VF sends this request to PF by filling out vsi_id * and flow_id. PF will return del_status to VF. */ struct virtchnl_fdir_del { u16 vsi_id; /* INPUT */ u16 pad; u32 flow_id; /* INPUT */ enum virtchnl_fdir_prgm_status status; /* OUTPUT */ }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); /** * virtchnl_vc_validate_vf_msg * @ver: Virtchnl version info * @v_opcode: Opcode for the message * @msg: pointer to the msg buffer * @msglen: msg length * * validate msg format against struct for each opcode */ static inline int virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, u8 *msg, u16 msglen) { bool err_msg_format = false; int valid_len = 0; /* Validate message length. */ switch (v_opcode) { case VIRTCHNL_OP_VERSION: valid_len = sizeof(struct virtchnl_version_info); break; case VIRTCHNL_OP_RESET_VF: break; case VIRTCHNL_OP_GET_VF_RESOURCES: if (VF_IS_V11(ver)) valid_len = sizeof(u32); break; case VIRTCHNL_OP_CONFIG_TX_QUEUE: valid_len = sizeof(struct virtchnl_txq_info); break; case VIRTCHNL_OP_CONFIG_RX_QUEUE: valid_len = sizeof(struct virtchnl_rxq_info); break; case VIRTCHNL_OP_CONFIG_VSI_QUEUES: valid_len = sizeof(struct virtchnl_vsi_queue_config_info); if (msglen >= valid_len) { struct virtchnl_vsi_queue_config_info *vqc = (struct virtchnl_vsi_queue_config_info *)msg; valid_len += (vqc->num_queue_pairs * sizeof(struct virtchnl_queue_pair_info)); if (vqc->num_queue_pairs == 0) err_msg_format = true; } break; case VIRTCHNL_OP_CONFIG_IRQ_MAP: valid_len = sizeof(struct virtchnl_irq_map_info); if (msglen >= valid_len) { struct virtchnl_irq_map_info *vimi = (struct virtchnl_irq_map_info *)msg; valid_len += (vimi->num_vectors * sizeof(struct virtchnl_vector_map)); if (vimi->num_vectors == 0) err_msg_format = true; } break; case VIRTCHNL_OP_ENABLE_QUEUES: case VIRTCHNL_OP_DISABLE_QUEUES: valid_len = sizeof(struct virtchnl_queue_select); break; case VIRTCHNL_OP_ADD_ETH_ADDR: case VIRTCHNL_OP_DEL_ETH_ADDR: valid_len = sizeof(struct virtchnl_ether_addr_list); if (msglen >= valid_len) { struct virtchnl_ether_addr_list *veal = (struct virtchnl_ether_addr_list *)msg; valid_len += veal->num_elements * sizeof(struct virtchnl_ether_addr); if (veal->num_elements == 0) err_msg_format = true; } break; case VIRTCHNL_OP_ADD_VLAN: case VIRTCHNL_OP_DEL_VLAN: valid_len = sizeof(struct virtchnl_vlan_filter_list); if (msglen >= valid_len) { struct virtchnl_vlan_filter_list *vfl = (struct virtchnl_vlan_filter_list *)msg; valid_len += vfl->num_elements * sizeof(u16); if (vfl->num_elements == 0) err_msg_format = true; } break; case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: valid_len = sizeof(struct virtchnl_promisc_info); break; case VIRTCHNL_OP_GET_STATS: valid_len = sizeof(struct virtchnl_queue_select); break; case VIRTCHNL_OP_IWARP: /* These messages are opaque to us and will be validated in * the RDMA client code. We just need to check for nonzero * length. The firmware will enforce max length restrictions. */ if (msglen) valid_len = msglen; else err_msg_format = true; break; case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP: break; case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP: valid_len = sizeof(struct virtchnl_iwarp_qvlist_info); if (msglen >= valid_len) { struct virtchnl_iwarp_qvlist_info *qv = (struct virtchnl_iwarp_qvlist_info *)msg; if (qv->num_vectors == 0) { err_msg_format = true; break; } valid_len += ((qv->num_vectors - 1) * sizeof(struct virtchnl_iwarp_qv_info)); } break; case VIRTCHNL_OP_CONFIG_RSS_KEY: valid_len = sizeof(struct virtchnl_rss_key); if (msglen >= valid_len) { struct virtchnl_rss_key *vrk = (struct virtchnl_rss_key *)msg; valid_len += vrk->key_len - 1; } break; case VIRTCHNL_OP_CONFIG_RSS_LUT: valid_len = sizeof(struct virtchnl_rss_lut); if (msglen >= valid_len) { struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; valid_len += vrl->lut_entries - 1; } break; case VIRTCHNL_OP_GET_RSS_HENA_CAPS: break; case VIRTCHNL_OP_SET_RSS_HENA: valid_len = sizeof(struct virtchnl_rss_hena); break; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: break; case VIRTCHNL_OP_REQUEST_QUEUES: valid_len = sizeof(struct virtchnl_vf_res_request); break; case VIRTCHNL_OP_ENABLE_CHANNELS: valid_len = sizeof(struct virtchnl_tc_info); if (msglen >= valid_len) { struct virtchnl_tc_info *vti = (struct virtchnl_tc_info *)msg; valid_len += (vti->num_tc - 1) * sizeof(struct virtchnl_channel_info); if (vti->num_tc == 0) err_msg_format = true; } break; case VIRTCHNL_OP_DISABLE_CHANNELS: break; case VIRTCHNL_OP_ADD_CLOUD_FILTER: valid_len = sizeof(struct virtchnl_filter); break; case VIRTCHNL_OP_DEL_CLOUD_FILTER: valid_len = sizeof(struct virtchnl_filter); break; case VIRTCHNL_OP_ADD_RSS_CFG: case VIRTCHNL_OP_DEL_RSS_CFG: valid_len = sizeof(struct virtchnl_rss_cfg); break; case VIRTCHNL_OP_ADD_FDIR_FILTER: valid_len = sizeof(struct virtchnl_fdir_add); break; case VIRTCHNL_OP_DEL_FDIR_FILTER: valid_len = sizeof(struct virtchnl_fdir_del); break; case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: break; case VIRTCHNL_OP_ADD_VLAN_V2: case VIRTCHNL_OP_DEL_VLAN_V2: valid_len = sizeof(struct virtchnl_vlan_filter_list_v2); if (msglen >= valid_len) { struct virtchnl_vlan_filter_list_v2 *vfl = (struct virtchnl_vlan_filter_list_v2 *)msg; valid_len += (vfl->num_elements - 1) * sizeof(struct virtchnl_vlan_filter); if (vfl->num_elements == 0) { err_msg_format = true; break; } } break; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: valid_len = sizeof(struct virtchnl_vlan_setting); break; /* These are always errors coming from the VF. */ case VIRTCHNL_OP_EVENT: case VIRTCHNL_OP_UNKNOWN: default: return VIRTCHNL_STATUS_ERR_PARAM; } /* few more checks */ if (err_msg_format || valid_len != msglen) return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; return 0; } #endif /* _VIRTCHNL_H_ */