/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CACHEINFO_H #define _LINUX_CACHEINFO_H #include #include #include struct device_node; struct attribute; enum cache_type { CACHE_TYPE_NOCACHE = 0, CACHE_TYPE_INST = BIT(0), CACHE_TYPE_DATA = BIT(1), CACHE_TYPE_SEPARATE = CACHE_TYPE_INST | CACHE_TYPE_DATA, CACHE_TYPE_UNIFIED = BIT(2), }; /** * struct cacheinfo - represent a cache leaf node * @id: This cache's id. It is unique among caches with the same (type, level). * @type: type of the cache - data, inst or unified * @level: represents the hierarchy in the multi-level cache * @coherency_line_size: size of each cache line usually representing * the minimum amount of data that gets transferred from memory * @number_of_sets: total number of sets, a set is a collection of cache * lines sharing the same index * @ways_of_associativity: number of ways in which a particular memory * block can be placed in the cache * @physical_line_partition: number of physical cache lines sharing the * same cachetag * @size: Total size of the cache * @shared_cpu_map: logical cpumask representing all the cpus sharing * this cache node * @attributes: bitfield representing various cache attributes * @fw_token: Unique value used to determine if different cacheinfo * structures represent a single hardware cache instance. * @disable_sysfs: indicates whether this node is visible to the user via * sysfs or not * @priv: pointer to any private data structure specific to particular * cache design * * While @of_node, @disable_sysfs and @priv are used for internal book * keeping, the remaining members form the core properties of the cache */ struct cacheinfo { unsigned int id; enum cache_type type; unsigned int level; unsigned int coherency_line_size; unsigned int number_of_sets; unsigned int ways_of_associativity; unsigned int physical_line_partition; unsigned int size; cpumask_t shared_cpu_map; unsigned int attributes; #define CACHE_WRITE_THROUGH BIT(0) #define CACHE_WRITE_BACK BIT(1) #define CACHE_WRITE_POLICY_MASK \ (CACHE_WRITE_THROUGH | CACHE_WRITE_BACK) #define CACHE_READ_ALLOCATE BIT(2) #define CACHE_WRITE_ALLOCATE BIT(3) #define CACHE_ALLOCATE_POLICY_MASK \ (CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE) #define CACHE_ID BIT(4) void *fw_token; bool disable_sysfs; void *priv; }; struct cpu_cacheinfo { struct cacheinfo *info_list; unsigned int num_levels; unsigned int num_leaves; bool cpu_map_populated; }; /* * Helpers to make sure "func" is executed on the cpu whose cache * attributes are being detected */ #define DEFINE_SMP_CALL_CACHE_FUNCTION(func) \ static inline void _##func(void *ret) \ { \ int cpu = smp_processor_id(); \ *(int *)ret = __##func(cpu); \ } \ \ int func(unsigned int cpu) \ { \ int ret; \ smp_call_function_single(cpu, _##func, &ret, true); \ return ret; \ } struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu); int init_cache_level(unsigned int cpu); int populate_cache_leaves(unsigned int cpu); int cache_setup_acpi(unsigned int cpu); #ifndef CONFIG_ACPI_PPTT /* * acpi_find_last_cache_level is only called on ACPI enabled * platforms using the PPTT for topology. This means that if * the platform supports other firmware configuration methods * we need to stub out the call when ACPI is disabled. * ACPI enabled platforms not using PPTT won't be making calls * to this function so we need not worry about them. */ static inline int acpi_find_last_cache_level(unsigned int cpu) { return 0; } #else int acpi_find_last_cache_level(unsigned int cpu); #endif const struct attribute_group *cache_get_priv_group(struct cacheinfo *this_leaf); #endif /* _LINUX_CACHEINFO_H */