/****************************************************************************** ******************************************************************************* ** ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. ** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. ** ** This copyrighted material is made available to anyone wishing to use, ** modify, copy, or redistribute it subject to the terms and conditions ** of the GNU General Public License v.2. ** ******************************************************************************* ******************************************************************************/ #ifndef __DLM_DOT_H__ #define __DLM_DOT_H__ /* * Interface to Distributed Lock Manager (DLM) * routines and structures to use DLM lockspaces */ /* * Lock Modes */ #define DLM_LOCK_IV -1 /* invalid */ #define DLM_LOCK_NL 0 /* null */ #define DLM_LOCK_CR 1 /* concurrent read */ #define DLM_LOCK_CW 2 /* concurrent write */ #define DLM_LOCK_PR 3 /* protected read */ #define DLM_LOCK_PW 4 /* protected write */ #define DLM_LOCK_EX 5 /* exclusive */ /* * Maximum size in bytes of a dlm_lock name */ #define DLM_RESNAME_MAXLEN 64 /* * Flags to dlm_lock * * DLM_LKF_NOQUEUE * * Do not queue the lock request on the wait queue if it cannot be granted * immediately. If the lock cannot be granted because of this flag, DLM will * either return -EAGAIN from the dlm_lock call or will return 0 from * dlm_lock and -EAGAIN in the lock status block when the AST is executed. * * DLM_LKF_CANCEL * * Used to cancel a pending lock request or conversion. A converting lock is * returned to its previously granted mode. * * DLM_LKF_CONVERT * * Indicates a lock conversion request. For conversions the name and namelen * are ignored and the lock ID in the LKSB is used to identify the lock. * * DLM_LKF_VALBLK * * Requests DLM to return the current contents of the lock value block in the * lock status block. When this flag is set in a lock conversion from PW or EX * modes, DLM assigns the value specified in the lock status block to the lock * value block of the lock resource. The LVB is a DLM_LVB_LEN size array * containing application-specific information. * * DLM_LKF_QUECVT * * Force a conversion request to be queued, even if it is compatible with * the granted modes of other locks on the same resource. * * DLM_LKF_IVVALBLK * * Invalidate the lock value block. * * DLM_LKF_CONVDEADLK * * Allows the dlm to resolve conversion deadlocks internally by demoting the * granted mode of a converting lock to NL. The DLM_SBF_DEMOTED flag is * returned for a conversion that's been effected by this. * * DLM_LKF_PERSISTENT * * Only relevant to locks originating in userspace. A persistent lock will not * be removed if the process holding the lock exits. * * DLM_LKF_NODLKWT * DLM_LKF_NODLCKBLK * * net yet implemented * * DLM_LKF_EXPEDITE * * Used only with new requests for NL mode locks. Tells the lock manager * to grant the lock, ignoring other locks in convert and wait queues. * * DLM_LKF_NOQUEUEBAST * * Send blocking AST's before returning -EAGAIN to the caller. It is only * used along with the NOQUEUE flag. Blocking AST's are not sent for failed * NOQUEUE requests otherwise. * * DLM_LKF_HEADQUE * * Add a lock to the head of the convert or wait queue rather than the tail. * * DLM_LKF_NOORDER * * Disregard the standard grant order rules and grant a lock as soon as it * is compatible with other granted locks. * * DLM_LKF_ORPHAN * * not yet implemented * * DLM_LKF_ALTPR * * If the requested mode cannot be granted immediately, try to grant the lock * in PR mode instead. If this alternate mode is granted instead of the * requested mode, DLM_SBF_ALTMODE is returned in the lksb. * * DLM_LKF_ALTCW * * The same as ALTPR, but the alternate mode is CW. * * DLM_LKF_FORCEUNLOCK * * Unlock the lock even if it is converting or waiting or has sublocks. * Only really for use by the userland device.c code. * */ #define DLM_LKF_NOQUEUE 0x00000001 #define DLM_LKF_CANCEL 0x00000002 #define DLM_LKF_CONVERT 0x00000004 #define DLM_LKF_VALBLK 0x00000008 #define DLM_LKF_QUECVT 0x00000010 #define DLM_LKF_IVVALBLK 0x00000020 #define DLM_LKF_CONVDEADLK 0x00000040 #define DLM_LKF_PERSISTENT 0x00000080 #define DLM_LKF_NODLCKWT 0x00000100 #define DLM_LKF_NODLCKBLK 0x00000200 #define DLM_LKF_EXPEDITE 0x00000400 #define DLM_LKF_NOQUEUEBAST 0x00000800 #define DLM_LKF_HEADQUE 0x00001000 #define DLM_LKF_NOORDER 0x00002000 #define DLM_LKF_ORPHAN 0x00004000 #define DLM_LKF_ALTPR 0x00008000 #define DLM_LKF_ALTCW 0x00010000 #define DLM_LKF_FORCEUNLOCK 0x00020000 /* * Some return codes that are not in errno.h */ #define DLM_ECANCEL 0x10001 #define DLM_EUNLOCK 0x10002 typedef void dlm_lockspace_t; /* * Lock status block * * Use this structure to specify the contents of the lock value block. For a * conversion request, this structure is used to specify the lock ID of the * lock. DLM writes the status of the lock request and the lock ID assigned * to the request in the lock status block. * * sb_lkid: the returned lock ID. It is set on new (non-conversion) requests. * It is available when dlm_lock returns. * * sb_lvbptr: saves or returns the contents of the lock's LVB according to rules * shown for the DLM_LKF_VALBLK flag. * * sb_flags: DLM_SBF_DEMOTED is returned if in the process of promoting a lock, * it was first demoted to NL to avoid conversion deadlock. * DLM_SBF_VALNOTVALID is returned if the resource's LVB is marked invalid. * * sb_status: the returned status of the lock request set prior to AST * execution. Possible return values: * * 0 if lock request was successful * -EAGAIN if request would block and is flagged DLM_LKF_NOQUEUE * -ENOMEM if there is no memory to process request * -EINVAL if there are invalid parameters * -DLM_EUNLOCK if unlock request was successful * -DLM_ECANCEL if a cancel completed successfully */ #define DLM_SBF_DEMOTED 0x01 #define DLM_SBF_VALNOTVALID 0x02 #define DLM_SBF_ALTMODE 0x04 struct dlm_lksb { int sb_status; uint32_t sb_lkid; char sb_flags; char * sb_lvbptr; }; #ifdef __KERNEL__ #define DLM_LSFL_NODIR 0x00000001 /* * dlm_new_lockspace * * Starts a lockspace with the given name. If the named lockspace exists in * the cluster, the calling node joins it. */ int dlm_new_lockspace(char *name, int namelen, dlm_lockspace_t **lockspace, uint32_t flags, int lvblen); /* * dlm_release_lockspace * * Stop a lockspace. */ int dlm_release_lockspace(dlm_lockspace_t *lockspace, int force); /* * dlm_lock * * Make an asyncronous request to acquire or convert a lock on a named * resource. * * lockspace: context for the request * mode: the requested mode of the lock (DLM_LOCK_) * lksb: lock status block for input and async return values * flags: input flags (DLM_LKF_) * name: name of the resource to lock, can be binary * namelen: the length in bytes of the resource name (MAX_RESNAME_LEN) * parent: the lock ID of a parent lock or 0 if none * lockast: function DLM executes when it completes processing the request * astarg: argument passed to lockast and bast functions * bast: function DLM executes when this lock later blocks another request * * Returns: * 0 if request is successfully queued for processing * -EINVAL if any input parameters are invalid * -EAGAIN if request would block and is flagged DLM_LKF_NOQUEUE * -ENOMEM if there is no memory to process request * -ENOTCONN if there is a communication error * * If the call to dlm_lock returns an error then the operation has failed and * the AST routine will not be called. If dlm_lock returns 0 it is still * possible that the lock operation will fail. The AST routine will be called * when the locking is complete and the status is returned in the lksb. * * If the AST routines or parameter are passed to a conversion operation then * they will overwrite those values that were passed to a previous dlm_lock * call. * * AST routines should not block (at least not for long), but may make * any locking calls they please. */ int dlm_lock(dlm_lockspace_t *lockspace, int mode, struct dlm_lksb *lksb, uint32_t flags, void *name, unsigned int namelen, uint32_t parent_lkid, void (*lockast) (void *astarg), void *astarg, void (*bast) (void *astarg, int mode)); /* * dlm_unlock * * Asynchronously release a lock on a resource. The AST routine is called * when the resource is successfully unlocked. * * lockspace: context for the request * lkid: the lock ID as returned in the lksb * flags: input flags (DLM_LKF_) * lksb: if NULL the lksb parameter passed to last lock request is used * astarg: the arg used with the completion ast for the unlock * * Returns: * 0 if request is successfully queued for processing * -EINVAL if any input parameters are invalid * -ENOTEMPTY if the lock still has sublocks * -EBUSY if the lock is waiting for a remote lock operation * -ENOTCONN if there is a communication error */ int dlm_unlock(dlm_lockspace_t *lockspace, uint32_t lkid, uint32_t flags, struct dlm_lksb *lksb, void *astarg); #endif /* __KERNEL__ */ #endif /* __DLM_DOT_H__ */