/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KERNEL_H #define _LINUX_KERNEL_H #include #include #include #include #include #include #include #include #include #include #include #include #define USHRT_MAX ((u16)(~0U)) #define SHRT_MAX ((s16)(USHRT_MAX>>1)) #define SHRT_MIN ((s16)(-SHRT_MAX - 1)) #define INT_MAX ((int)(~0U>>1)) #define INT_MIN (-INT_MAX - 1) #define UINT_MAX (~0U) #define LONG_MAX ((long)(~0UL>>1)) #define LONG_MIN (-LONG_MAX - 1) #define ULONG_MAX (~0UL) #define LLONG_MAX ((long long)(~0ULL>>1)) #define LLONG_MIN (-LLONG_MAX - 1) #define ULLONG_MAX (~0ULL) #define SIZE_MAX (~(size_t)0) #define U8_MAX ((u8)~0U) #define S8_MAX ((s8)(U8_MAX>>1)) #define S8_MIN ((s8)(-S8_MAX - 1)) #define U16_MAX ((u16)~0U) #define S16_MAX ((s16)(U16_MAX>>1)) #define S16_MIN ((s16)(-S16_MAX - 1)) #define U32_MAX ((u32)~0U) #define S32_MAX ((s32)(U32_MAX>>1)) #define S32_MIN ((s32)(-S32_MAX - 1)) #define U64_MAX ((u64)~0ULL) #define S64_MAX ((s64)(U64_MAX>>1)) #define S64_MIN ((s64)(-S64_MAX - 1)) #define STACK_MAGIC 0xdeadbeef /** * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value * @x: value to repeat * * NOTE: @x is not checked for > 0xff; larger values produce odd results. */ #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) /* @a is a power of 2 value */ #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) /* generic data direction definitions */ #define READ 0 #define WRITE 1 /** * ARRAY_SIZE - get the number of elements in array @arr * @arr: array to be sized */ #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) #define u64_to_user_ptr(x) ( \ { \ typecheck(u64, x); \ (void __user *)(uintptr_t)x; \ } \ ) /* * This looks more complex than it should be. But we need to * get the type for the ~ right in round_down (it needs to be * as wide as the result!), and we want to evaluate the macro * arguments just once each. */ #define __round_mask(x, y) ((__typeof__(x))((y)-1)) #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) #define round_down(x, y) ((x) & ~__round_mask(x, y)) /** * FIELD_SIZEOF - get the size of a struct's field * @t: the target struct * @f: the target struct's field * Return: the size of @f in the struct definition without having a * declared instance of @t. */ #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP #define DIV_ROUND_DOWN_ULL(ll, d) \ ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) #define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) #if BITS_PER_LONG == 32 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) #else # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) #endif /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ #define roundup(x, y) ( \ { \ const typeof(y) __y = y; \ (((x) + (__y - 1)) / __y) * __y; \ } \ ) #define rounddown(x, y) ( \ { \ typeof(x) __x = (x); \ __x - (__x % (y)); \ } \ ) /* * Divide positive or negative dividend by positive or negative divisor * and round to closest integer. Result is undefined for negative * divisors if the dividend variable type is unsigned and for negative * dividends if the divisor variable type is unsigned. */ #define DIV_ROUND_CLOSEST(x, divisor)( \ { \ typeof(x) __x = x; \ typeof(divisor) __d = divisor; \ (((typeof(x))-1) > 0 || \ ((typeof(divisor))-1) > 0 || \ (((__x) > 0) == ((__d) > 0))) ? \ (((__x) + ((__d) / 2)) / (__d)) : \ (((__x) - ((__d) / 2)) / (__d)); \ } \ ) /* * Same as above but for u64 dividends. divisor must be a 32-bit * number. */ #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ { \ typeof(divisor) __d = divisor; \ unsigned long long _tmp = (x) + (__d) / 2; \ do_div(_tmp, __d); \ _tmp; \ } \ ) /* * Multiplies an integer by a fraction, while avoiding unnecessary * overflow or loss of precision. */ #define mult_frac(x, numer, denom)( \ { \ typeof(x) quot = (x) / (denom); \ typeof(x) rem = (x) % (denom); \ (quot * (numer)) + ((rem * (numer)) / (denom)); \ } \ ) #define _RET_IP_ (unsigned long)__builtin_return_address(0) #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) #ifdef CONFIG_LBDAF # include # define sector_div(a, b) do_div(a, b) #else # define sector_div(n, b)( \ { \ int _res; \ _res = (n) % (b); \ (n) /= (b); \ _res; \ } \ ) #endif /** * upper_32_bits - return bits 32-63 of a number * @n: the number we're accessing * * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress * the "right shift count >= width of type" warning when that quantity is * 32-bits. */ #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) /** * lower_32_bits - return bits 0-31 of a number * @n: the number we're accessing */ #define lower_32_bits(n) ((u32)(n)) struct completion; struct pt_regs; struct user; #ifdef CONFIG_PREEMPT_VOLUNTARY extern int _cond_resched(void); # define might_resched() _cond_resched() #else # define might_resched() do { } while (0) #endif #ifdef CONFIG_DEBUG_ATOMIC_SLEEP void ___might_sleep(const char *file, int line, int preempt_offset); void __might_sleep(const char *file, int line, int preempt_offset); /** * might_sleep - annotation for functions that can sleep * * this macro will print a stack trace if it is executed in an atomic * context (spinlock, irq-handler, ...). * * This is a useful debugging help to be able to catch problems early and not * be bitten later when the calling function happens to sleep when it is not * supposed to. */ # define might_sleep() \ do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) # define sched_annotate_sleep() (current->task_state_change = 0) #else static inline void ___might_sleep(const char *file, int line, int preempt_offset) { } static inline void __might_sleep(const char *file, int line, int preempt_offset) { } # define might_sleep() do { might_resched(); } while (0) # define sched_annotate_sleep() do { } while (0) #endif #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) /** * abs - return absolute value of an argument * @x: the value. If it is unsigned type, it is converted to signed type first. * char is treated as if it was signed (regardless of whether it really is) * but the macro's return type is preserved as char. * * Return: an absolute value of x. */ #define abs(x) __abs_choose_expr(x, long long, \ __abs_choose_expr(x, long, \ __abs_choose_expr(x, int, \ __abs_choose_expr(x, short, \ __abs_choose_expr(x, char, \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), char), \ (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ ((void)0))))))) #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), signed type) || \ __builtin_types_compatible_p(typeof(x), unsigned type), \ ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) /** * reciprocal_scale - "scale" a value into range [0, ep_ro) * @val: value * @ep_ro: right open interval endpoint * * Perform a "reciprocal multiplication" in order to "scale" a value into * range [0, @ep_ro), where the upper interval endpoint is right-open. * This is useful, e.g. for accessing a index of an array containing * @ep_ro elements, for example. Think of it as sort of modulus, only that * the result isn't that of modulo. ;) Note that if initial input is a * small value, then result will return 0. * * Return: a result based on @val in interval [0, @ep_ro). */ static inline u32 reciprocal_scale(u32 val, u32 ep_ro) { return (u32)(((u64) val * ep_ro) >> 32); } #if defined(CONFIG_MMU) && \ (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) #define might_fault() __might_fault(__FILE__, __LINE__) void __might_fault(const char *file, int line); #else static inline void might_fault(void) { } #endif extern struct atomic_notifier_head panic_notifier_list; extern long (*panic_blink)(int state); __printf(1, 2) void panic(const char *fmt, ...) __noreturn __cold; void nmi_panic(struct pt_regs *regs, const char *msg); extern void oops_enter(void); extern void oops_exit(void); void print_oops_end_marker(void); extern int oops_may_print(void); void do_exit(long error_code) __noreturn; void complete_and_exit(struct completion *, long) __noreturn; #ifdef CONFIG_ARCH_HAS_REFCOUNT void refcount_error_report(struct pt_regs *regs, const char *err); #else static inline void refcount_error_report(struct pt_regs *regs, const char *err) { } #endif /* Internal, do not use. */ int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); int __must_check _kstrtol(const char *s, unsigned int base, long *res); int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); int __must_check kstrtoll(const char *s, unsigned int base, long long *res); /** * kstrtoul - convert a string to an unsigned long * @s: The start of the string. The string must be null-terminated, and may also * include a single newline before its terminating null. The first character * may also be a plus sign, but not a minus sign. * @base: The number base to use. The maximum supported base is 16. If base is * given as 0, then the base of the string is automatically detected with the * conventional semantics - If it begins with 0x the number will be parsed as a * hexadecimal (case insensitive), if it otherwise begins with 0, it will be * parsed as an octal number. Otherwise it will be parsed as a decimal. * @res: Where to write the result of the conversion on success. * * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. * Used as a replacement for the obsolete simple_strtoull. Return code must * be checked. */ static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) { /* * We want to shortcut function call, but * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. */ if (sizeof(unsigned long) == sizeof(unsigned long long) && __alignof__(unsigned long) == __alignof__(unsigned long long)) return kstrtoull(s, base, (unsigned long long *)res); else return _kstrtoul(s, base, res); } /** * kstrtol - convert a string to a long * @s: The start of the string. The string must be null-terminated, and may also * include a single newline before its terminating null. The first character * may also be a plus sign or a minus sign. * @base: The number base to use. The maximum supported base is 16. If base is * given as 0, then the base of the string is automatically detected with the * conventional semantics - If it begins with 0x the number will be parsed as a * hexadecimal (case insensitive), if it otherwise begins with 0, it will be * parsed as an octal number. Otherwise it will be parsed as a decimal. * @res: Where to write the result of the conversion on success. * * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. * Used as a replacement for the obsolete simple_strtoull. Return code must * be checked. */ static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) { /* * We want to shortcut function call, but * __builtin_types_compatible_p(long, long long) = 0. */ if (sizeof(long) == sizeof(long long) && __alignof__(long) == __alignof__(long long)) return kstrtoll(s, base, (long long *)res); else return _kstrtol(s, base, res); } int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); int __must_check kstrtoint(const char *s, unsigned int base, int *res); static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) { return kstrtoull(s, base, res); } static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) { return kstrtoll(s, base, res); } static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) { return kstrtouint(s, base, res); } static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) { return kstrtoint(s, base, res); } int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); int __must_check kstrtobool(const char *s, bool *res); int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) { return kstrtoull_from_user(s, count, base, res); } static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) { return kstrtoll_from_user(s, count, base, res); } static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) { return kstrtouint_from_user(s, count, base, res); } static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) { return kstrtoint_from_user(s, count, base, res); } /* Obsolete, do not use. Use kstrto instead */ extern unsigned long simple_strtoul(const char *,char **,unsigned int); extern long simple_strtol(const char *,char **,unsigned int); extern unsigned long long simple_strtoull(const char *,char **,unsigned int); extern long long simple_strtoll(const char *,char **,unsigned int); extern int num_to_str(char *buf, int size, unsigned long long num); /* lib/printf utilities */ extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); extern __printf(3, 4) int snprintf(char *buf, size_t size, const char *fmt, ...); extern __printf(3, 0) int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); extern __printf(3, 4) int scnprintf(char *buf, size_t size, const char *fmt, ...); extern __printf(3, 0) int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); extern __printf(2, 3) __malloc char *kasprintf(gfp_t gfp, const char *fmt, ...); extern __printf(2, 0) __malloc char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); extern __printf(2, 0) const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); extern __scanf(2, 3) int sscanf(const char *, const char *, ...); extern __scanf(2, 0) int vsscanf(const char *, const char *, va_list); extern int get_option(char **str, int *pint); extern char *get_options(const char *str, int nints, int *ints); extern unsigned long long memparse(const char *ptr, char **retptr); extern bool parse_option_str(const char *str, const char *option); extern char *next_arg(char *args, char **param, char **val); extern int core_kernel_text(unsigned long addr); extern int core_kernel_data(unsigned long addr); extern int __kernel_text_address(unsigned long addr); extern int kernel_text_address(unsigned long addr); extern int func_ptr_is_kernel_text(void *ptr); unsigned long int_sqrt(unsigned long); extern void bust_spinlocks(int yes); extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ extern int panic_timeout; extern int panic_on_oops; extern int panic_on_unrecovered_nmi; extern int panic_on_io_nmi; extern int panic_on_warn; extern int sysctl_panic_on_rcu_stall; extern int sysctl_panic_on_stackoverflow; extern bool crash_kexec_post_notifiers; /* * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It * holds a CPU number which is executing panic() currently. A value of * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). */ extern atomic_t panic_cpu; #define PANIC_CPU_INVALID -1 /* * Only to be used by arch init code. If the user over-wrote the default * CONFIG_PANIC_TIMEOUT, honor it. */ static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) { if (panic_timeout == arch_default_timeout) panic_timeout = timeout; } extern const char *print_tainted(void); enum lockdep_ok { LOCKDEP_STILL_OK, LOCKDEP_NOW_UNRELIABLE }; extern void add_taint(unsigned flag, enum lockdep_ok); extern int test_taint(unsigned flag); extern unsigned long get_taint(void); extern int root_mountflags; extern bool early_boot_irqs_disabled; /* * Values used for system_state. Ordering of the states must not be changed * as code checks for <, <=, >, >= STATE. */ extern enum system_states { SYSTEM_BOOTING, SYSTEM_SCHEDULING, SYSTEM_RUNNING, SYSTEM_HALT, SYSTEM_POWER_OFF, SYSTEM_RESTART, } system_state; #define TAINT_PROPRIETARY_MODULE 0 #define TAINT_FORCED_MODULE 1 #define TAINT_CPU_OUT_OF_SPEC 2 #define TAINT_FORCED_RMMOD 3 #define TAINT_MACHINE_CHECK 4 #define TAINT_BAD_PAGE 5 #define TAINT_USER 6 #define TAINT_DIE 7 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 #define TAINT_WARN 9 #define TAINT_CRAP 10 #define TAINT_FIRMWARE_WORKAROUND 11 #define TAINT_OOT_MODULE 12 #define TAINT_UNSIGNED_MODULE 13 #define TAINT_SOFTLOCKUP 14 #define TAINT_LIVEPATCH 15 #define TAINT_AUX 16 #define TAINT_FLAGS_COUNT 17 struct taint_flag { char c_true; /* character printed when tainted */ char c_false; /* character printed when not tainted */ bool module; /* also show as a per-module taint flag */ }; extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; extern const char hex_asc[]; #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] static inline char *hex_byte_pack(char *buf, u8 byte) { *buf++ = hex_asc_hi(byte); *buf++ = hex_asc_lo(byte); return buf; } extern const char hex_asc_upper[]; #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] static inline char *hex_byte_pack_upper(char *buf, u8 byte) { *buf++ = hex_asc_upper_hi(byte); *buf++ = hex_asc_upper_lo(byte); return buf; } extern int hex_to_bin(char ch); extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); extern char *bin2hex(char *dst, const void *src, size_t count); bool mac_pton(const char *s, u8 *mac); /* * General tracing related utility functions - trace_printk(), * tracing_on/tracing_off and tracing_start()/tracing_stop * * Use tracing_on/tracing_off when you want to quickly turn on or off * tracing. It simply enables or disables the recording of the trace events. * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on * file, which gives a means for the kernel and userspace to interact. * Place a tracing_off() in the kernel where you want tracing to end. * From user space, examine the trace, and then echo 1 > tracing_on * to continue tracing. * * tracing_stop/tracing_start has slightly more overhead. It is used * by things like suspend to ram where disabling the recording of the * trace is not enough, but tracing must actually stop because things * like calling smp_processor_id() may crash the system. * * Most likely, you want to use tracing_on/tracing_off. */ enum ftrace_dump_mode { DUMP_NONE, DUMP_ALL, DUMP_ORIG, }; #ifdef CONFIG_TRACING void tracing_on(void); void tracing_off(void); int tracing_is_on(void); void tracing_snapshot(void); void tracing_snapshot_alloc(void); extern void tracing_start(void); extern void tracing_stop(void); static inline __printf(1, 2) void ____trace_printk_check_format(const char *fmt, ...) { } #define __trace_printk_check_format(fmt, args...) \ do { \ if (0) \ ____trace_printk_check_format(fmt, ##args); \ } while (0) /** * trace_printk - printf formatting in the ftrace buffer * @fmt: the printf format for printing * * Note: __trace_printk is an internal function for trace_printk() and * the @ip is passed in via the trace_printk() macro. * * This function allows a kernel developer to debug fast path sections * that printk is not appropriate for. By scattering in various * printk like tracing in the code, a developer can quickly see * where problems are occurring. * * This is intended as a debugging tool for the developer only. * Please refrain from leaving trace_printks scattered around in * your code. (Extra memory is used for special buffers that are * allocated when trace_printk() is used.) * * A little optization trick is done here. If there's only one * argument, there's no need to scan the string for printf formats. * The trace_puts() will suffice. But how can we take advantage of * using trace_puts() when trace_printk() has only one argument? * By stringifying the args and checking the size we can tell * whether or not there are args. __stringify((__VA_ARGS__)) will * turn into "()\0" with a size of 3 when there are no args, anything * else will be bigger. All we need to do is define a string to this, * and then take its size and compare to 3. If it's bigger, use * do_trace_printk() otherwise, optimize it to trace_puts(). Then just * let gcc optimize the rest. */ #define trace_printk(fmt, ...) \ do { \ char _______STR[] = __stringify((__VA_ARGS__)); \ if (sizeof(_______STR) > 3) \ do_trace_printk(fmt, ##__VA_ARGS__); \ else \ trace_puts(fmt); \ } while (0) #define do_trace_printk(fmt, args...) \ do { \ static const char *trace_printk_fmt __used \ __attribute__((section("__trace_printk_fmt"))) = \ __builtin_constant_p(fmt) ? fmt : NULL; \ \ __trace_printk_check_format(fmt, ##args); \ \ if (__builtin_constant_p(fmt)) \ __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ else \ __trace_printk(_THIS_IP_, fmt, ##args); \ } while (0) extern __printf(2, 3) int __trace_bprintk(unsigned long ip, const char *fmt, ...); extern __printf(2, 3) int __trace_printk(unsigned long ip, const char *fmt, ...); /** * trace_puts - write a string into the ftrace buffer * @str: the string to record * * Note: __trace_bputs is an internal function for trace_puts and * the @ip is passed in via the trace_puts macro. * * This is similar to trace_printk() but is made for those really fast * paths that a developer wants the least amount of "Heisenbug" effects, * where the processing of the print format is still too much. * * This function allows a kernel developer to debug fast path sections * that printk is not appropriate for. By scattering in various * printk like tracing in the code, a developer can quickly see * where problems are occurring. * * This is intended as a debugging tool for the developer only. * Please refrain from leaving trace_puts scattered around in * your code. (Extra memory is used for special buffers that are * allocated when trace_puts() is used.) * * Returns: 0 if nothing was written, positive # if string was. * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) */ #define trace_puts(str) ({ \ static const char *trace_printk_fmt __used \ __attribute__((section("__trace_printk_fmt"))) = \ __builtin_constant_p(str) ? str : NULL; \ \ if (__builtin_constant_p(str)) \ __trace_bputs(_THIS_IP_, trace_printk_fmt); \ else \ __trace_puts(_THIS_IP_, str, strlen(str)); \ }) extern int __trace_bputs(unsigned long ip, const char *str); extern int __trace_puts(unsigned long ip, const char *str, int size); extern void trace_dump_stack(int skip); /* * The double __builtin_constant_p is because gcc will give us an error * if we try to allocate the static variable to fmt if it is not a * constant. Even with the outer if statement. */ #define ftrace_vprintk(fmt, vargs) \ do { \ if (__builtin_constant_p(fmt)) { \ static const char *trace_printk_fmt __used \ __attribute__((section("__trace_printk_fmt"))) = \ __builtin_constant_p(fmt) ? fmt : NULL; \ \ __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ } else \ __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ } while (0) extern __printf(2, 0) int __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); extern __printf(2, 0) int __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); #else static inline void tracing_start(void) { } static inline void tracing_stop(void) { } static inline void trace_dump_stack(int skip) { } static inline void tracing_on(void) { } static inline void tracing_off(void) { } static inline int tracing_is_on(void) { return 0; } static inline void tracing_snapshot(void) { } static inline void tracing_snapshot_alloc(void) { } static inline __printf(1, 2) int trace_printk(const char *fmt, ...) { return 0; } static __printf(1, 0) inline int ftrace_vprintk(const char *fmt, va_list ap) { return 0; } static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } #endif /* CONFIG_TRACING */ /* * min()/max()/clamp() macros that also do * strict type-checking.. See the * "unnecessary" pointer comparison. */ #define __min(t1, t2, min1, min2, x, y) ({ \ t1 min1 = (x); \ t2 min2 = (y); \ (void) (&min1 == &min2); \ min1 < min2 ? min1 : min2; }) /** * min - return minimum of two values of the same or compatible types * @x: first value * @y: second value */ #define min(x, y) \ __min(typeof(x), typeof(y), \ __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ x, y) #define __max(t1, t2, max1, max2, x, y) ({ \ t1 max1 = (x); \ t2 max2 = (y); \ (void) (&max1 == &max2); \ max1 > max2 ? max1 : max2; }) /** * max - return maximum of two values of the same or compatible types * @x: first value * @y: second value */ #define max(x, y) \ __max(typeof(x), typeof(y), \ __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \ x, y) /** * min3 - return minimum of three values * @x: first value * @y: second value * @z: third value */ #define min3(x, y, z) min((typeof(x))min(x, y), z) /** * max3 - return maximum of three values * @x: first value * @y: second value * @z: third value */ #define max3(x, y, z) max((typeof(x))max(x, y), z) /** * min_not_zero - return the minimum that is _not_ zero, unless both are zero * @x: value1 * @y: value2 */ #define min_not_zero(x, y) ({ \ typeof(x) __x = (x); \ typeof(y) __y = (y); \ __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) /** * clamp - return a value clamped to a given range with strict typechecking * @val: current value * @lo: lowest allowable value * @hi: highest allowable value * * This macro does strict typechecking of @lo/@hi to make sure they are of the * same type as @val. See the unnecessary pointer comparisons. */ #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) /* * ..and if you can't take the strict * types, you can specify one yourself. * * Or not use min/max/clamp at all, of course. */ /** * min_t - return minimum of two values, using the specified type * @type: data type to use * @x: first value * @y: second value */ #define min_t(type, x, y) \ __min(type, type, \ __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ x, y) /** * max_t - return maximum of two values, using the specified type * @type: data type to use * @x: first value * @y: second value */ #define max_t(type, x, y) \ __max(type, type, \ __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ x, y) /** * clamp_t - return a value clamped to a given range using a given type * @type: the type of variable to use * @val: current value * @lo: minimum allowable value * @hi: maximum allowable value * * This macro does no typechecking and uses temporary variables of type * @type to make all the comparisons. */ #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) /** * clamp_val - return a value clamped to a given range using val's type * @val: current value * @lo: minimum allowable value * @hi: maximum allowable value * * This macro does no typechecking and uses temporary variables of whatever * type the input argument @val is. This is useful when @val is an unsigned * type and @lo and @hi are literals that will otherwise be assigned a signed * integer type. */ #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) /** * swap - swap values of @a and @b * @a: first value * @b: second value */ #define swap(a, b) \ do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) /** * container_of - cast a member of a structure out to the containing structure * @ptr: the pointer to the member. * @type: the type of the container struct this is embedded in. * @member: the name of the member within the struct. * */ #define container_of(ptr, type, member) ({ \ void *__mptr = (void *)(ptr); \ BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ !__same_type(*(ptr), void), \ "pointer type mismatch in container_of()"); \ ((type *)(__mptr - offsetof(type, member))); }) /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ #ifdef CONFIG_FTRACE_MCOUNT_RECORD # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD #endif /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ #define VERIFY_OCTAL_PERMISSIONS(perms) \ (BUILD_BUG_ON_ZERO((perms) < 0) + \ BUILD_BUG_ON_ZERO((perms) > 0777) + \ /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ /* USER_WRITABLE >= GROUP_WRITABLE */ \ BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ /* OTHER_WRITABLE? Generally considered a bad idea. */ \ BUILD_BUG_ON_ZERO((perms) & 2) + \ (perms)) #endif