/* * linux/include/linux/nfs_fs.h * * Copyright (C) 1992 Rick Sladkey * * OS-specific nfs filesystem definitions and declarations */ #ifndef _LINUX_NFS_FS_H #define _LINUX_NFS_FS_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Enable debugging support for nfs client. * Requires RPC_DEBUG. */ #ifdef RPC_DEBUG # define NFS_DEBUG #endif #define NFS_MAX_FILE_IO_BUFFER_SIZE 32768 #define NFS_DEF_FILE_IO_BUFFER_SIZE 4096 /* * The upper limit on timeouts for the exponential backoff algorithm. */ #define NFS_WRITEBACK_DELAY (5*HZ) #define NFS_WRITEBACK_LOCKDELAY (60*HZ) #define NFS_COMMIT_DELAY (5*HZ) /* * superblock magic number for NFS */ #define NFS_SUPER_MAGIC 0x6969 /* * These are the default flags for swap requests */ #define NFS_RPC_SWAPFLAGS (RPC_TASK_SWAPPER|RPC_TASK_ROOTCREDS) #define NFS_RW_SYNC 0x0001 /* O_SYNC handling */ #define NFS_RW_SWAP 0x0002 /* This is a swap request */ /* * When flushing a cluster of dirty pages, there can be different * strategies: */ #define FLUSH_AGING 0 /* only flush old buffers */ #define FLUSH_SYNC 1 /* file being synced, or contention */ #define FLUSH_WAIT 2 /* wait for completion */ #define FLUSH_STABLE 4 /* commit to stable storage */ #define FLUSH_LOWPRI 8 /* low priority background flush */ #define FLUSH_HIGHPRI 16 /* high priority memory reclaim flush */ #ifdef __KERNEL__ /* * NFSv3/v4 Access mode cache entry */ struct nfs_access_entry { unsigned long jiffies; struct rpc_cred * cred; int mask; }; struct nfs4_state; struct nfs_open_context { atomic_t count; struct dentry *dentry; struct rpc_cred *cred; struct nfs4_state *state; fl_owner_t lockowner; int mode; int error; struct list_head list; wait_queue_head_t waitq; }; /* * NFSv4 delegation */ struct nfs_delegation; /* * nfs fs inode data in memory */ struct nfs_inode { /* * The 64bit 'inode number' */ __u64 fileid; /* * NFS file handle */ struct nfs_fh fh; /* * Various flags */ unsigned int flags; /* * read_cache_jiffies is when we started read-caching this inode, * and read_cache_mtime is the mtime of the inode at that time. * attrtimeo is for how long the cached information is assumed * to be valid. A successful attribute revalidation doubles * attrtimeo (up to acregmax/acdirmax), a failure resets it to * acregmin/acdirmin. * * We need to revalidate the cached attrs for this inode if * * jiffies - read_cache_jiffies > attrtimeo * * and invalidate any cached data/flush out any dirty pages if * we find that * * mtime != read_cache_mtime */ unsigned long readdir_timestamp; unsigned long read_cache_jiffies; unsigned long attrtimeo; unsigned long attrtimeo_timestamp; __u64 change_attr; /* v4 only */ /* "Generation counter" for the attribute cache. This is * bumped whenever we update the metadata on the * server. */ unsigned long cache_change_attribute; /* * Counter indicating the number of outstanding requests that * will cause a file data update. */ atomic_t data_updates; struct nfs_access_entry cache_access; /* * This is the cookie verifier used for NFSv3 readdir * operations */ __u32 cookieverf[2]; /* * This is the list of dirty unwritten pages. */ spinlock_t req_lock; struct list_head dirty; struct list_head commit; struct radix_tree_root nfs_page_tree; unsigned int ndirty, ncommit, npages; /* Open contexts for shared mmap writes */ struct list_head open_files; wait_queue_head_t nfs_i_wait; #ifdef CONFIG_NFS_V4 /* NFSv4 state */ struct list_head open_states; struct nfs_delegation *delegation; int delegation_state; struct rw_semaphore rwsem; #endif /* CONFIG_NFS_V4*/ struct inode vfs_inode; }; /* * Legal inode flag values */ #define NFS_INO_STALE 0x0001 /* possible stale inode */ #define NFS_INO_ADVISE_RDPLUS 0x0002 /* advise readdirplus */ #define NFS_INO_REVALIDATING 0x0004 /* revalidating attrs */ #define NFS_INO_INVALID_ATTR 0x0008 /* cached attrs are invalid */ #define NFS_INO_INVALID_DATA 0x0010 /* cached data is invalid */ #define NFS_INO_INVALID_ATIME 0x0020 /* cached atime is invalid */ #define NFS_INO_INVALID_ACCESS 0x0040 /* cached access cred invalid */ static inline struct nfs_inode *NFS_I(struct inode *inode) { return container_of(inode, struct nfs_inode, vfs_inode); } #define NFS_SB(s) ((struct nfs_server *)(s->s_fs_info)) #define NFS_FH(inode) (&NFS_I(inode)->fh) #define NFS_SERVER(inode) (NFS_SB(inode->i_sb)) #define NFS_CLIENT(inode) (NFS_SERVER(inode)->client) #define NFS_PROTO(inode) (NFS_SERVER(inode)->rpc_ops) #define NFS_ADDR(inode) (RPC_PEERADDR(NFS_CLIENT(inode))) #define NFS_COOKIEVERF(inode) (NFS_I(inode)->cookieverf) #define NFS_READTIME(inode) (NFS_I(inode)->read_cache_jiffies) #define NFS_CHANGE_ATTR(inode) (NFS_I(inode)->change_attr) #define NFS_ATTRTIMEO(inode) (NFS_I(inode)->attrtimeo) #define NFS_MINATTRTIMEO(inode) \ (S_ISDIR(inode->i_mode)? NFS_SERVER(inode)->acdirmin \ : NFS_SERVER(inode)->acregmin) #define NFS_MAXATTRTIMEO(inode) \ (S_ISDIR(inode->i_mode)? NFS_SERVER(inode)->acdirmax \ : NFS_SERVER(inode)->acregmax) #define NFS_ATTRTIMEO_UPDATE(inode) (NFS_I(inode)->attrtimeo_timestamp) #define NFS_FLAGS(inode) (NFS_I(inode)->flags) #define NFS_REVALIDATING(inode) (NFS_FLAGS(inode) & NFS_INO_REVALIDATING) #define NFS_STALE(inode) (NFS_FLAGS(inode) & NFS_INO_STALE) #define NFS_FILEID(inode) (NFS_I(inode)->fileid) static inline int nfs_caches_unstable(struct inode *inode) { return atomic_read(&NFS_I(inode)->data_updates) != 0; } static inline void NFS_CACHEINV(struct inode *inode) { if (!nfs_caches_unstable(inode)) NFS_FLAGS(inode) |= NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS; } static inline int nfs_server_capable(struct inode *inode, int cap) { return NFS_SERVER(inode)->caps & cap; } static inline int NFS_USE_READDIRPLUS(struct inode *inode) { return NFS_FLAGS(inode) & NFS_INO_ADVISE_RDPLUS; } /** * nfs_save_change_attribute - Returns the inode attribute change cookie * @inode - pointer to inode * The "change attribute" is updated every time we finish an operation * that will result in a metadata change on the server. */ static inline long nfs_save_change_attribute(struct inode *inode) { return NFS_I(inode)->cache_change_attribute; } /** * nfs_verify_change_attribute - Detects NFS inode cache updates * @inode - pointer to inode * @chattr - previously saved change attribute * Return "false" if metadata has been updated (or is in the process of * being updated) since the change attribute was saved. */ static inline int nfs_verify_change_attribute(struct inode *inode, unsigned long chattr) { return !nfs_caches_unstable(inode) && chattr == NFS_I(inode)->cache_change_attribute; } /* * linux/fs/nfs/inode.c */ extern void nfs_zap_caches(struct inode *); extern struct inode *nfs_fhget(struct super_block *, struct nfs_fh *, struct nfs_fattr *); extern int nfs_refresh_inode(struct inode *, struct nfs_fattr *); extern int nfs_getattr(struct vfsmount *, struct dentry *, struct kstat *); extern int nfs_permission(struct inode *, int, struct nameidata *); extern int nfs_access_get_cached(struct inode *, struct rpc_cred *, struct nfs_access_entry *); extern void nfs_access_add_cache(struct inode *, struct nfs_access_entry *); extern int nfs_open(struct inode *, struct file *); extern int nfs_release(struct inode *, struct file *); extern int nfs_attribute_timeout(struct inode *inode); extern int nfs_revalidate_inode(struct nfs_server *server, struct inode *inode); extern int __nfs_revalidate_inode(struct nfs_server *, struct inode *); extern int nfs_setattr(struct dentry *, struct iattr *); extern void nfs_begin_attr_update(struct inode *); extern void nfs_end_attr_update(struct inode *); extern void nfs_begin_data_update(struct inode *); extern void nfs_end_data_update(struct inode *); extern void nfs_end_data_update_defer(struct inode *); extern struct nfs_open_context *alloc_nfs_open_context(struct dentry *dentry, struct rpc_cred *cred); extern struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx); extern void put_nfs_open_context(struct nfs_open_context *ctx); extern void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx); extern struct nfs_open_context *nfs_find_open_context(struct inode *inode, int mode); extern void nfs_file_clear_open_context(struct file *filp); /* linux/net/ipv4/ipconfig.c: trims ip addr off front of name, too. */ extern u32 root_nfs_parse_addr(char *name); /*__init*/ /* * linux/fs/nfs/file.c */ extern struct inode_operations nfs_file_inode_operations; extern struct file_operations nfs_file_operations; extern struct address_space_operations nfs_file_aops; static inline struct rpc_cred *nfs_file_cred(struct file *file) { if (file != NULL) { struct nfs_open_context *ctx; ctx = (struct nfs_open_context*)file->private_data; return ctx->cred; } return NULL; } /* * linux/fs/nfs/direct.c */ extern ssize_t nfs_direct_IO(int, struct kiocb *, const struct iovec *, loff_t, unsigned long); extern ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos); extern ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos); /* * linux/fs/nfs/dir.c */ extern struct inode_operations nfs_dir_inode_operations; extern struct file_operations nfs_dir_operations; extern struct dentry_operations nfs_dentry_operations; extern int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fh, struct nfs_fattr *fattr); /* * linux/fs/nfs/symlink.c */ extern struct inode_operations nfs_symlink_inode_operations; /* * linux/fs/nfs/unlink.c */ extern int nfs_async_unlink(struct dentry *); extern void nfs_complete_unlink(struct dentry *); /* * linux/fs/nfs/write.c */ extern int nfs_writepage(struct page *page, struct writeback_control *wbc); extern int nfs_writepages(struct address_space *, struct writeback_control *); extern int nfs_flush_incompatible(struct file *file, struct page *page); extern int nfs_updatepage(struct file *, struct page *, unsigned int, unsigned int); extern void nfs_writeback_done(struct rpc_task *task); #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) extern void nfs_commit_done(struct rpc_task *); #endif /* * Try to write back everything synchronously (but check the * return value!) */ extern int nfs_sync_inode(struct inode *, unsigned long, unsigned int, int); #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) extern int nfs_commit_inode(struct inode *, unsigned long, unsigned int, int); #else static inline int nfs_commit_inode(struct inode *inode, unsigned long idx_start, unsigned int npages, int how) { return 0; } #endif static inline int nfs_have_writebacks(struct inode *inode) { return NFS_I(inode)->npages != 0; } static inline int nfs_wb_all(struct inode *inode) { int error = nfs_sync_inode(inode, 0, 0, FLUSH_WAIT); return (error < 0) ? error : 0; } /* * Write back all requests on one page - we do this before reading it. */ static inline int nfs_wb_page_priority(struct inode *inode, struct page* page, int how) { int error = nfs_sync_inode(inode, page->index, 1, how | FLUSH_WAIT | FLUSH_STABLE); return (error < 0) ? error : 0; } static inline int nfs_wb_page(struct inode *inode, struct page* page) { return nfs_wb_page_priority(inode, page, 0); } /* * Allocate and free nfs_write_data structures */ extern mempool_t *nfs_wdata_mempool; static inline struct nfs_write_data *nfs_writedata_alloc(void) { struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, SLAB_NOFS); if (p) { memset(p, 0, sizeof(*p)); INIT_LIST_HEAD(&p->pages); } return p; } static inline void nfs_writedata_free(struct nfs_write_data *p) { mempool_free(p, nfs_wdata_mempool); } /* Hack for future NFS swap support */ #ifndef IS_SWAPFILE # define IS_SWAPFILE(inode) (0) #endif /* * linux/fs/nfs/read.c */ extern int nfs_readpage(struct file *, struct page *); extern int nfs_readpages(struct file *, struct address_space *, struct list_head *, unsigned); extern void nfs_readpage_result(struct rpc_task *); /* * Allocate and free nfs_read_data structures */ extern mempool_t *nfs_rdata_mempool; static inline struct nfs_read_data *nfs_readdata_alloc(void) { struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, SLAB_NOFS); if (p) memset(p, 0, sizeof(*p)); return p; } static inline void nfs_readdata_free(struct nfs_read_data *p) { mempool_free(p, nfs_rdata_mempool); } extern void nfs_readdata_release(struct rpc_task *task); /* * linux/fs/mount_clnt.c * (Used only by nfsroot module) */ extern int nfsroot_mount(struct sockaddr_in *, char *, struct nfs_fh *, int, int); /* * inline functions */ static inline loff_t nfs_size_to_loff_t(__u64 size) { loff_t maxsz = (((loff_t) ULONG_MAX) << PAGE_CACHE_SHIFT) + PAGE_CACHE_SIZE - 1; if (size > maxsz) return maxsz; return (loff_t) size; } static inline ino_t nfs_fileid_to_ino_t(u64 fileid) { ino_t ino = (ino_t) fileid; if (sizeof(ino_t) < sizeof(u64)) ino ^= fileid >> (sizeof(u64)-sizeof(ino_t)) * 8; return ino; } /* NFS root */ extern void * nfs_root_data(void); #define nfs_wait_event(clnt, wq, condition) \ ({ \ int __retval = 0; \ if (clnt->cl_intr) { \ sigset_t oldmask; \ rpc_clnt_sigmask(clnt, &oldmask); \ __retval = wait_event_interruptible(wq, condition); \ rpc_clnt_sigunmask(clnt, &oldmask); \ } else \ wait_event(wq, condition); \ __retval; \ }) #define NFS_JUKEBOX_RETRY_TIME (5 * HZ) #ifdef CONFIG_NFS_V4 struct idmap; /* * In a seqid-mutating op, this macro controls which error return * values trigger incrementation of the seqid. * * from rfc 3010: * The client MUST monotonically increment the sequence number for the * CLOSE, LOCK, LOCKU, OPEN, OPEN_CONFIRM, and OPEN_DOWNGRADE * operations. This is true even in the event that the previous * operation that used the sequence number received an error. The only * exception to this rule is if the previous operation received one of * the following errors: NFSERR_STALE_CLIENTID, NFSERR_STALE_STATEID, * NFSERR_BAD_STATEID, NFSERR_BAD_SEQID, NFSERR_BADXDR, * NFSERR_RESOURCE, NFSERR_NOFILEHANDLE. * */ #define seqid_mutating_err(err) \ (((err) != NFSERR_STALE_CLIENTID) && \ ((err) != NFSERR_STALE_STATEID) && \ ((err) != NFSERR_BAD_STATEID) && \ ((err) != NFSERR_BAD_SEQID) && \ ((err) != NFSERR_BAD_XDR) && \ ((err) != NFSERR_RESOURCE) && \ ((err) != NFSERR_NOFILEHANDLE)) enum nfs4_client_state { NFS4CLNT_OK = 0, }; /* * The nfs4_client identifies our client state to the server. */ struct nfs4_client { struct list_head cl_servers; /* Global list of servers */ struct in_addr cl_addr; /* Server identifier */ u64 cl_clientid; /* constant */ nfs4_verifier cl_confirm; unsigned long cl_state; u32 cl_lockowner_id; /* * The following rwsem ensures exclusive access to the server * while we recover the state following a lease expiration. */ struct rw_semaphore cl_sem; struct list_head cl_delegations; struct list_head cl_state_owners; struct list_head cl_unused; int cl_nunused; spinlock_t cl_lock; atomic_t cl_count; struct rpc_clnt * cl_rpcclient; struct rpc_cred * cl_cred; struct list_head cl_superblocks; /* List of nfs_server structs */ unsigned long cl_lease_time; unsigned long cl_last_renewal; struct work_struct cl_renewd; struct work_struct cl_recoverd; wait_queue_head_t cl_waitq; struct rpc_wait_queue cl_rpcwaitq; /* used for the setclientid verifier */ struct timespec cl_boot_time; /* idmapper */ struct idmap * cl_idmap; /* Our own IP address, as a null-terminated string. * This is used to generate the clientid, and the callback address. */ char cl_ipaddr[16]; unsigned char cl_id_uniquifier; }; /* * NFS4 state_owners and lock_owners are simply labels for ordered * sequences of RPC calls. Their sole purpose is to provide once-only * semantics by allowing the server to identify replayed requests. * * The ->so_sema is held during all state_owner seqid-mutating operations: * OPEN, OPEN_DOWNGRADE, and CLOSE. Its purpose is to properly serialize * so_seqid. */ struct nfs4_state_owner { struct list_head so_list; /* per-clientid list of state_owners */ struct nfs4_client *so_client; u32 so_id; /* 32-bit identifier, unique */ struct semaphore so_sema; u32 so_seqid; /* protected by so_sema */ atomic_t so_count; struct rpc_cred *so_cred; /* Associated cred */ struct list_head so_states; struct list_head so_delegations; }; /* * struct nfs4_state maintains the client-side state for a given * (state_owner,inode) tuple (OPEN) or state_owner (LOCK). * * OPEN: * In order to know when to OPEN_DOWNGRADE or CLOSE the state on the server, * we need to know how many files are open for reading or writing on a * given inode. This information too is stored here. * * LOCK: one nfs4_state (LOCK) to hold the lock stateid nfs4_state(OPEN) */ struct nfs4_lock_state { struct list_head ls_locks; /* Other lock stateids */ fl_owner_t ls_owner; /* POSIX lock owner */ #define NFS_LOCK_INITIALIZED 1 int ls_flags; u32 ls_seqid; u32 ls_id; nfs4_stateid ls_stateid; atomic_t ls_count; }; /* bits for nfs4_state->flags */ enum { LK_STATE_IN_USE, NFS_DELEGATED_STATE, }; struct nfs4_state { struct list_head open_states; /* List of states for the same state_owner */ struct list_head inode_states; /* List of states for the same inode */ struct list_head lock_states; /* List of subservient lock stateids */ struct nfs4_state_owner *owner; /* Pointer to the open owner */ struct inode *inode; /* Pointer to the inode */ unsigned long flags; /* Do we hold any locks? */ struct semaphore lock_sema; /* Serializes file locking operations */ rwlock_t state_lock; /* Protects the lock_states list */ nfs4_stateid stateid; unsigned int nreaders; unsigned int nwriters; int state; /* State on the server (R,W, or RW) */ atomic_t count; }; struct nfs4_exception { long timeout; int retry; }; struct nfs4_state_recovery_ops { int (*recover_open)(struct nfs4_state_owner *, struct nfs4_state *); int (*recover_lock)(struct nfs4_state *, struct file_lock *); }; extern struct dentry_operations nfs4_dentry_operations; extern struct inode_operations nfs4_dir_inode_operations; /* nfs4proc.c */ extern int nfs4_map_errors(int err); extern int nfs4_proc_setclientid(struct nfs4_client *, u32, unsigned short); extern int nfs4_proc_setclientid_confirm(struct nfs4_client *); extern int nfs4_proc_async_renew(struct nfs4_client *); extern int nfs4_proc_renew(struct nfs4_client *); extern int nfs4_do_close(struct inode *inode, struct nfs4_state *state, mode_t mode); extern struct inode *nfs4_atomic_open(struct inode *, struct dentry *, struct nameidata *); extern int nfs4_open_revalidate(struct inode *, struct dentry *, int); extern struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops; extern struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops; /* nfs4renewd.c */ extern void nfs4_schedule_state_renewal(struct nfs4_client *); extern void nfs4_renewd_prepare_shutdown(struct nfs_server *); extern void nfs4_kill_renewd(struct nfs4_client *); /* nfs4state.c */ extern void init_nfsv4_state(struct nfs_server *); extern void destroy_nfsv4_state(struct nfs_server *); extern struct nfs4_client *nfs4_get_client(struct in_addr *); extern void nfs4_put_client(struct nfs4_client *clp); extern int nfs4_init_client(struct nfs4_client *clp); extern struct nfs4_client *nfs4_find_client(struct in_addr *); extern u32 nfs4_alloc_lockowner_id(struct nfs4_client *); extern struct nfs4_state_owner * nfs4_get_state_owner(struct nfs_server *, struct rpc_cred *); extern void nfs4_put_state_owner(struct nfs4_state_owner *); extern void nfs4_drop_state_owner(struct nfs4_state_owner *); extern struct nfs4_state * nfs4_get_open_state(struct inode *, struct nfs4_state_owner *); extern void nfs4_put_open_state(struct nfs4_state *); extern void nfs4_close_state(struct nfs4_state *, mode_t); extern struct nfs4_state *nfs4_find_state(struct inode *, struct rpc_cred *, mode_t mode); extern void nfs4_increment_seqid(int status, struct nfs4_state_owner *sp); extern void nfs4_schedule_state_recovery(struct nfs4_client *); extern struct nfs4_lock_state *nfs4_find_lock_state(struct nfs4_state *state, fl_owner_t); extern struct nfs4_lock_state *nfs4_get_lock_state(struct nfs4_state *state, fl_owner_t); extern void nfs4_put_lock_state(struct nfs4_lock_state *state); extern void nfs4_increment_lock_seqid(int status, struct nfs4_lock_state *ls); extern void nfs4_notify_setlk(struct nfs4_state *, struct file_lock *, struct nfs4_lock_state *); extern void nfs4_notify_unlck(struct nfs4_state *, struct file_lock *, struct nfs4_lock_state *); extern void nfs4_copy_stateid(nfs4_stateid *, struct nfs4_state *, fl_owner_t); struct nfs4_mount_data; #else #define init_nfsv4_state(server) do { } while (0) #define destroy_nfsv4_state(server) do { } while (0) #define nfs4_put_state_owner(inode, owner) do { } while (0) #define nfs4_put_open_state(state) do { } while (0) #define nfs4_close_state(a, b) do { } while (0) #define nfs4_renewd_prepare_shutdown(server) do { } while (0) #endif #endif /* __KERNEL__ */ /* * NFS debug flags */ #define NFSDBG_VFS 0x0001 #define NFSDBG_DIRCACHE 0x0002 #define NFSDBG_LOOKUPCACHE 0x0004 #define NFSDBG_PAGECACHE 0x0008 #define NFSDBG_PROC 0x0010 #define NFSDBG_XDR 0x0020 #define NFSDBG_FILE 0x0040 #define NFSDBG_ROOT 0x0080 #define NFSDBG_CALLBACK 0x0100 #define NFSDBG_ALL 0xFFFF #ifdef __KERNEL__ # undef ifdebug # ifdef NFS_DEBUG # define ifdebug(fac) if (unlikely(nfs_debug & NFSDBG_##fac)) # else # define ifdebug(fac) if (0) # endif #endif /* __KERNEL */ #endif